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ABSTRACT

We investigate which prosodic features matter most in conveying
pragmatic functions. We use the problem of predicting human per-
ceptions of pragmatic similarity among utterance pairs to evaluate
the utility of prosodic features of different types. We find evidence
that the duration-related features are most important, that pitch-
related features are much less important and less adequate, and that
complete modeling will require additional acoustic and prosodic
features, including nasality and phonetic reduction. These findings
can guide future basic research in prosody, and suggest how to
improve speech synthesis evaluation, among other applications.

Index Terms— speech synthesis evaluation, error metrics, prag-
matic similarity, prosodic feature sets, feature-importance analysis,
English, Spanish

1. MOTIVATION

We ask: What prosodic features matter most in the expression of
pragmatic functions?

We choose to focus on pragmatic functions because of their im-
portance in emerging scenarios for speech technology, such as dialog
systems involving interpersonal sensitivity or deployed in situated
robots [1]. Prosody is well-known to have important roles in con-
veying many pragmatic functions [2, 3, 4].

Our question may seem dated. Certainly it is now irrelevant
for any short-term project for which there is adequate training data.
In such cases, rather than agonize over which features to use, we
can just use everything available, leaving it to the machine learn-
ing algorithm to exploit them effectively. This strategy is especially
well-suited to the use of pretrained models, which can encode much
prosodic information [5].

Nevertheless, attempting to answer this question could serve:
a) To support system development, when lacking sufficient training
data to build a model from scratch. Developers can use knowledge
of which prosodic features generally matter most, to build a starting-
point architecture or model, which can then be refined.
b) To support prioritization of research directions and questions, for
psycholinguists and others doing basic research; and to help applied
researchers chose what to focus on when describing, for example,
some understudied language, the nature of some communication dis-
order, or some aspect of sociolinguistic variation.
c) To support the design of control parameters to serve as “knobs”
for human-in-the-loop specification or post-editing of the prosody of
speech synthesizer output [6].
d) To enable better evaluation of the quality of the prosody output
of a generative system, for practical needs, including:
d1) The evaluation of speech synthesizer output [7]. A quick survey
of the papers on speech synthesis at Interspeech 2023 shows that,

while most discuss prosody, the features considered were mostly
pitch and duration, with only 10% mentioning intensity and only one
voicing properties. Even when specifically targeting better expres-
sivity, conversational style, and better prosody [8, 9, 10], designers
of metrics, lacking true knowledge of what matters, may fall back on
what’s familiar, namely pitch and sometimes duration.
d2) Building better speech-to-speech translation systems, where
there is increasing interest in faithfully conveying more than just
the lexical content [11, 12]. Knowledge of which prosodic features
matter most can support the design of better loss functions.
d3) Evaluating the power of discrete and other learned representa-
tions [13].
d4) The design of better speech codecs. Compression algorithms
have been traditionally designed to maximize intelligibility and nat-
uralness, but for use in interactive communication, preservation of
certain prosodic features is also likely important.
d5) Designing interpretable feedback. This can be for people wish-
ing to learn how to communicate more effectively in business or in
relationships, or for special populations such as second language
learners, those in rehabilitation after a stroke, and children with
speech or language pathologies.

Over the decades, there have been numerous investigations of
which prosodic features matter most for various specific purposes,
mostly in classification and regression tasks. These include emotion
recognition [14, 15, 16], classification of linguistic structures such as
tones, boundaries, and accents [17, 18, 19], estimating judgments of
language learners’ accentedness, intelligibility, and other properties
[20], prediction of turn-taking actions [21], language modeling [22],
speaker identification [23], language identification [24], detecting
clinical conditions [25], and speech synthesis [26]. Many interesting
things have been found, and this body of work has greatly influenced
the features included in prosodic-feature toolkits [15, 27]. However,
none of this work has addressed pragmatics other than incidentally.

In this paper we use “pragmatics” in a broad sense, to include
all aspects of interaction in dialog that go beyond the lexical seman-
tic meaning. These are diverse: in dialog, people frequently show
enthusiasm, make clarifications, cue action, clarify, criticize, praise,
introduce a new topic, yield the turn to the other, and so on.

2. METHODS

Our interest is the prosody of pragmatic functions in general, not for
any specific task. We accordingly chose to study prosody in the con-
text of a general problem: estimating the perceived pragmatic simi-
larity between pairs of utterances. (This can be seen as a generaliza-
tion of attempts to model how humans perceive similarity for intona-
tion [28, 29, 30] and similarity of expressivity [10]). Our premise is
that a set of prosodic features that can support such estimates, across



a wide variety of data, is likely to be useful for many applications in-
volving pragmatic functions. Thus, we leverage this model-building
problem to glean insight into what aspects of prosody matter.

