In Case of Interval (or More General)
Uncertainty, No Algorithm Can Choose
the Simplest Representative

Gerhard Heindl!, Vladik Kreinovich?, and Maria Rifqi?

'Bergische Universitiat GH Wuppertal
Fachbereich Mathematik
Gaussstr. 20
42097 Wuppertal, Germany
email heindl@math.uni-wuppertal.de

2Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA

email vladik@cs.utep.edu

3LIP6, Pole TA
Université Pierre et Marie Curie, Case 169
4 place Jussieu
75252 Paris Cédex 05, France
email Maria.Rifqi@lip6.fr

Abstract

‘When we only know the interval of possible values of a certain quantity
(or a more general set of possible values), it is desirable to characterize
this interval by supplying the user with the “simplest” element from this
interval, and by characterizing how different from this value we can get.
For example, if, for some unknown physical quantity x, measurements re-
sult in the interval [1.95,2.1] of possible values, then, most probably, the
physicist will publish this result as y ~ 2. Similarly, a natural represen-
tation of the measurement result x € [3.141592, 3.141593] is « ~ .

In this paper, we show that the problem of choosing the simplest ele-
ment from a given interval (or from a given set) is, in general, not algo-
rithmically solvable.

1 1In Case of Interval (or More General Set)
Uncertainty, a User Would Like to Have a
Representative Value from This Interval (Set)

The value of a physical quantity y is usually obtained either by a direct mea-
surement, or by an indirect measurement, i.e., by processing the results of some
related measurements z1,...,x,. Since measurements are normally not 100%
precise, their results may differ from the actual values of the measured quanti-
ties. As a result, after the measurement (direct or indirect), we do not get the
ezxact value of the desired quantity, we only get a set Y of its possible values.

In many cases, this set Y is an interval, but more complicated sets are also
possible: e.g., if we know that y? = z1, and that z; € [1,4], then the set of
possible values of y is the union of two intervals [-2, —1] U [1, 2].

For each set, it would be very convenient for the users of this information,
if we could select a representative element of this set and describe the possible
deviations from this value.

For example, if the set of possible values is the interval [3, 5], it is natural
to take the midpoint of this interval (i.e., the number 4) as the desired repre-
senltative, and describe the possible positive and negative deviations from 4 as
4+,

For more complicated intervals, a midpoint may not be the best choice. For
example, for an interval [1.95,2.1], the natural representative is 2, so the natural
representation of this interval is 270 3. By a “natural representation” we mean
that if, say, a physicist tries to measure an unknown quantity y, and as a result
of the measurement, he gets the interval [1.95, 2.1] of possible values, then, most
probably, he will publish this result as y & 2. The reason for choosing 2 is that
the hypothesis y = 2 seems to be the simplest possible hypothesis, i.e., 2 seems
to be the simplest possible number from this interval.

This “simplest” number is not always an integer or a rational number: e.g.,
for an interval [3.141592, 3.141593], the natural representative is, most likely, .

The natural question is: is it possible to design an algorithm that would,
given a set of real numbers, choose its simplest element?

2 How to Formalize “The Simplest”?

To answer this question, we must first define what “simple” means. Intuitively,
a number is simple if it is easy to describe; in other words, a number is simple
if the length of its description is small. It is natural to use this intuitive idea to
give a precise definition.

Traditionally, foundations of mathematics are based on set theory. So, in
principle, we can fix some standard version of set theory (e.g., Zermelo-Fraenkel
theory ZF), and consider definitions within this theory. Such a formalization

would have made the definitions (and maybe proofs) slightly shorter. However,
these shorter-to-prove results will only apply to ZF. What is we use another
version of set theory? What if we use alternative foundations of mathematics
(e.g., based on categories instead of sets)? We will see that our results do not
depend on which version of set theory we choose, and do not even depend on
whether we use set theory or any other formalization of mathematics. To convey
this generality, we will formulate our results in the most general form.

