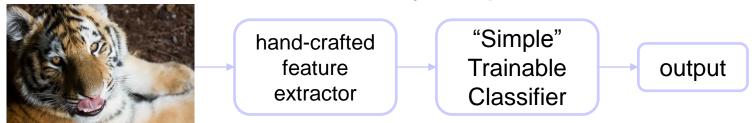
Introduction

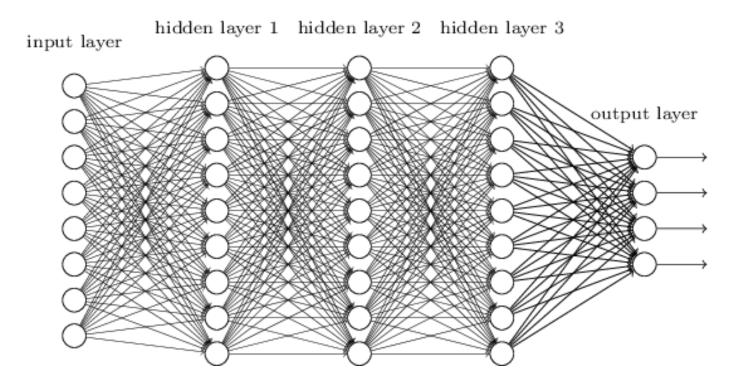
 Traditional pattern recognition models use handcrafted features and relatively simple trainable



- This approach has the following limitations:
 - It is very tedious and costly to develop hand-crafted features
 - The hand-crafted features are usually highly dependent on one application, and cannot be transferred easily to other applications

Smaller Network: CNN

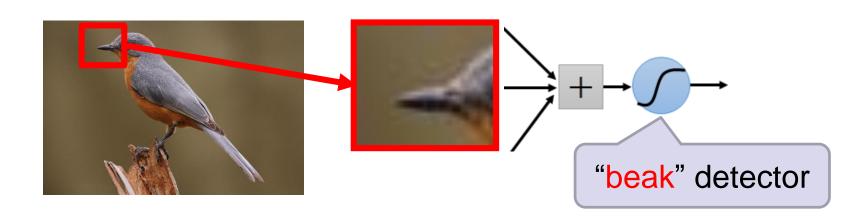
- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?



Consider learning an image:

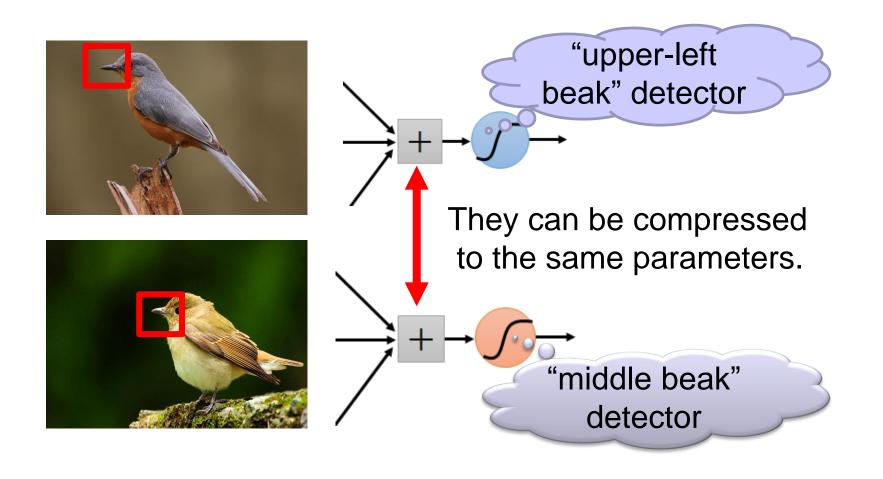
 Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters



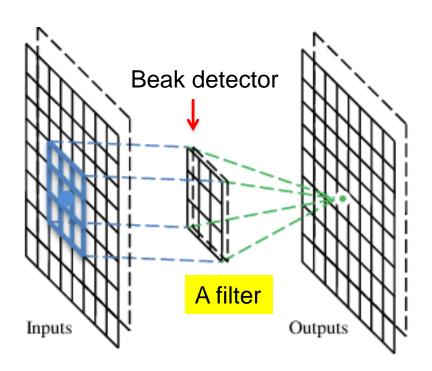
Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".