2.1. Data

We exploit a dataset recently collected for another purpose [31]. This
consists of pairs of utterances, each with an assessed pragmatic sim-
ilarity value, on a continuous scale from 1 to 5, based on the average
rating of 6 to 9 human judges. There are 458 pairs in American
English, our main focus for this paper, and 235 Northern Mexican
Spanish pairs.

Each utterance pair consists of a seed utterance extracted from
a recorded dialog and a subsequent re-enactment of that utterance.
Re-enactments were done under six conditions designed to create a
variety of degrees of similarity, including two where the lexical con-
tent may differ from the seed and one with a synthesized voice. The
dialogs were recorded with diverse scenarios to broaden the coverage
of pragmatic functions [32], and within these, the seeds were also se-
lected for diversity [31]. Thus the coverage is likely far broader than
seen in any single-genre corpus.

In preliminary analysis we noted an interesting property of this
data set: some feature distributions differ between the re-enactments
and the seeds. In particular the re-enactments tend to have less vari-
ation in the pitch features, and to be louder and more creaky.

2.2. Features

We wanted a set of features that was broad in coverage, robust for
dialog data, generally perceptually relevant, and simple, to enable
easy interpretation of the results.

Specifically, we chose Avila’s [33] adaptation of selected Mi-
dlevel Toolkit [34, 27] features to tile utterances. This set included
10 base features: intensity, lengthening, creakiness, speaking rate,
peak disalignment (mostly late peak), cepstral peak prominence
smoothed (CPPS), an inverse proxy for breathy voice, and four
pitch features, namely measures of perceived pitch highness, pitch
lowness, pitch wideness, and pitch narrowness. While this feature
set is far from ideal, it is suitable for this exploration. Uniquely,
it was designed to capture the prosody of pragmatic functions —
unlike prosodic feature sets designed for paralinguistic properties,
music, or general signal processing — and it was designed to be
robust to microprosody and various phenomena of conversation. At
the same time, it is flawed. Like other feature sets, none of its com-
ponent features is simultaneously fully robust, fully corresponding
to perception, and fully accurate. For example, the pitch features
are not conditioned on sonority [35], CPPS correlates only roughly
with perceptions of breathiness, and the speaking rate feature is
based on spectral flux, and so is susceptible to diverse ancillary
and confounding factors, including the presence of creaky voice.
Nevertheless, when used for statistical and modeling purposes over
sufficient data, the features in this set can be useful, as seen by their
utility in numerous basic and applied studies [34, 36].

Each base feature is normalized per track to be roughly speaker-
independent. We then use average values over each of ten non-
overlapping windows spanning fixed percentages of its duration:
0–5%, 5–10%, 10–20%, 20–30%, 30–50%, and symmetrically out
to 100%. This representation is not suited to syllable- or word-
bound prosodic phenomena, but can roughly represent the sorts of
overall levels, contours, and patterns that are often associated with
pragmatic functions.

Correlation

Euclidean Distance –0.33
Linear Regression 0.44
KNN Regression 0.58
Random Forest Regression 0.70
cosine over selected HuBert 0.74

Table 1: Pearson’s correlation between each models’ predictions and
the human judgments.

This set is simplistic, and in particular includes nothing relat-
ing to time-sequence modeling, notably no temporal deltas;,let alone
functionals, but our working assumption is that we can still learn
from it.

2.3. Models and Prediction Results

While our main aim in this paper is to analyze feature importance,
modeling pragmatic similarity is a problem of importance in its own
right [31, 37], for example, for use cases d1 and d2 above, so this
subsection focuses on that perspective.

Our primary metrics for model quality are correlations between
the systems’ similarity estimates and the human judgments. We
also computed MSE, and the results were consistent. Our primary
train/test split was between judgments collected in Sessions 1 and
2, a month apart. We also did experiments using 10-fold cross-
validation across all the data, and the results were similar.