We want to be able to have variables that run over real numbers (i.e., whose
possible values are real numbers), variables that run over integers, and maybe
some other types of variables (e.g., variables that run over intervals, and/or
variables that run over arbitrary sets). So, the natural language to use is multi-
sorted first order logic. For the convenience of the readers who may not be well
familiar with this notion, let us give sketchy definitions here; readers who are
interested in technical details can look, e.g., in [1, 9, 19].

Definition 1.

e Let a finite set A be fixed. This set will be called an alphabet, and elements
of this set will be called symbols. We assume that this set does not contain
symbols (,), &, V, =, —, V, 3, and symbols with subscripts.

e By a multi-sorted first order language, we mean the tuple L =
(S,P,F,ar), where

— S8, P, and F are subsets of the set A that have no common elements
(e, SNP=SNF=PNF=0);
x elements of the set S will be called sorts;
x elements of the set P will be called predicate symbols;
x elements of the set J will be called function symbols.

— ar is a function that transforms every elements from the set P U F
into a non-empty finite sequence of sorts (i.e., of elements of S).

— for every predicate symbol P € P, the number of elements in a
sequence ar(P) is called the arity of this predicate; if this number
is 1, the predicate is called unary; if it is 2, the predicate is called
binary, etc.;

— for every function symbol f € F, its arity is defined as the number
of elements in ar(f) minus 1; the last symbol is the sequence ar(f)
is called its output type; 0-ary functions are called constants of this
output type.

o Let s € S be a sort. By a variable of sort s, we mean an expression of the
type z;,, where n is a natural number.

e The notion of the term and its type is defined as follows:

— every variable x} is a term of type s;

— if t1,...,t,, are terms of types si,...,sm, and if f € F is a
function symbol for whom ar(f) = s1...8ms, then the expression
f(t1,...,tm) Is a term of type s.

e The notion of an elementary formula is defined as follows: If t1,...,tm,
are terms of types si,...,8m, and P € P is a predicate for which ar(P) =
81...8m, then P(ty,...,ty) is an elementary formula.

e The notion of a formula is defined as follows:

— Every elementary formula is a formula.

— If F and G are formulas, then the expressions (F), F&G, FVG, —F,
and F — G are formulas.

— If F is a formula and v is a variable, then expressions Vv F' and Jv F'
are formulas.

In a standard manner, we can now define closed formulas, formulas with one
free variable, etc.

Comment. In the following text, we will consider languages in which the list of
sorts S contains two symbols: “integer” and “real”, and which contain standard
arithmetic predicates and function symbols such as 0, 1, +, —, -, /, =, <, <,
both for integers and for reals.

For reader’s convenience:

¢ we will denote variables that run over real numbers by z,y, ... (instead of
zme” poreal”) and, correspondingly, variables that run over natural
numbers by m,n, . ..; and

o for terms containing standard functions like +, we will use traditional
notations z + y (with a function symbol inside the expression) instead of
a more precise expression +(z,y) following from Definition 1.

Definition 2. Let a (multi-sorted first order) language L be fixed. By a theory
T, we mean a finite set of closed formulas.

Comment. In the following text, we will always assume that a theory T is
consistent.

In a standard (and natural) manner, we can now define the notion of an inter-
pretation of a language L, in which, crudely speaking:

e to every sort s € S, we assign a set (whose elements will be called objects
of this sort);

e to every predicate symbol, we assign a predicate;

e to every function symbol, a corresponding function.

For each interpretation, we can then interpret terms and formulas, and we say
that an interpretation is a model of the theory T if all formulas from T are true
in this interpretation.

We say that a formula F is deducible from the theory T (and denote it by
T F F) if this formula F is true in every model of the theory T.

Comment. In the following text, we will assume that a theory T is fixed. We
will assume that this theory contains both the standard first order theory of
integers (Peano arithmetic [1, 9, 19]) and a standard first order theory of real
numbers [21, 20, 3, 8].

As we have already mentioned, one of the possibilities is to consider, as the
theory T, axiomatic set theory (e.g., ZF), together with explicit definitions of
integers, real numbers, and standard operations and predicates in terms of set
theory. In this case, the set of sorts consists of three elements: “integer”, “real”,
and “set”. However, as we have also mentioned, our definitions and results apply

to other theories as well.
Now, we are ready to define “definability”.