A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.



1	0	0	0	0	1
0	~	0	0	1	0
0	0	~	~	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
Υ_	~	1
1	7	1

-1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product 3

6 x 6 image

1 -1 -1 -1 1 -1 -1 -1 1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

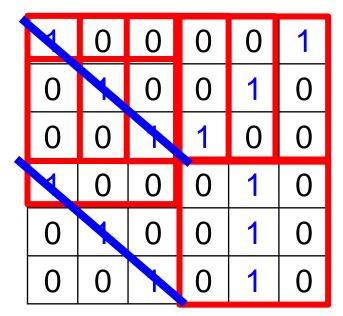
6 x 6 image

3

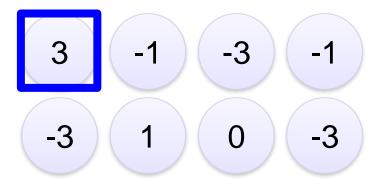
-3

Filter 1

stride=1



6 x 6 image



0

-2

-1

-3

-2

-3

-1 1 -1 -1 1 -1 -1 1 -1

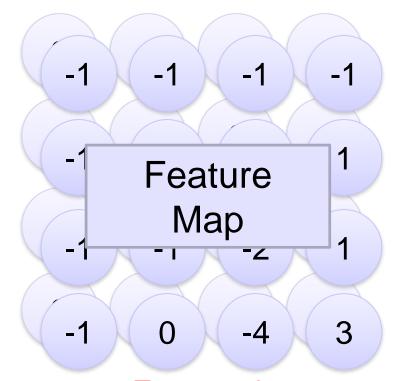
Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

