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Abstract
Models for estimating the similarity between two utterances are
fundamental in speech technology. While fairly good automatic
measures exist for semantic similarity, pragmatic similarity has
not been previously explored. Using a new collection of thou-
sands of human judgments of the pragmatic similarity between
utterance pairs, we train and evaluate various predictive models.
The best performing model, which uses 103 features selected
from HuBert’s 24th layer, correlates on average 0.74 with hu-
man judges for the highest-quality data subset, and it sometimes
approaches human inter-annotator agreement. We also find ev-
idence for some degree of generality across languages.
Index Terms: dialogue, utterance-level perceptions, English,
Spanish, prosody, HuBert

1. Introduction
Pragmatics, the aspects of language use in which people convey
information beyond the semantic content, is becoming more im-
portant for computational purposes, as applications increasingly
target more natural spoken dialog and more embodied use cases.

Models of similarity underlie much of speech technology:
in their guise as loss functions for training; as error measures for
system performance evaluation; for analysis, as in clustering;
and as system components, for example in nearest-neighbor-
based classifiers. While many useful models of lexical, se-
mantic, and prosodic similarity have been developed, modeling
pragmatic similarity is a new and different challenge.

This paper contributes: 1) an overview of some needs that
a model of pragmatic similarity could serve, 2) a new way to
use features from a self-supervised learning (SSL) model for a
downstream task, 3) a simple HuBert-based model that closely
predicts human judgments, and 4) the finding that this model
can have value even without re-tuning to a specific language.

2. Applications and Related Work
This section overviews how a model of pragmatic similarity
could support progress in three areas of speech technology.

The first area is speech synthesis. Of the three main contrib-
utors to progress in this area — models, data, and loss functions
— weaknesses in the latter may be the limiting factor [1]. Of
course, there are ways to estimate perceived intonational sim-
ilarity [2, 3, 4, 5, 6], and, more generally, prosodic similarity
[7, 8, 9, 10], as surveyed in [11], and these may be adequate for
read-style speech, where the task of the synthesizer may only
be to convert a string of text to an intelligible sound. However
it is increasingly noted that speech synthesizers whose output
is prosodically neutral and pragmatically uninformative are not
adequate for many other use cases, such as human-robot inter-

action [12, 13]. While cross-entropy can sometimes work well,
in cases discrete-unit representations are sufficient [14], in gen-
eral a continuous pragmatically-sensitive loss function can most
directly support the broadening of synthesizer utility [15, 1].

One recent topic of interest is synthesis for speech-to-
speech translation, where support for conversational uses will
need elements of the source-language pragmatics to be faith-
fully conveyed in the target-language output [8, 16, 17, 18].
For this purpose it is clearly not adequate to just augment a
synthesizer with options for a small finite set of emotions or
of speaking styles. A good pragmatic-similarity metric could
help these systems learn more fine-grained control, by enabling
training to minimize the pragmatic gap between system output
and human-generated reference translations. This use case in-
spired the two most relevant previous efforts: Barrault et al.
[18] trained a model, AutoPCP, for estimating overall similar-
ity, but unfortunately this has been evaluated only for its utility
in systems-level comparisons, and not for its ability to model
pragmatics specifically, much less for individual judgments of
similarity. Avila and Ward [17] proposed a model using a Eu-
clidean distance metric over 100 features designed to capture
the main prosodic indications of pragmatic functions, but its
performance was never properly evaluated. Both of these ef-
forts were incidental to larger projects, and neither has yet, as
far as we can determine, resulted in usable code, so for current
purposes they are just sources of inspiration.

The second area is assessment of human speech and dia-
log behavior. This can be done to rate or to help people learn-
ing a new language, or to diagnose communication disorders or
monitor the progress of those seeking to overcome them. For
many people in many situations, the pragmatic aspects of lan-
guage behavior may matter most [19], but existing assessments
highlight only phonetic, lexical, syntactic or semantic aspects.
Several use cases could be supported by a pragmatic similarity
estimator, for example, the automatic comparison of a subject’s
dialog behavior samples to those of an exemplar speaker, or set
of reference speakers, such that, if the behavior of the subject
is pragmatically dissimilar, then correction or referral for inter-
vention may be appropriate. Today building such assessment
tools requires task-specific labeled training data [20], such as
a set of matched typical/autistic utterances. However, a good
pragmatic-similarity metric could avoid that need.