Definition 3. Let a language L (whose set of sorts includes the sort of real
numbers) and a theory T be fixed. By a definable real number, we mean a
formula F'(y) with one free variable for real numbers for which

TkF 3y Fy)&VeVy (F(z) & Fly) = 2 = y).

We will also say that a formula F(y) defines a real number.

Comment. Informally, a real number xg is definable if there exists a formula
F(z) that is true for this real number xo that is not true for any other real
number x # xg.

Examples.

o A formulay-y =14 1&y > 0 satisfies the Definition 3; thus, it defines a
unique real number (v/2).

o A formula Vz (z -y = z + = + z) defines a real number 3.

e If the language L contains all symbols for standard mathematical func-
tions, including the sine function sin, and if the theory T' contains ZF +
definitions of these mathematical functions in terms of set theory, then
the formula sin(y) = 0 & 3 < y < 4 defines a real number: actually, this
number is 7.

Definition 4. Let F(y) and F'(y) be definable real numbers. We say that they
define the same real number if

T+HVzVy (F(z) & F'(y) = = = y).
We say that F(y) and F'(y) define different numbers if

T +VzVy (F(z) & F'(y) = = #).

Definition 5.

e By a length of a formula F', we mean its total length that is counted as
follows:

— every symbol from the alphabet A, every parenthesis (,), and every
logical symbol (&,V,—,—,V,3) is counted as one symbol;

— every variable x?, is counted as 2 symbols + as many symbols as there
are bits in the binary representation of the integer n.

e Let F(y) be a definable real number. By it complezity D(F'), we mean the
length of the shortest formula that defines the same real number.

Comments.

o This definition is similar to the so-called Kolmogorov complezity C(z) (in-
vented independently by Chaitin, Kolmogorov, and Solomonoff), which
is defined as the smallest length of the program that computes = (for a
current survey on Kolmogorov complexity, see, e.g., [15]). In our case,
however, we do not care that much about how to compute: computing
3.141592 may be easier than computing 7; we are more interested in how
easy it is to describe x. Due to this difference, we had to modify Kol-
mogorov’s definition.

e The above-defined complexity of a number depends on the theory. Corre-
spondingly, the choice of the simplest number from an interval may also
depend on the theory. For example, if this interval is [0.0625,0.15625],
then we can have at least two different situations:

— On one hand, if we are preparing a publication, then the simplest
element of an interval is, most probably, 0.1, because 0.1 is, probably,
the simplest possible decimal number on this interval.

— On the other hand, if we must choose a number for a further computer
processing, it makes more sense to choose a number 1/8 that has the
simplest binary representation (0.0013).

These two different situations correspond to two different theories:

— in the theory that correspond to the first situation, we allow decimal
numbers as constants but not binary numbers;

— in the theory that correspond to the second situation, we allow binary
numbers as constants but not decimal numbers.

3 First Result: It Is Impossible to Algorithmi-
cally Choose the Simplest Element of a Finite
Set

Comment. When we say that a real number is given, we mean that we are given
a formula F(y) that defines this number. So, the question becomes: suppose
that we are given several numbers. Can we choose the one with the the smallest
complexity? We will prove that the answer is negative even for the simplest sets
that consist of two real numbers.

Definition 6. By the problem of choosing the simplest representative from a
finite set, we mean the following problem:

GIVEN:

e an integer n, and

e a set of n definable real numbers, i.e., n formulas Fi(y),...,Fn(y)
that define real numbers.

FIND:

the value i for which the corresponding real number is the simplest,
i.e., for which D(F;) = min(D(Fy),. .., D(F,)).

PROPOSITION 1. Even for n = 2, no algorithm is possible that, given a
finite set with n elements, chooses the simplest representative from this set.

4 Second Result: It Is Impossible to Algorith-
mically Choose the Simplest Element of an
Interval

Definition 7a. By a definable interval, we mean a pair of formulas F(y) and
F(y) that define real numbers and for which

T FVzVy(E(z) & Fy) = = < y).