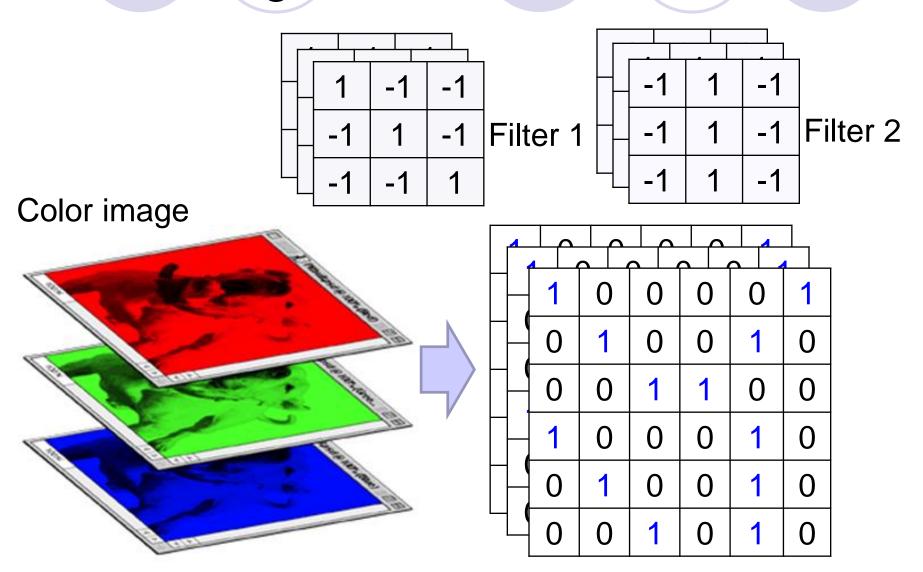
6 x 6 image

Repeat this for each filter

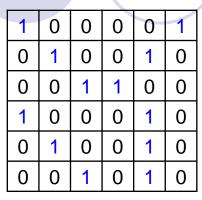


Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels



Convolution v.s. Fully Connected



 1
 -1
 -1
 -1
 1
 -1

 -1
 1
 -1
 -1
 -1
 -1

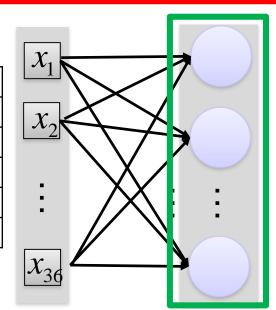
 -1
 -1
 1
 -1
 -1

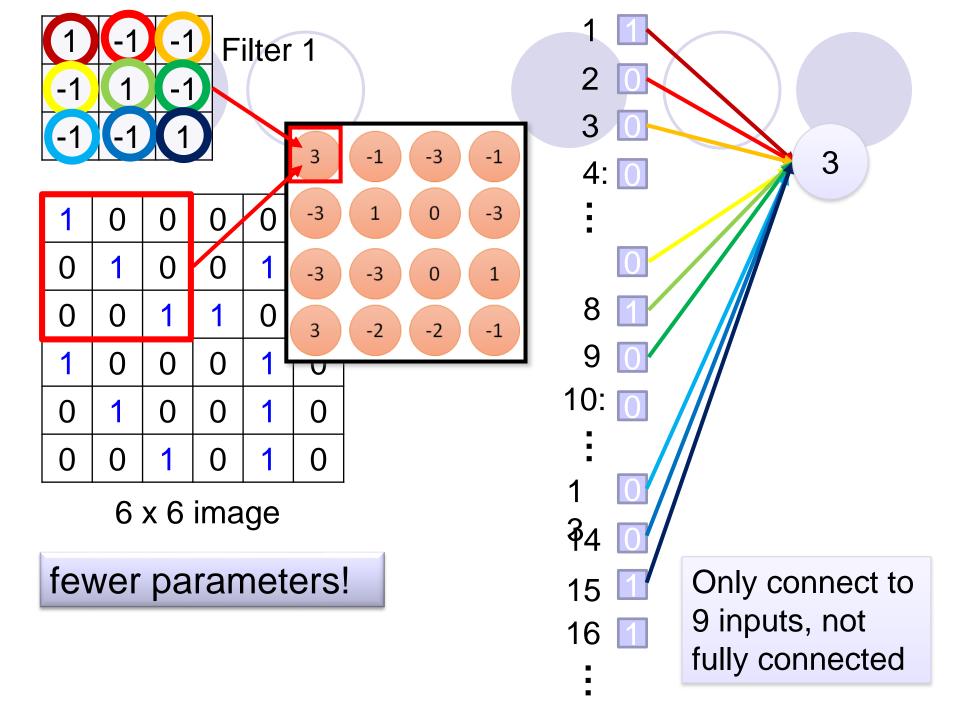
image

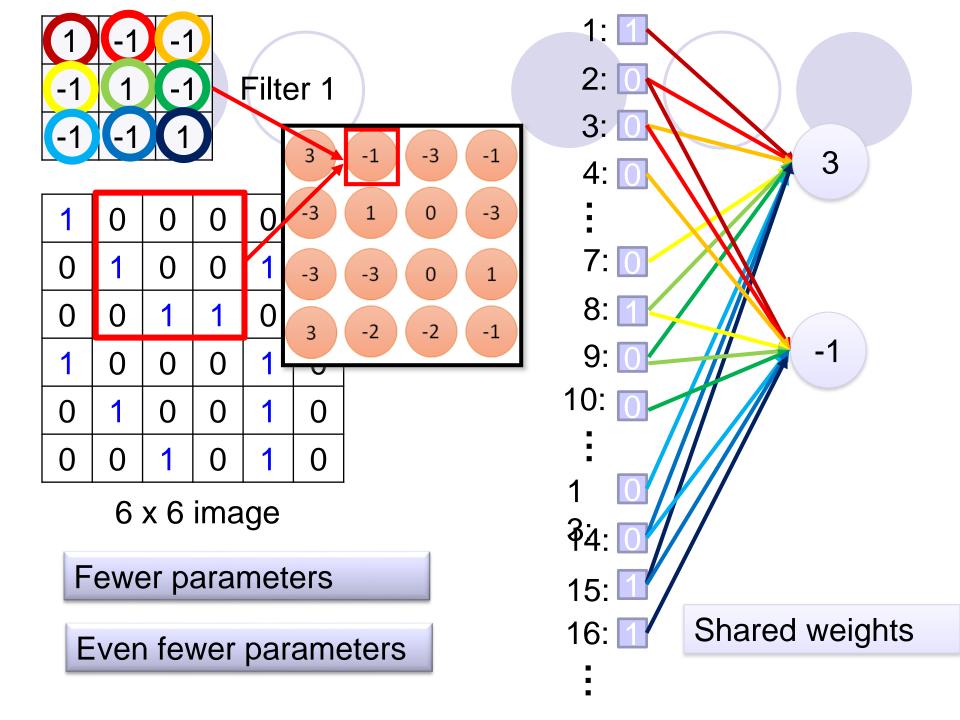
convolution

Fullyconnected

Ī	1	0	0	0	0	1
ŀ	•	0	0	0	0	•
	0	1	0	0	1	0
	0	0	1	1	0	0
	1	0	0	0	1	0
	0	1	0	0	1	0:
	0	0	~	0	1	0

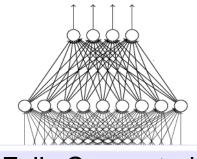




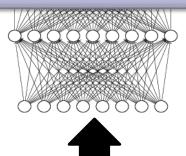


The whole CNN

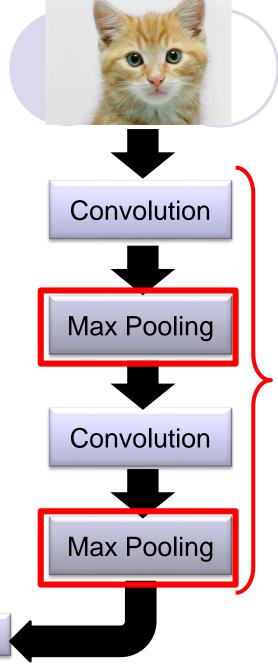
cat dog