The third area is retrieval-based dialog systems. These rely
on estimators for semantic similarity [21, 22], of which many
exist [23, 11]. However, semantically-appropriate utterances
are not always pragmatically appropriate [24], especially for
speech. For example, the word okay can have very different
functions, depending on the prosody. While constraining re-
trieval in various ad hoc ways can help, a general pragmatic-
similarity metric could be a simpler solution.



Thus a model of pragmatic similarity could be widely use-
ful. In psychological modeling, similarity has been noted to be
“one of the most important relations humans perceive” [25] —
as it underlies many aspects of learning, classification, and gen-
eralization — and the perception of similarities of various types
have been well-studied. However there appear to have been
no previous studies specifically of pragmatic similarity percep-
tions, or, indeed, much work at all on the perceptual space of
pragmatic functions.

3. Data and Task

We started by collecting human judgments of the pragmatic
similarity between pairs of utterances, as described in [11]. A
total of 689 utterance pairs were each judged by 6 to 9 judges,
on a scale from 1 to 5. The utterance pairs were crafted to be
more similar than would be accomplished by random sampling.
Four-fifths were based on original utterances from unstructured
conversations among students, and the rest from task-oriented
dialogs among students plus a handful of toddler utterances.
Judgments were obtained in three four-hour sessions: the first
with 220 American English pairs and 9 judges, the second with
234 American English pairs and 9 judges, and the third with
235 Mexican/American-border Spanish pairs and 6 judges.

To highlight some important properties of this dataset:
First, the judgments are task-agnostic: judges were asked only
to indicate “How pragmatically similar are the two clips, in
terms of the overall feeling, tone, and intent?” Second, the judg-
ments likely reflect unbiased perceptions, as the judges were not
taught any theory or taxonomy of pragmatic functions. Third,
the judgments are high-quality — thanks doubtless to the judges
being hand-picked for having demonstrated sensitivity to and
adeptness with the nuances of the languages, and being well-
compensated and constantly supervised — with good inter-
annotator agreement, at least after the initial session. Fourth,
this data includes both stimulus pairs with different lexical con-
tent and pairs whose lexical content is the same, and thus differ
mostly in the prosody, in a ratio of about 1 to 2. Having pairs of
both types is helpful because, for many use cases, such as those
discussed above, the ideal similarity metric would perform well
regardless of whether the two utterances have identical word
sequences.

Our modeling task is to predict the human similarity judg-
ments from the audio for both utterances in the stimulus pair:
thus, to build a Pragmatic Similarity Estimator. Our primary
quality metric is the correlation between model predictions and
human judgments. This is computed in two ways. First, as
the main performance metric, we use the correlation between
the model predictions and the average of the human judgments
(Method M1a). Second, to enable direct comparison with hu-
man inter-annotator agreement, we also report the average of
the correlations between the model and each judge (Method
M1b). In addition we sometimes report the mean absolute error
between model predictions (rescaled to best match the human
judgments) and human judgments (Method M2). We also re-
port some qualitative analyses.

We report results separately for each session. As will be
seen, some of the results for the first and third sessions use infor-
mation gleaned across all judgments in those sessions. However
all results for the second session as test data are pristine, com-
ing from models whose hyperparameter selection and training
process was blind to that session’s data.

models correlation
Eng.1 Eng.2 Spa.

WavLM + cosine .12 .17 .06
Wav2Vec2.0 + cosine .31 .41 .24
HuBert + cosine .45 .41 .40
selected HuBert + cosine .69 .74 .53

Table 1: Correlation with Human Judges’ Averages (M1a)

4. Models and Results
4.1. Modeling Approach and a Basic Model

Our strategy is to reduce each utterance to a set of features
and estimate pragmatic similarity from the two sets of features.
As our aim is a general-purpose model, we wanted to avoid
overfitting in either the features or the model. Accordingly,
in this subsection we use generic features, and a very simple
model, namely cosine similarity (which we found to outper-
form Euclidean distance). We chose to try features taken from
SSL models pretrained on generic prediction tasks [26, 27, 28].
While these are pretrained on audiobook data, and thus may
not be expected to represent pragmatic information well, previ-
ous research has shown that SSL features in fact support many
prosody- and pragmatics-related tasks [29].