The models used are as follows: Euclidean Distance is a re-
implementation of [33]. In this all features are weighted equally,
after z-normalization). For the next three models, the inputs were
the 100 feature deltas, that is, the feature values for the seed minus
the values for the reenactment. (Performance using instead the ab-
solute differences was always somewhat lower, as one might expect
for models accordingly blind to the seed-reenactment distinction.)
For the KNN Regression Model, k was 50. For the Random Forest
Regression there were 100 trees. The “selected HuBert” model uses
the cosine similarity between feature representations consisting of
103 Hubert layer-24 features selected to maximize performance on
the training data [37]. While none of these models is very sophisti-
cated — lacking dynamic time warping or other alignment methods,
average- or max-pooling, non-linear or configurational compositions
of features, and so on — they may suffice for exploratory purposes.

The results are seen in Table 1. First, we see the usual trade-off
between model simplicity/explainability and performance. More
interestingly, we see that the best designed-features model, with
random forest regression, is doing almost as well as the pretrained
features model. This indicates that the penalty for using designed
features is small; perhaps a more sophisticated decision model
could close the gap. Further, examining the correlations separately
for pairs which were lexically different and for pairs which were
lexically-identical, performance on the former was near-random, but
0.80 for the latter, as good as with pretrained features [37].

3. FEATURE-IMPORTANCE ANALYSES

Given a set of features and a task, there are many ways to measure the
importance of feature sets and subsets [18]. We investigated using
three methods. First, we simply computed the Pearson’s correlation
between each of the 100 features and the target judgments. Second
we examined how much each feature contributed to the performance



Feature Importance Correlation

speaking rate 43.7% 0.64
lengthening 20.9% 0.54
peak disalignment 7.8% 0.32
CPPS 5.9% 0.04
pitch highness 4.1% 0.12
pitch narrowness 4.0% –0.06
pitch wideness 3.9% 0.00
creakiness 3.5% 0.14
pitch lowness 3.3% 0.13
intensity 3.1% –0.03

4 pitch features 15.2% 0.16
all 10 features 100.0% 0.70

Table 2: Feature types, ordered by importance for the random forest
regression model and also showing performance of a model using
features of this type alone.

of the best model, using the impurity decrease for Random Forest
Regression Models averaged across all folds. Third, we did subset
and ablation studies, examining performance when including only,
or when excluding only, various feature types.

The implications noted below are all multiply supported, so, to
save space, we present only a selection of the evidence. However we
note that there is no consistent ranking of features, as seen in Table
2. This is not surprising; rather, the existence of feature types with
low correlations but relatively high importance indicates that the fea-
tures are not independent, and instead, as often noted [34], specific
configurations of features likely bear specific meanings. We also
found that the features are highly redundant: ablating any specific
type only slightly reduces the performance.

3.1. Most Important Feature Types

Table 2 shows results per feature type, and Figure 1 the correlations
for five informative feature types. We draw three implications: 1)
Duration features are important, with speaking rate the top feature
by every measure. Interestingly, while lengthening is strongly anti-
correlated with speaking rate, it still has some independent value,
increasing the performance over speaking rate alone by 0.02 (cor-
relation with human judgments). 2) The value of the pitch features
is low. This was not entirely a surprise: the reasons that pitch is
popular — being salient, easy to visualize, familiar from music, rel-
atively easy to measure, and historically important — do not imply
actual utility, and we suspected that the self-evident importance of
pitch features for modeling read speech may not carry over to dialog.
However the importance of the pitch features was surprisingly small.
As this is the first study to actually measure the value of prosodic fea-
tures for pragmatic functions, the last word is yet to be written, but
we can conclude at least that pitch features do not deserve the ex-
clusive respect that they often get. 3) The least informative features
overall are intensity and pitch narrowness.

3.2. Most Important Feature Positions

We next examined evidence for which feature positions matter most.
Figures 1 and 2 suggest that the prosody around 70–90% into ut-
terances is relatively informative, especially for peak disalignment,
pitch wideness, pitch highness, and lengthening. We suspect that
this relates to the common occurrence of various types of pitch peak

Fig. 1: Single-feature correlations between the judgments and the
deltas for five of the most informative feature types, across both Ses-
sion 1 and Session 2 data. The X-axis represents the regions, defined
by fixed percentages of the utterance duration.

(such as nuclear accents) in this region in many utterances. Other
interactions between feature type and position included: speaking
rate being especially informative in the beginnings and middles of
utterances, peak disalignment at the beginning, and the lengthen-
ing feature mostly toward the end. Incidentally the sharp drop in
importance at the end may be an artefact of variation in where the
labelers marked utterance ends, since in these dialogs the utterances
often trailed off. Overall, the tendencies were weaker than we had
expected; rather, it seems that informative prosody is widely dis-
tributed across utterances.