Fully Connected Feedforward network



Flattened



Can repeat many times

Max Pooling

1	1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

3 (-1)	-3 (-1
-3 1	0 -3

-3

-2 -1

-1 -1	-1 -1
-1 -1	-2 1
-1 -1	-2 1

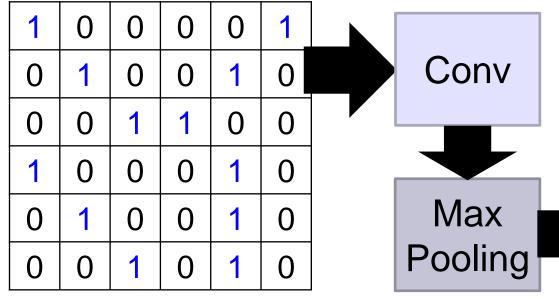
Why Pooling

 Subsampling pixels will not change the object bird

We can subsample the pixels to make image fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity



6 x 6 image

but smaller

2 x 2 image

Each filter is a channel

The whole CNN

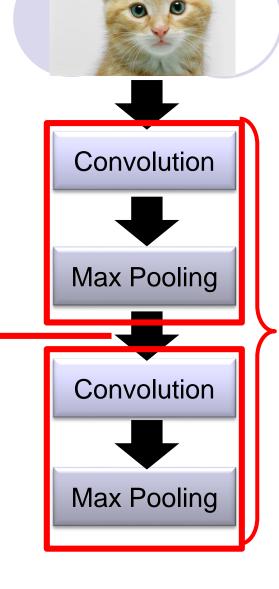
3

A new image

0

Smaller than the original image

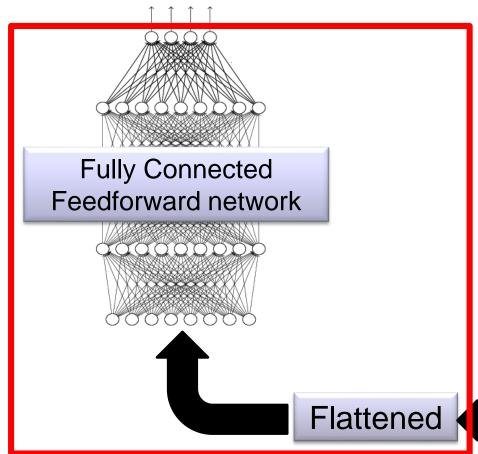
The number of channels is the number of filters