Because SSL models produce a firehose of features, up
to 1024 per layer and per 10-millisecond frame, we reduced
these in two ways: for every experiment we used features from
only one layer, and we average-pooled the features across time.
Average-pooling is certainly not the most sophisticated way to
exploit SSL features [29], and it may, on the one hand, risk dis-
carding temporal information, but, on the other hand, the trans-
former layers may have already paid adequate attention to any
temporally-localized informative features. Empirically, HuBert
was better than Wav2Vec2.0 and WavLM, and the HuBert Large
features outperformed the HuBert Small. For each SSL model,
many layers did almost equally well. Table 1 reports the best
results for each SSL model; for HuBert Large this was Layer
24, the last layer. For Session 2, the correlation was 0.41, and
the correlation was significant at p < 1e− 10. The runtime on
a laptop was about 70 milliseconds for HuBert to compute fea-
tures per second of audio, around 50 milliseconds each for the
pooling operations, unoptimized, and 0.02 milliseconds for the
cosine. Thus, for example, the total time to estimate the simi-
larity between two 3-second clips was just over a half second.

To understand the weaknesses of this model we qualita-
tively examined a sampling of the utterance pairs for which its
predictions were farthest from the average of the human judges.
We found that there were many utterance pairs which this model
estimated to be much more similar than the judges thought: in-
cluding cases where both clips were from children, where both
clips had similar background noise levels, or where a synthe-
sized voice happened to closely match the original utterance in
its pacing. Thus this basic model is often sensitive to factors not
directly relevant to pragmatic similarity.

4.2. A Selected-Features Model

Since HuBert features are known to generically support many
tasks, we hypothesized that feature selection could arrive at a
subset more useful for modeling pragmatic similarity specifi-
cally. Again favoring simplicity, we chose to continue using the
cosine, just with fewer features. As far as we know, feature se-



lection has not previously been used as a way to exploit SSL
speech features.

With 1024 features to consider, considerations of speed
led us to avoid standard methods and create our own feature-
selection algorithm: We split the 1024 features into subsets of
10, and within each 10 did exhaustive search over all pairs of
features to find the pair which gave best performance, evalu-
ated, as always, in terms of the correlation between the cosine
values and the human judgments. This gave us 102 candidate
feature pairs, of which we retained the 50 pairs (100 features)
which performed best. This procedure was fast: 160 seconds on
a laptop for all the Session 1 data.

We evaluated this method by 10-fold cross validation on
the Session 1 data, giving the result seen for “selected Hubert
+ cosine” in the first column of Table 1. (We experimented
with various hyperparameters for this procedure, but there were
only slight differences in performance, as long as the number of
features selected was around 100.) Because the features found
for each fold varied, we also developed a way to find a stable
set: we selected those features that were retained in at least half
of the folds. There were 103 such features, and we used this
set to predict the Session 2 and Spanish data, giving the results
seen in columns 2 and 3 of Table 1. Evaluating on the data
from Session 2 using Method M2, the performance with these
103 features was better than with all 1024 features, with the
mean absolute errors being 0.53 and 0.61, respectively, and the
difference being significant by a matched-pairs one-sided t-test
(p < .0001). Interestingly, feature selection improved perfor-
mance on the lexically-identical pairs but hurt performance on
the pairs with different lexical content, as seen in Table 2 below.

As alternatives to feature selection, we also tried feeding the
pairwise feature deltas into a single-layer network, and feed-
ing the concatenated features of each pair into a single-layer
network. Performance was much worse with these methods,
whether we started with the 1024 features or a selected subset.
Such side explorations aside, the good results across the three
test conditions indicate that this approach can produce models
with good generality.

Attempting to understand the weaknesses of this model, we
examined a sampling of pairs for which its predictions were
worst. The problems noted for the basic model were not seen,
and we did not see any general patterns of error.

To better understand the power of this model, especially its
ability to discriminate very similar versus moderately similar
pairs, we randomly picked 8 seed utterances from the first ses-
sion, and listened to the utterances which were most similar by
the metric, for each. Apart from toddler utterances, in each case
there was, perceptually, a strong similarity. These similarities
were of different kinds, including: being a suggestion, being in-
tended to persuade but also hesitant, sharing a certain strange
pattern of pausing, and expressing mixed feelings about some-
thing. This suggests that this similarity model is performing
well across different regions of the space of utterances. It also
suggests that the model is capturing many dimensions of prag-
matic similarity, including aspects not covered by [30] or, as far
as we know, any other taxonomy of pragmatic functions.