Fig. 2: Feature importance as a function of position (time slice):
on the left axis, performance of a model using only features at that
position; on the right axis, summed importance in the random forest
regression model.



4. QUALITATIVE ANALYSES

Our first qualitative analysis was a brief exploration of why pitch-
only model performed so much worse than the all-feature model.
We examined a small sampling of pairs for which the predictions
of the former were far more accurate than those of the latter. Sev-
eral pragmatic functions were common in these pairs, mostly com-
monly positive/negative assessment, turn hold/yield, and correction
of a misunderstanding. The most common prosodic-acoustic prop-
erties present in these pairs, which also seemed to be involved in
conveying these meanings, included nasality and speaking rate vari-
ation. Saliently, all of these poorly-handled pairs had a synthesized-
speech re-enactment. From this we infer that the synthesizer used,
namely Amazon Polly, is not able to effectively control (or even
much vary, it seems) many of the prosodic characteristics that are
important to human perception. As far as we know, this may be true
for all synthesizers, and we speculate that this is due in large part to
the pitch-prioritizing loss functions that they are trained to.

Our second qualitative analysis explored the limitations of
Avila’s 100-feature set. Although designed to be widely inclusive,
it did not quite support state-of-the-art performance, at least with
the models tried. Again we did failure analysis, this time more thor-
oughly, examining the 30 pairs for which the predictions of our best
model, the Random Forest Regression model, tested in 10-fold cross
validation, had the highest divergences from human judgments.

First we examined pairs which the model rated much higher than
did the judges, looking for differences that our ears could hear but
that the model likely had missed. Almost all of these involved differ-
ences in nasality. Also common were differences in pause frequency,
length, and location. Other factors we noticed include, in rough or-
der of frequency, words said with or without laughing, the exact pho-
netic form of non-lexical utterances such as oh, phonetic reduction
including devoicing, stressing of specific words, vibrato, falsetto,
non-lexical sighs, uses of glottal stops, ejectives, and strong har-
monicity. Speaking rate variations and breathiness were also com-
mon factors, even though the speaking rate and CPPS features were
intended to cover for such perceptions.

Second, we examined pairs that the model rated much lower
than the judges. One frequent factor was differences in pacing or
pause placement that were not significant to our ears, but seemed to
trip up the model. This suggests, unsurprisingly, that a model could
do better with some kind of alignment or max-pooling. Another
factor was apparent individual- or, often, gender-dependent variant
prosodic forms for conveying the same meaning. For example, in oh
my god, it’s working (female) and yo, it’s working (male), where, in
addition to the lexical differences, the former used vibrato, breathy
and falsetto voice, and the male creaky voice, both conveyed excite-
ment and matched well in nuance. Thus, while most aspects of spo-
ken English are amenable to gender-agnostic modeling, this suggests
that this strategy may not work well for pragmatics-related prosody.

Third, we revisited these pairs and a sampling of pairs that were
handled well, hoping to discover which pragmatic-function distinc-
tions remain problematic, even with the full feature set. However,
there were no clear patterns. We also found that all the functions
identified as problematic for the pitch-only model were often han-
dled well by the full model, and of course, the magnitude of the
divergences was much less than for the pitch-only model.

Audio illustrating these points is available at https://www.cs.utep.
edu/nigel/pros-prag/.

5. SPANISH

Wondering which of the findings above might apply beyond En-
glish, we repeated most of the analyses using the Spanish data from
[31]. In brief, we found: 1) These features serve to predict prag-
matic similarity fairly well for Spanish also (0.73 correlation, with
10-fold cross-validation). 2) The feature types with the highest cor-
relations only partly overlapped those for English, with the top three
being speaking rate, creakiness, and pitch wideness. 3) Modeling
using pitch alone was again far inferior to using all features, but the
penalty was less than for English (correlation of 0.41, with 10-fold
cross-validation), 4) Utterance-final features were again the least in-
formative, 5) Models trained on one language and tested on the other
performed reasonably well (e.g. Spanish trained on English: correla-
tion 0.68), but not as well as language-specific models. 6) Common
features lacking from the model but important for human perception
of differences again included nasality and devoicing. 7) Humans of-
ten discounted differences in creakiness, nasality, and breathiness,
especially when these reflected different gender-dependent ways to
convey the same pragmatic function.