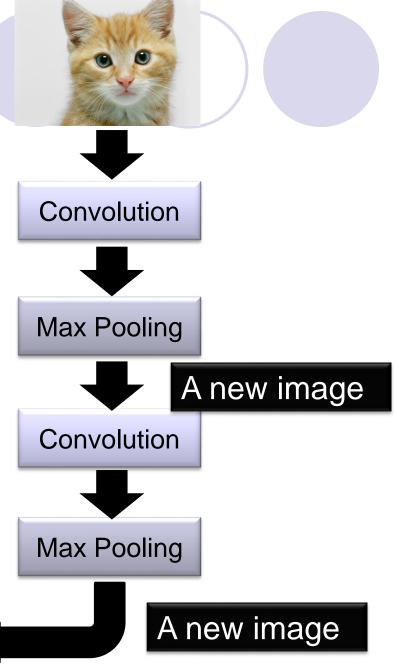


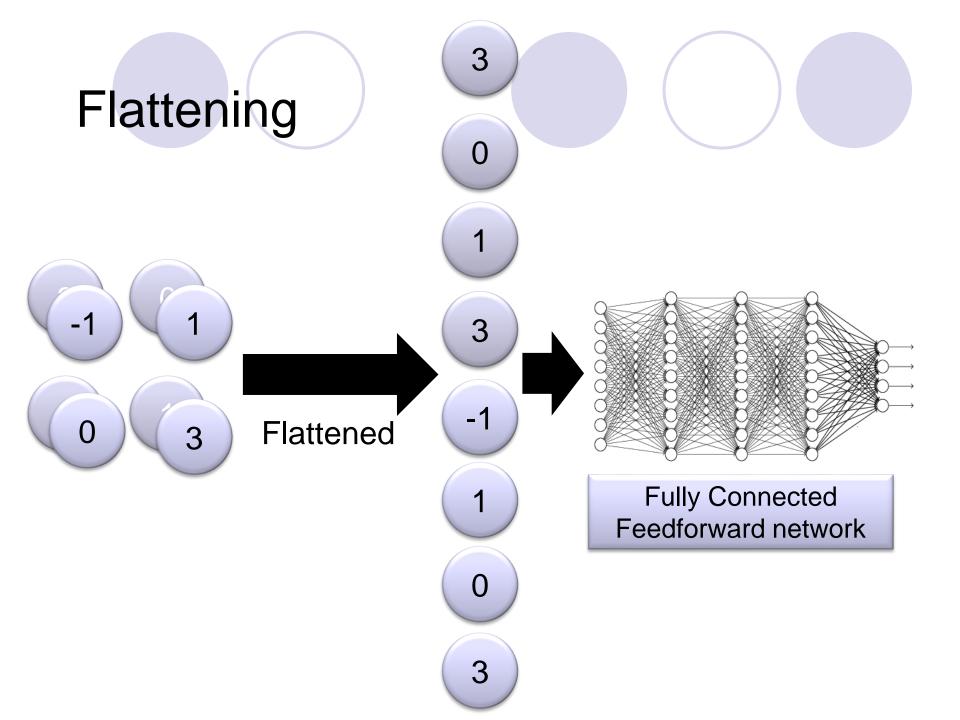
Can repeat many times

The whole CNN

cat dog

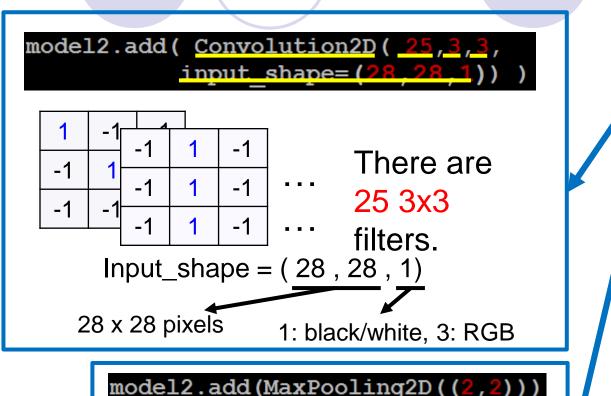


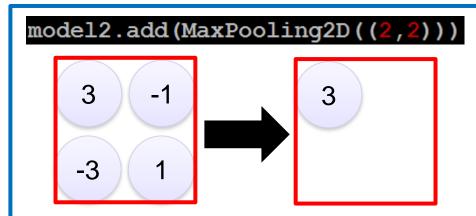