5. Comparisons
5.1. Comparisons to Acoustic-Prosodic Similarity Models

While there are no previous models of pragmatic similarity, we
can compare our results here to those of various classic models
of acoustic and prosodic similarity, commonly used in evalua-

lexically
same different all

cepstral distance .30 -.06 .24
F0 DTW .12 .12 .11
mel-cepstral DTW .31 .03 .23
mel-cepstral independent DTWs .31 .00 .24
duration .05 .11 .05
BertSimilarity – .50 –
HuBert + cosine .47 .33 .41
selected HuBert + cosine .80 .20 .74

Table 2: Correlations with Human Judges’ Averages (M1a), for
Session 2 and its subsets

tion of speech synthesis, as those may be capturing some of the
same information.

To provide some details on the models evaluated: Cep-
stral distance was computed using Sternkopf’s implementation
of Kubichek’s Mel-Cepstral Distance Measure. Dynamic Time
Warping (DTW) was done using F0 computed using librosa [31]
and Meert’s DTW code [32]. To obtain everywhere-defined
pitch, we patched regions where none was detected by using the
most recent detected pitch value. We did no speaker normaliza-
tion. The few utterances with no pitch detected at all were sim-
ply excluded when computing the correlations. Mel-Cepstral
DTW was done 13 mel-cepstral features, using librosa’s imple-
mentation [33]. We did this in two ways. First, in the normal
way, we found the single best alignment for all features, using
FastDTW [34]. Second, we found the best time alignment for
each of the 13 features independently, using Meert’s DTW, and
then took the average of the distances for the 13. In addition,
having noticed that judges seldom rated pairs as similar if they
were greatly different in length, we built a trivial predictor that
used the absolute difference in duration between the utterances
in the pair. We note that all these models have no free param-
eters, being based on theories of what people will perceive as
similar, and thus were used without training.

As seen in Table 2, these classic models had only
modest success on the Session 2 data, especially for the
lexically-different pairs. This was also true for the other ses-
sions. This suggests that the HuBert features well-capture the
pragmatically-relevant prosodic information, a result that aligns
with the findings of [29]. We do not know specifically where
the benefit comes from. It could come from gathering more
prosodic information than just intonation features, from better
normalizing, from better modeling temporal patterns, or some
combination of these and other factors.

5.2. Comparison to a Word-based Similarity Estimate

We next tried a word-based similarity model. While the work-
ing assumption of this paper is that pragmatic similarity is dif-
ferent from semantic similarity, they are not unrelated. We in-
vestigated using a high-performing semantic similarity model,
BertSimilarity [35].

As seen in Table 2, BertSimilarity does quite well for
the lexically-distinct subset, greatly outperforming our model.
However, it can, of course, provide no information for the
lexically-identical pairs. From the table we also see that the
HuBert-based models do relatively poorly for lexically-different
pairs, perhaps in part because the training data (the Session 1
data) was mostly lexically-identical pairs.



Eng.1 Eng.2 Spa.
models

Wav2Vec2.0 + cosine .26 .36 .20
HuBert model + cosine .32 .36 .33
selected HuBert + cosine .50 .64 .45

humans
worst human .29 .68 .62
average human .45 .72 .66
best human .53 .78 .70

Table 3: Average of Correlations with Human Judges (M1b)

To understand the relative merits of BertSimilarity and
our model, we examined a few pairs where its estimates
and our model’s most differed. An illustrative case was the
pair: your payment has been processed and the payment went
through. BertSimilarity rated these two only modestly sim-
ilar, but our model matched with the human judges in rat-
ing them very similar. Listening to the audio, available at
www.cs.utep.edu/nigel/similarity/, we attribute
this to the prosody of both conveying, in addition to the con-
tent, a business-like stance, confidence, reassurance, and topic
closure. This suggests that our model might usefully comple-
ment a word-based similarity model for some purposes.