Definition 7b. We say that a definable real number F'(y) belongs to the defin-

able interval [F(y), F'(y)] if

THVzVyV2(E(z) & F(2) & F(y) = (z < 2& 2 < y).

Definition 8. By the problem of choosing the simplest representative from an
interval, we mean the following problem:

GIVEN:
a definable interval [F(y), F(y)].
FIND:

e the formula F(y) that defines the simplest definable real number from
the interval [F(y), F(y)]; and,

e in case one of the endpoints F(y), F(y) is the simplest definable num-
ber on this interval, the value — or + indicating, correspondingly,
whether the lower endpoint F(y) or the upper endpoint F(y) is the
simplest.

PROPOSITION 2. No algorithm is possible that, given a definable interval,
would return the simplest representative from this interval.

Comment. The same impossibility result holds if we fix one of the endpoints. To
be more precise, this result holds for almost all possible choices of the endpoint
(“almost all” in some natural sense).

PROPOSITION 3.
o If F(y) is the simplest possible definable real number, then:

There exists an algorithm that, given any definable real number F'(y)
that defines a different number, chooses the simplest representative
from the corresponding interval [F (y), F'(y)] or [F'(y), F(z)].

e If F(y) is not the simplest possible real number, then:

No algorithm is possible that, given any definable interval with F(y)
as one of the endpoints, would choose the simplest representative from
this interval.

Definition 9. We say that a property P(z) holds for almost all definable real
numbers if there exists finitely many definable real numbers Fi(y),...,Fn(y)
such that: if the definable number F'(y) is different from each of them, then the
property P(z) holds for the number that is defined by the formula F(y).

Comment. Informally, we can say that a property holds for almost all definable
real numbers if it holds for all definable real numbers, except, maybe, finitely
many of them.

COROLLARY. For almost all definable real numbers F (y), the following prop-
erty holds:

x No algorithm is possible that, given a definable interval with F(y) as one of
its endpoints, would choose the simplest representative from this interval.

Comment. Similar results are true if we restrict ourselves to intervals in which
the given number F(y) is the lower endpoint (or, correspondingly, the upper
endpoint).

PROPOSITION 4.

e For any definable real number F(y), the following two properties are equiv-
alent to each other:

— The number defined by the formula F(y) is the simplest of all defin-
able real numbers that are > that this number.

— There exists an algorithm that, given any definable interval with F(y)

as its lower endpoint, chooses the simplest representative from this
interval.

e For any definable real number F(y), the following two properties are equiv-
alent to each other:

— The number defined by the formula F(y) is the simplest of all defin-
able real numbers that are < that this number.

— There exists an algorithm that, given any definable interval with F(y)
as its upper endpoint, chooses the simplest representative from this
interval.

5 Similar Results Hold for Computable Real
Numbers

For the cases when the intervals (from which we are choosing the simplest num-
bers) come from computations, it is reasonable not to consider arbitrary defin-
able real numbers, but to restrict ourselves to computable real numbers, i.e., real
numbers that can be computed with an arbitrary accuracy (see, e.g., [4, 7, 2, 5]):

Definition 10. A real number z is called constructive if there exists an algo-
rithm (program) that transforms an arbitrary integer k into a rational number
xp that is 2 %—close to x. It is said that this algorithm computes the real
number x.

Comment. Every constructive real number is uniquely determined by the cor-
responding algorithm and is, therefore, definable.

Comment. When we say that a constructive real number is given, we mean that
we are given an algorithm that computes this real number.

Definition 11. By the problem of choosing the simplest representative from a
constructive interval, we mean the following problem:

GIVEN:

a constructive interval, i.e., algorithms U and U that compute real
numbers z < T.

FIND:

the simplest (in the sense of D(F') — min) constructive real number
from the interval [z,T).

PROPOSITION 5. No algorithm is possible that, given a constructive inter-
val, returns the simplest representative from this interval.