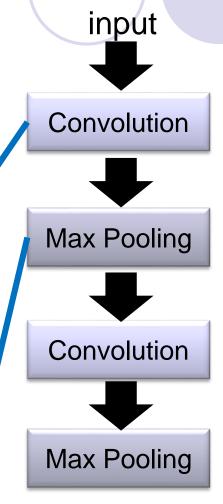


CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

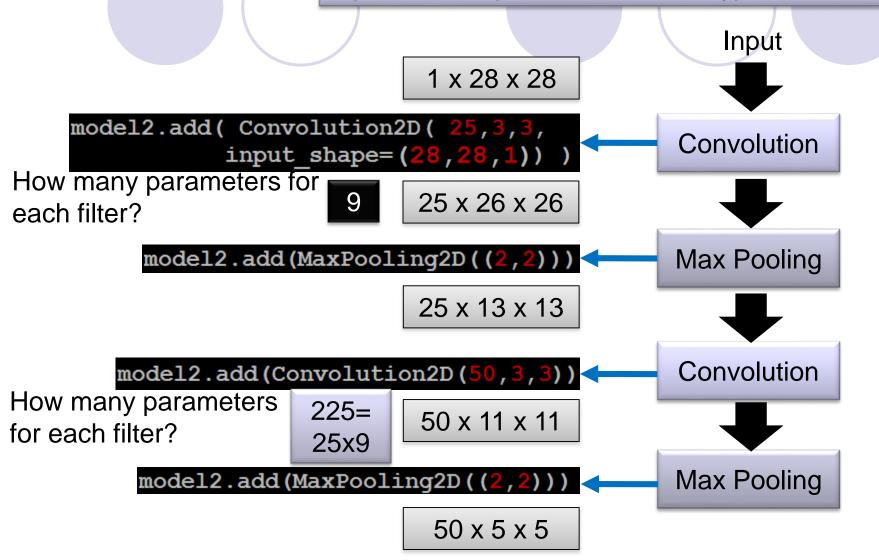






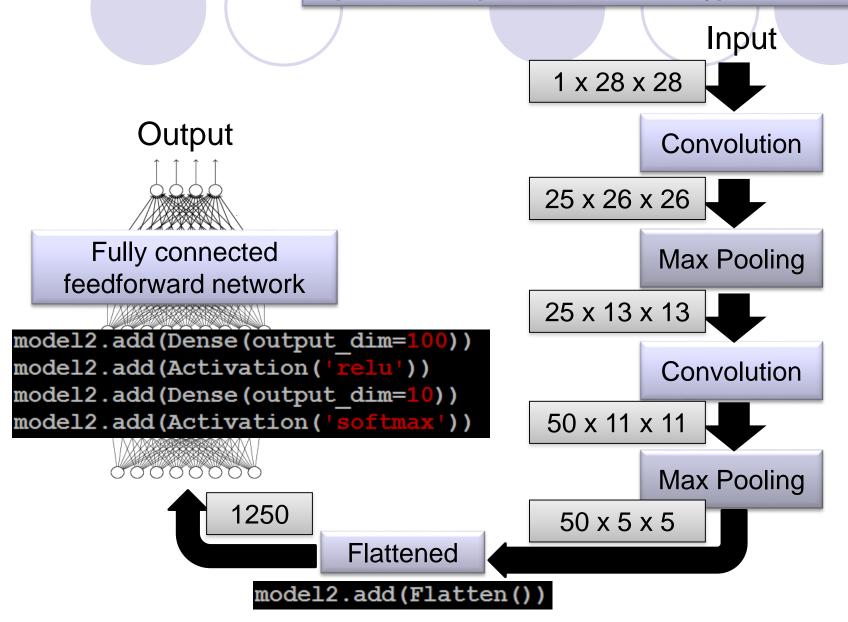
CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