6. SUMMARY AND LIMITATIONS

We have reported the results of the first systematic study of which
prosodic features matter most for pragmatics. While we can, of
course, provide no definitive answer to this question — the best fea-
ture set will always depend on the task, language, speaker population
and so on — this exploration has contributed:

• a new method for evaluating the pragmatic adequacy of
prosodic feature sets

• some explainable models for predicting human judgments of
pragmatic similarity

• a new method for discovering important but lacking features
• indications of which features should be included in evaluation

metrics for applications, notably not only pitch features but
also duration-related and voicing features

• identification of pragmatic functions that are poorly handled
by pitch-only feature sets, including making corrections,
marking positive or negative feeling, and indicating turn
hold/yield intentions

• identification of features that are understudied but important
for pragmatics, and thereby deserving of further study, no-
tably nasality, vibrato, and phonetic reduction

While we have broken new ground, we note that this study has
numerous limitations, including the small data sizes, the simplicity
of the features and modeling, the lack of coverage of all genres of
dialog, and the focus on American English. Further work is needed.

Acknowledgments
This work was supported in part by National Science Foundation
award 2348085 and by the AI Research Institutes program of the
NSF and the Institute of Education Sciences, U.S. Department of
Education through Award # 2229873 – National AI Institute for Ex-
ceptional Education. We also thank the anonymous reviewers.

7. REFERENCES

[1] Matthew Marge, Carol Espy-Wilson, et al., “Spoken lan-
guage interaction with robots: Research issues and recommen-
dations,” Computer Speech and Language, vol. 71, 2022.



[2] Dagmar Barth-Weingarten, Nicole Dehé, and Anne Wich-
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style: Synthesizing speech with pragmatic functions,” in Inter-
speech, 2023, pp. 3382–3386.

[4] Weiqin Li, Peiji Yang, et al., “Spontaneous style text-to-speech
synthesis with controllable spontaneous behaviors based on
language models,” in Interspeech, 2024.

[5] Guan-Ting Lin, Chi-Luen Feng, et al., “On the utility of self-
supervised models for prosody-related tasks,” in IEEE Works.
on Spoken Language Technology (SLT), 2022, pp. 1104–1111.

[6] Dan Andrei Iliescu, Devang S Ram Mohan, Tian Huey Teh,
and Zack Hodari, “Controllable prosody generation with par-
tial inputs,” in IEEE ICASSP, 2024, pp. 11916–11920.

[7] Petra Wagner, Jonas Beskow, et al., “Speech synthesis eval-
uation: State-of-the-art assessment and suggestion for a novel
research program,” in Proceedings of the 10th Speech Synthe-
sis Workshop (SSW10), 2019.

[8] Wen-Chin Huang, Benjamin Peloquin, et al., “A Holistic Cas-
cade System, Benchmark, and Human Evaluation Protocol for
Expressive Speech-to-Speech Translation,” in ICASSP, 2023.

[9] Yayue Deng, Jinlong Xue, et al., “ConCSS: Contrastive-based
context comprehension for dialogue-appropriate prosody in
conversational speech synthesis,” in IEEE ICASSP, 2024.

[10] Kevin Heffernan, Artyom Kozhevnikov, et al., “Aligning
speech segments beyond pure semantics,” in Findings of the
Assn. for Computational Linguistics, 2024, pp. 3626–3635.

[11] Loı̈c Barrault, Yu-An Chung, et al., “Seamless: Multilingual
expressive and streaming speech translation,” arXiv preprint
arXiv:2312.05187, 2023.

[12] Eliya Nachmani, Alon Levkovitch, et al., “Translatotron 3:
Speech to speech translation with monolingual data,” in IEEE
ICASSP, 2024, pp. 10686–10690.

[13] Leyuan Qu, Taihao Li, et al., “Disentangling prosody represen-
tations with unsupervised speech reconstruction,” IEEE/ACM
Trans. on Audio, Speech, and Language Processing, 2023.

[14] Anton Batliner, Stefan Steidl, Bjorn Schuller, et al., “Whodun-
nit: Searching for the most important feature types signalling
emotion-related user states in speech,” Computer Speech and
Language, vol. 25, pp. 4–28, 2011.

[15] Florian Eyben, Klaus R. Scherer, et al., “The Geneva minimal-
istic acoustic parameter set (GeMAPS) for voice research and
affective computing,” IEEE Transactions on Affective Comput-
ing, vol. 7, pp. 190–202, 2016.

