An Introduction to Deep Neural Networks

Olac Fuentes
Associate Professor
Computer Science Department
UTEP

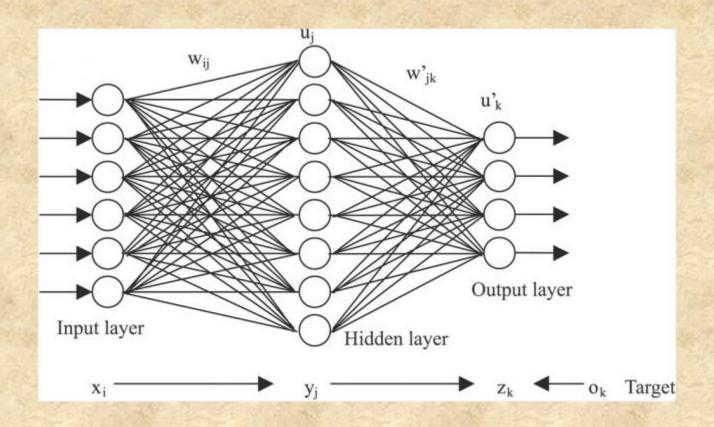
Neural Networks - History

- Perceptron (Rosenblatt, 1957)
- "Perceptrons" (Minsky and Papert, 1969)
- PDP (Rumelhart, Hinton & Williams, 1986)
- Convolutional neural networks (LeCun 1992)
- The deep learning revolution 2006 to date

What is a Neural Network?

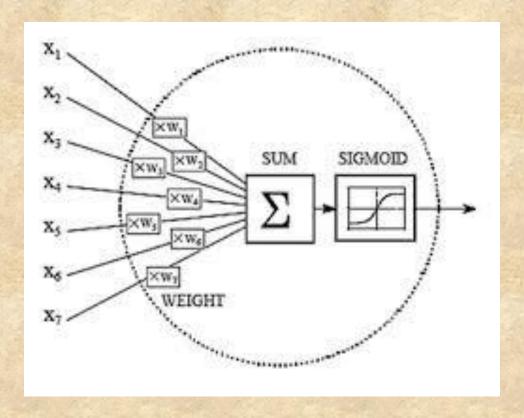
- Artificial neural networks are composed of sets of simple units densely interconnected
- Each unit (or artificial neuron) takes as input several real-valued numbers (which are possibly the outputs of another neuron) and produces a real-valued output.

What is a Neural Network?

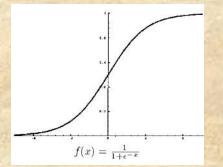


A neural network

What is a Neural Network?



An individual neuron using the sigmoid activation function



Learning in a Neural Network

• Suppose we have a set of *training instances* $x_0,...,x_n$, with target function values $f(x_1),...,f(x_n)$.

Examples

• Optimize the weights W of the network such that $f(x_i) = \Theta(W, x_i)$, for $1 \le i \le n$

Learning in a Neural Network

• Optimize the weights W of the network such that $f(x_i) = \Theta(W, x_i)$, for $1 \le i \le n$

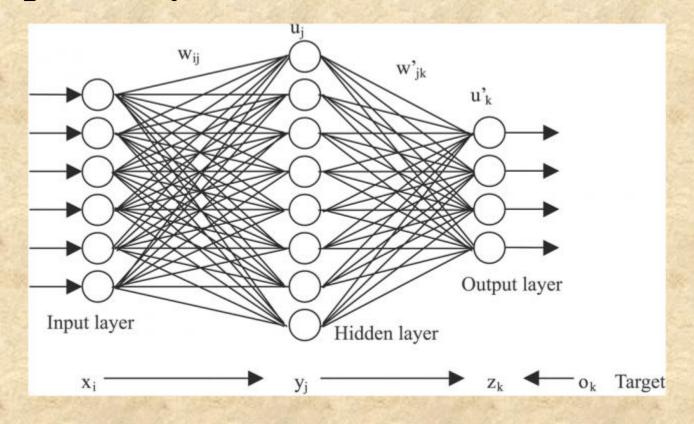
• In practice, we minimize:

$$J(w) = \sum (f(x_i) - \Theta(W, x_i))^2$$

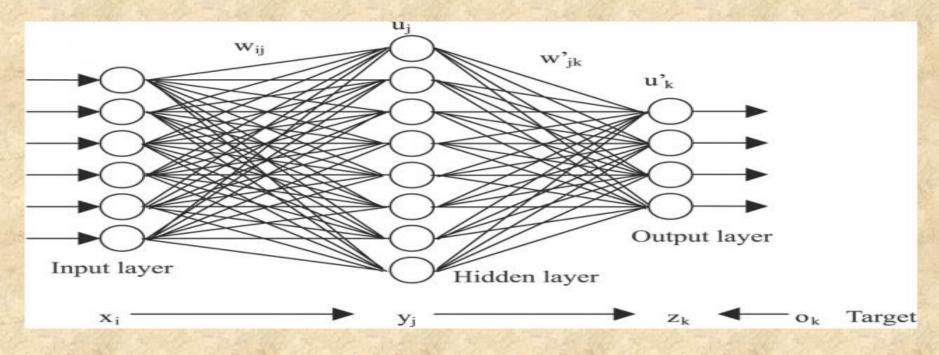
using a suitable optimization algorithm.