5.3. Comparison to Humans

To compare the models’ performance to human performance,
we looked at how well they correlate with each human judge
(Evaluation Method M1b). This enables direct comparison to
the performance of the human judges, unlike the values seen in
Table 1, where the goal is to predict the average of the judges
(M1a), an easier task because averaging removes hard-to-model
noise. Thus, Table 3 shows the average of the correlations be-
tween the model and each human, and, for comparison, the av-
erage of the correlations between all pairs of human judges. As
seen in the table, it outperformed the average judge in Session 1,
but did relatively less well for the subsequent sessions, in which
the judges were more experienced and agreed more [11].

Our best model did better for the lexically-identical stim-
ulus pairs, but so did the human judges. Comparing for the
lexically-identical Session 2 data, using Method M1b, the av-
erage of the correlations with human judges for the best model
was 0.72, not far behind the average human judge’s average cor-
relation, 0.80.

6. Performance Across Languages and
Genres

To explore the generality of the method and models across lan-
guages, we measured the performance across the three sessions
of data of three models: the one with all features, the one with
feature selection done using the English Session 1 data, and
one with feature selection done on the Spanish data. Inciden-
tally, of the 101 features in the latter model, only some two
dozen overlapped the 103 found for English. The results, Ta-
ble 4, indicate that tuning even on different-language similar-
ity judgments is helpful, but also that top performance requires
language-specific modeling.

We also explored whether the best model also has value
for a different genre. We used the Switchboard corpus, since,
unlike most of our test data, its speakers are strangers, mostly

Eng.1 Eng.2 Spa.
original HuBert .45 .41 .40
English-tuned HuBert .69 .74 .53
Spanish-tuned HuBert .59 .63 .72

Table 4: Cross-language Modeling: Correlations with the hu-
man judges averages (M1a)

middle-aged, have an East Texas accent, and talk over the tele-
phone. For a random sampling of 10 utterances as seeds, we
examined the utterances that our model found as most similar
to each. In 9 of the 10 cases the most-similar utterances were
from a different speaker, and 9 of the 10 were perceptually,
to us, highly similar. Many types of similarity were evident,
many surprisingly specific, including reminiscing about some-
thing amusing, trying to evocatively describe a neighborhood
scene, closing out a topic by summarizing, discussing nega-
tive experiences with telephone calls, attempting to persuade
through logical argument, clarifying a point made in a previ-
ous statement, explaining something technical, and disparaging
unselective behavior. While there were a few lexical similar-
ities and occasional topic similarities, most similarities were
pragmatics-related.

7. Summary, Implications, and Future
Work

This paper has reported the first work on building models able
to estimate the perceived pragmatic similarity between utter-
ance pairs. We obtained good performance with a surprisingly
simple model, which uses the cosine similarity between se-
lected time-averaged HuBert features for the two utterances.
This model outperformed existing prosodic and acoustic sim-
ilarity measures, works where semantic similarity provides no
information, and can come close to human performance. These
things are true for both English and Spanish.

A major limitation of this work is that we were unable to
properly examine the generality of the models for different gen-
res of speech. Doing so will require new data resources. Future
work should also explore how to build explainable models, for
example by using meaningful and interpretable prosodic fea-
tures, and also explore whether we can improve performance
and robustness, including by conditioning the similarity esti-
mates on additional factors, such as dialog activity, partner be-
havior, local context, and, for robot applications, the physical
environment.

The prospects are bright for utility for the use cases
mentioned in Section 2. Even though this was just an initial
exploration, our models may already be useful. In particular,
to expand on two aspects: For reference-based evaluation
of the pragmatic abilities of speech synthesizers, since our
model approaches the performance of even selected and
supervised human judges, it is likely to far outperform the
usual method of using crowdworkers. For the assessment of
human speech, we have recently obtained promising results
using this model for data-light classification of autistic versus
neurotypical adolescents. We make our code available at
https://github.com/andysegura89/Pragmatic_
Similarity_ISG to support further investigations and
applications.
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et al., “Speech synthesis evaluation: State-of-the-art assessment
and suggestion for a novel research program,” in Proceedings of
the 10th Speech Synthesis Workshop (SSW10), 2019.

[2] J. Kominek, T. Schultz, and A. W. Black, “Synthesizer voice qual-
ity of new languages calibrated with mean mel cepstral distor-
tion,” in Workshop on Spoken Language Technologies for Under-
resourced Languages (SLTU), 2008, pp. 63–68.
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