[16] Bogdan Vlasenko, Sargam Vyas, et al., “Comparing data-
driven and handcrafted features for dimensional emotion
recognition,” in IEEE ICASSP, 2024, pp. 11841–11845.

[17] Neville Ryant, Malcolm Slaney, et al., “Highly accurate Man-
darin tone classification in the absence of pitch information,”
in Proceedings of Speech Prosody, 2014.

[18] Anton Batliner, Jan Buckow, et al., “Prosodic feature evalua-
tion: Brute force or well designed,” in Proc. 14th Int. Congress
of Phonetic Sciences, 1999, vol. 3, pp. 2315–2318.

[19] Anton Batliner, Jan Buckow, et al., “Boiling down prosody
for the classification of boundaries and accents in German and
English,” in Eurospeech, 2001, pp. 2781–2784.

[20] Eduardo Coutinho, Florian Hönig, et al., “Assessing the
prosody of non-native speakers of English: Measures and fea-
ture sets,” in Conference on Language Resources and Evalua-
tion (LREC 2016), 2016, pp. 1328–1332.

[21] Gabriel Skantze, “Turn-taking in conversational systems and
human-robot interaction: A review,” Computer Speech & Lan-
guage, vol. 67, 2021.

[22] Nigel G. Ward, Alejandro Vega, and Timo Baumann,
“Prosodic and temporal features for language modeling for di-
alog,” Speech Communication, vol. 54, pp. 161–174, 2011.

[23] Luciana Ferrer, Nicolas Scheffer, and Elizabeth Shriberg, “A
comparison of approaches for modeling prosodic features in
speaker recognition,” in IEEE ICASSP, 2010, pp. 4414–4417.

[24] Raymond W. M. Ng, Tan Lee, et al., “Analysis and selection
of prosodic features for language identification,” in IEEE Int’l.
Conf. on Asian Language Processing, 2009, pp. 123–128.

[25] Ethan Weed and Riccardo Fusaroli, “Acoustic measures of
prosody in right-hemisphere damage: A systematic review and
meta-analysis,” Journal of Speech, Language, and Hearing
Research, vol. 63, no. 6, pp. 1762–1775, 2020.

[26] Ivan Bulyko, M Ostendorf, and P Price, “On the relative impor-
tance of different prosodic factors for improving speech syn-
thesis,” in Proceedings of ICPhs, 1999, vol. 99, pp. 81–84.

[27] Nigel G. Ward, “Midlevel prosodic features toolkit (2016-
2023),” https://github.com/nigelgward/midlevel, 2023.

[28] Dik J. Hermes, “Auditory and visual similarity of pitch con-
tours,” Journal of Speech, Language, and Hearing Research,
vol. 41, pp. 63–72, 1998.

[29] Uwe D. Reichel, Felicitas Kleber, and Raphael Winkelmann,
“Modelling similarity perception of intonation,” in Inter-
speech, 2009, pp. 1711–1714.

[30] Olivier Nocaudie and Corine Astésano, “Evaluating prosodic
similarity as a means towards L2 teacher’s prosodic control
training,” Speech Prosody 2016, pp. 26–30, 2016.

[31] Nigel G. Ward and Divette Marco, “A collection of pragmatic-
similarity judgments over spoken dialog utterances,” in Lin-
guistic Resources and Evaluation Conference, 2024.

[32] Nigel G. Ward, Jonathan E. Avila, Emilia Rivas, and Divette
Marco, “Dialogs re-enacted across languages, version 2,”
Tech. Rep. UTEP-CS-23-27, University of Texas at El Paso,
Department of Computer Science, 2023.

[33] Jonathan E. Avila and Nigel G. Ward, “Towards cross-
language prosody transfer for dialog,” in Interspeech, 2023.

[34] Nigel G. Ward, Prosodic Patterns in English Conversation,
Cambridge University Press, 2019.

[35] Jonathan Barnes, Alejna Brugos, Nanette Veilleux, and Ste-
fanie Shattuck-Hufnagel, “Segmental influences on the percep-
tion of high pitch accent scaling in American English,” Lan-
guage and Speech, 2024.

[36] Nigel G. Ward, Ambika Kirkland, et al., “Two pragmatic func-
tions of breathy voice in American English conversation,” in
11th Conference on Speech Prosody, 2022, pp. 82–86.

[37] Nigel G. Ward, Andres Segura, Alejandro Ceballos, and Di-
vette Marco, “Towards a general-purpose model of perceived
pragmatic similarity,” in Interspeech, 2024.