Find $\Delta J(w)$ using calculus, change weights iteratively in the direction of decreasing J(w)

• First algorithm to do this efficiently: Backpropagation (Rumelhart, Hinton & Williams, 1986).



Let x be the input (a training example), let y* be the output (the target function predicition), let h be the hidden layer activation



Each layer implements a linear function $h = x W_0$ (x is [1 x m], W_0 is [m x n], h is [1 x n]) $y^* = h W_1$ (h is [1 x n], W_1 is [n x o], y^* is [1 x o])

Each layer implements a linear function $h = x W_0$ (x is [1 x m], W_0 is [m x n], h is [1 x n]) $y^* = h W_1$ (h is [1 x n], W_1 is [n x o], y^* is [1 x o])

Each layer implements a linear function $h = x W_0$ (x is [1 x m], W_0 is [m x n], h is [1 x n]) $y^* = h W_1$ (h is [1 x n], W_1 is [n x o], y^* is [1 x o]) Let (x,y) be a training example The quadratic error is is given by: $e = 1/2(y^* - y)^2$

Each layer implements a linear function

$$h = x W_0$$
 (x is [1 x m], W_0 is [m x n], h is [1 x n])

$$y^* = h W_1$$
 (h is [1 x n], W_1 is [n x o], y^* is [1 x o])

Let (x,y) be a training example

The quadratic error is is given by:

$$e = 1/2(y* - y)^2$$

We can compute

 $\delta e/\delta W_0$ and $\delta e/\delta W_1$ and find W_0 and W_1 using gradient descent and gradient descent

$$\delta e/\delta W_1 = (\delta e/\delta y^*) (\delta y^*/\delta W_1)$$

$$\delta e/\delta W_0 = (\delta e/\delta y^*) (\delta y^*/\delta h) (\delta h/\delta W_0)$$

Each layer implements a linear function

$$h = x W_0$$
 (x is [1 x m], W_0 is [m x n], h is [1 x n])

$$y = h W_1$$
 (h is [1 x n], W_1 is [n x o], y^* is [1 x o])

Then:

$$y^* = x W_0 W_1$$

We can define a matrix $W = W_0W_1$

$$y* = x W$$

thus a linear 3-layer neural network is equivalent to linear regression

Adding a nonlinearity

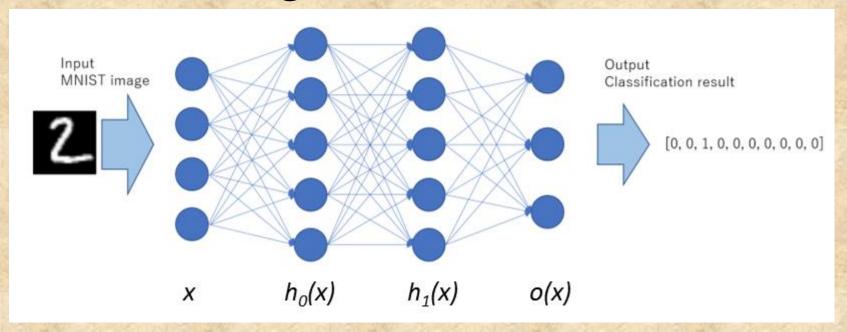
 $h = f_0(x W_0)$ (x is [1 x m], W_0 is [m x n], h is [1 x n], and f_0 is a nonlinear function)

 $y = f_1(h W_1)$ (h is [1 x n], W_1 is [n x o], y^* is [1 x o], and f_1 is a nonlinear function)

Then:

$$y* = f_1(f_0(x W_0)W_1)$$

For several types on non-linear **activation** functions, this 'stacking' of non-linearities allows the network to learn very complex functions



How do neural networks learn?

Apply gradient descent:

$$w_{i,j,k} = w_{i,j,k} - \lambda \frac{\partial J}{\partial w_{i,j,k}}$$

where J is the error or cost function

Thus for every parameter w_{i,j,k}, we need to answer:

How does the error change in response to (small) changes in $w_{i,j,k}$?

How do we do that?

Basic calculus

We need to find derivatives of error, activation functions and matrix products and combine them using the chain rule.

Thus for every parameter w_{i,j,k}, we need to answer:

How does the error change in response to (small) changes in $w_{i,j,k}$?

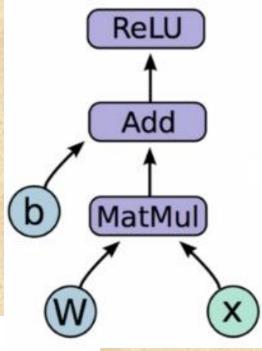
How do we do that?