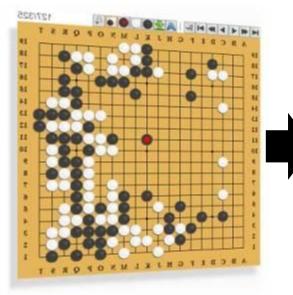


CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*



AlphaGo



Neural Network

Next move (19 x 19 positions)

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better

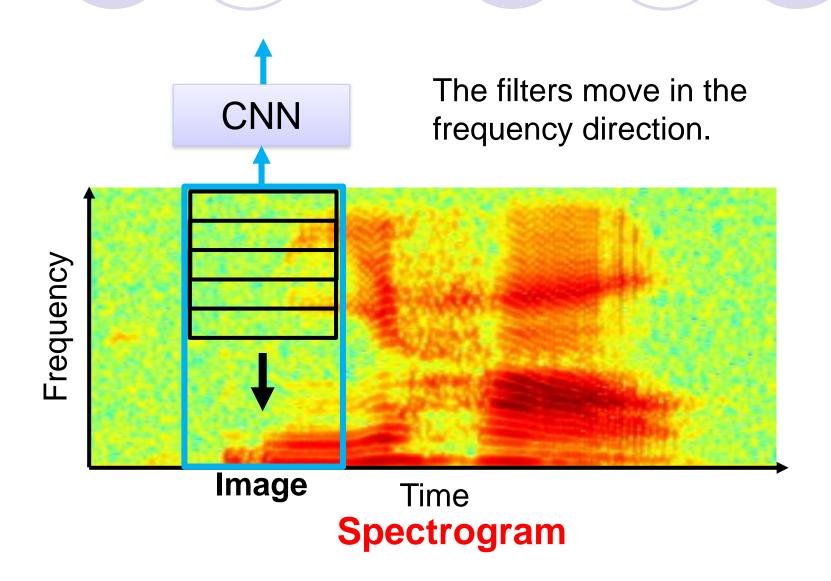
AlphaGo's policy network

The following is quotation from their Nature article:

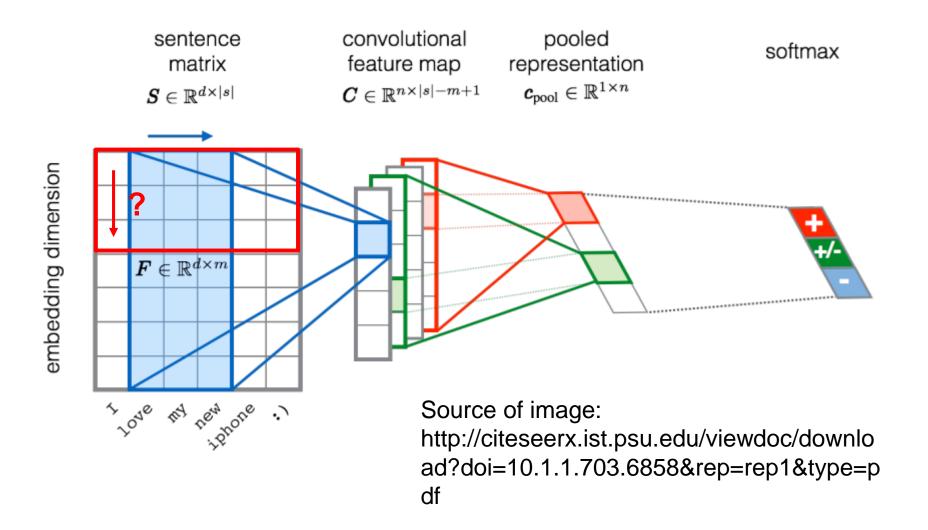
Note: AlphaGo does not use Max Pooling.

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

CNN in speech recognition



CNN in text classification



A CNN for MNIST in Keras: accuracy > 0.99!

- model = Sequential()
- model.add(Conv2D(32, kernel_size=(3, 3), activation='relu',
- input_shape=input_shape))
- model.add(Conv2D(64, (3, 3), activation='relu'))
- model.add(MaxPooling2D(pool_size=(2, 2)))
- model.add(Flatten())
- model.add(Dense(128, activation='relu'))
- model.add(Dense(num_classes, activation='softmax'))