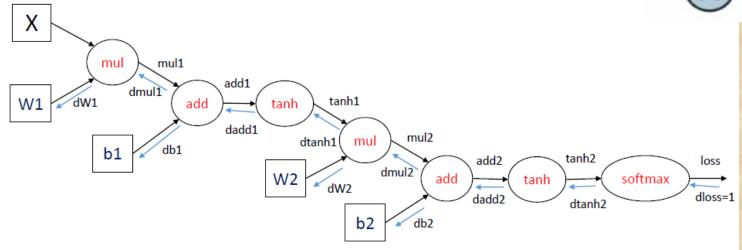
Basic calculus

We need to find derivatives of error, activation functions, and matrix products and combine them using the chain rule.

It's easy to find the derivative of each variable with respect to each of its inputs.

Applying the chain rule we can find the derivative of the error with respect to the network parameters w and b.



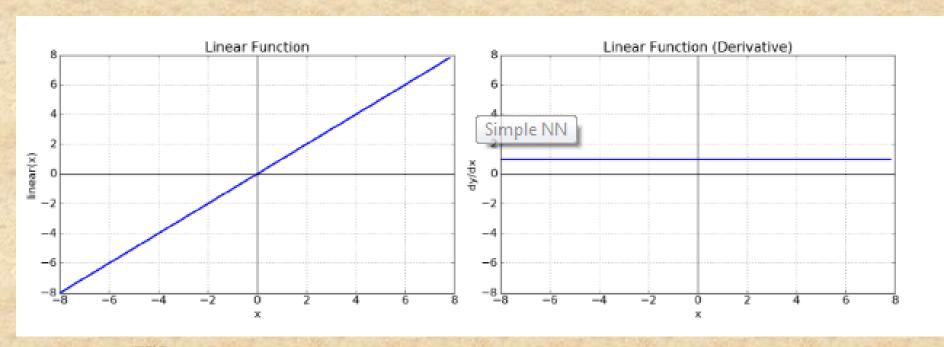


Normally the output of a neuron is given by:

where x is the input vector (or matrix), W is the weight matrix, b is the bias vector, and f is the **activation** function.

In order to be able to learn, the activation function must be differentiable (i.e. it must have a derivative).

Linear function:

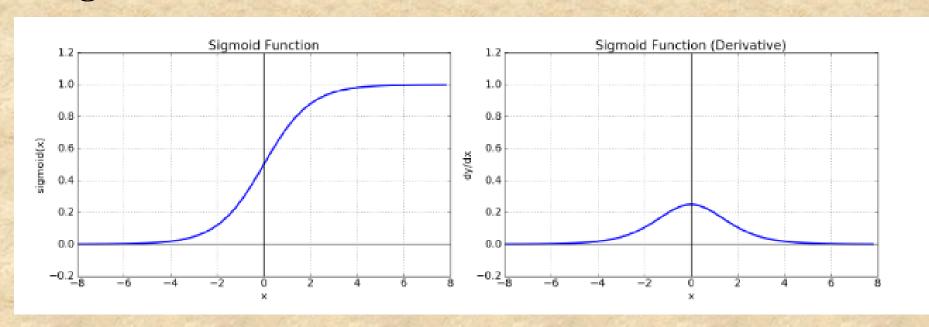


$$z = xW$$

$$f(z)=z$$

$$f(z) = z$$
$$f'(z) = 1$$

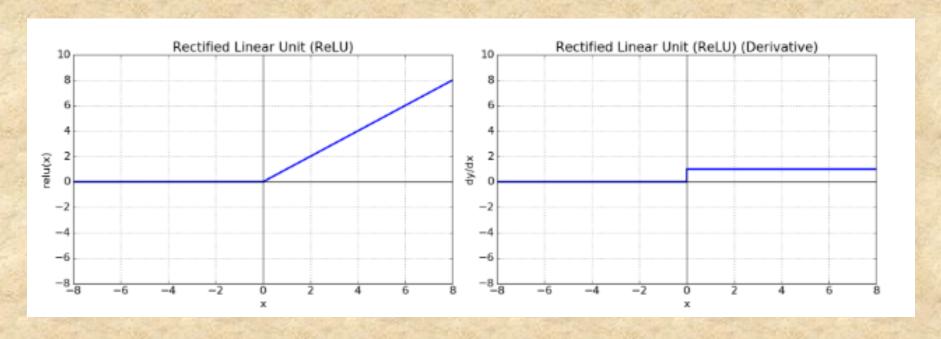
Sigmoid function:



$$z = xW$$

 $f(z) = 1/(1+e^{-z})$
 $f'(z) = e^{-z}/(1+e^{-z})^2 = f(z)(1-f(z))$

Rectified linear unit (RELU):



$$z = xW$$

 $f(z) = z \text{ if } z > 0$
 $f(z) = 0 \text{ otherwise}$

$$f'(z) = 1 \text{ if } f(z) > 0$$

 $f'(z) = 0 \text{ otherwise}$
 $f'(z) = sign(z)$

Softmax:

More complicated, as it depends on activations of other units in the same layer

Useful as a final layer for classification

$$f_i(z) = e^{zi}/\sum e^{zj}$$

$$f'_{i}(z_{j}) = f_{i}(z_{j})(1 - f_{i}(z_{j}))$$
 if $i = j$

$$f'_i(z_j) = -f_i(z_i) f_i(z_j)$$
 if $i != j$