PROPOSITION 6.
o If x is the simplest possible constructive real number, then:

There exists an algorithm that, given any other constructive real num-
ber y # x, chooses the simplest representative from the corresponding
interval [z,y] or [y, z].

o If x is not the simplest possible constructive real number, then:

No algorithm is possible that, given any other constructive real num-
ber y # x, would choose the simplest representative from the corre-
sponding interval [x,y] or [y, x].

10

PROPOSITION 7.

e For any constructive real number x, the following two properties are equiv-
alent to each other:

— The number x is the simplest of all constructive real numbers > x.

— There exists an algorithm that, given any constructive real number
y > x, chooses the simplest constructive real number from the interval

[z, y]-

o For any definable real number x, the following two properties are equivalent
to each other:

— The number x is the simplest of all constructive real numbers < x.

— There exists an algorithm that, given any constructive real number
y < z, chooses the simplest constructive real number from the interval

ly, =]

6 Proofs

General comment. The results of this paper are mainly based on results from
mathematical logic.

6.1 Proof of Proposition 1

We will prove our result by reduction to a contradiction. Let us assume that
there exists an algorithm U that for every two defining properties F; and Fj
tells whether the first or the second one defines the simplest number.

Since we have assumed, in effect, that the theory T' contains formal (= first
order) arithmetic, we can use the famous G&del’s theorem and conclude that this
theory is undecidable, i.e., that there exists no algorithm that, given a formula
F from this languages, would tell whether this formula is deducible from T or
not (see, e.g., [1, 9, 19]).

Moreover, no algorithm is possible, that is applicable to an arbitrary arith-
metic formula F' and that would return “yes” if F' is deducible from T and “no”
if the negation = F of the formula F is deducible from T' (see, e.g., [19], Chapter
6, Ex. 13(c)); see also [18], Sections 7.7-7.9). We will show that our hypothetic
algorithm U leads exactly to such an impossible algorithm.

Indeed, let us take an arbitrary definable number and denote it by F—.

Since the language L contains the formal arithmetic, all integers are defined
in this language. Therefore, there are infinitely many definable numbers. Since
for every length [, there are only finitely many formulas of this length, these
formulas can only define finitely many different numbers. Thus, for every length
[, there exists a definable number that cannot be defined by any formula of length

11

< I, and for which, therefore, the complexity is > [. In particular, there exists a
definable number whose complexity is greater than I = D(F~). Let us pick one
such number and denote it by F(y). Similarly, there exists a definable number
whose complexity is > D(F). Let us pick one such number and denote it by
F+.

So, we have three definable numbers F~(y), F(y), and F*(y), for which

D(F~) < D(F) < D(F).
Let us now consider the following formula:

(F = F~())&(=F = F*(y)).

We will denote this formula by F”(y). Let us first prove that this formula indeed
defines a real number:

e if F' is deducible from T, then this formula F'(y) clearly defines a real
number (namely, the same real number as F'~ (y))

b

e similarly, if —=F is deducible from T, then this formula F'(y) also defines
a real number (namely, the same real number as F'~ (y));

e since in classical logic, we have T'+ F' V —F, we can thus conclude that
this formula alwaeys defines a real number.

In particular, if either F' or —F is deducible from the theory T, then:

e If F is deducible from T, then this new formula is equivalent to F~(y)
and therefore, it defines the same number as F~(y).

e If F is not deducible from T, then this formula is equivalent to F*(y) and
thus, it defines the same number as F*(y).

Let us now apply our hypothetic algorithm U to the formulas F'(y) and
F(y):

e If F' is deducible from 7', then U will select the number defined by F”(y),
because this number (F~ (y)) is simpler than the number defined by F'(y).

e If =F is deducible from T, then U will select the number defined by the
formula F'(y), because in this case, this number is simpler than the number
(F'*(y)) defined by the formula F'(y).

Thus, simply by looking at the output of the algorithm U, we get an algorithm
that returns “yes” if F' is deducible from T and “no” if its negation —F is
deducible from T'. We already know that such an algorithm is impossible.

This contradiction shows that our initial assumption — that the problem
of choosing the representative from a finite set is algorithmically solvable —
is false. Hence, this problem is not algorithmically solvable. Proposition 1 is
proven.

12

Comments.

e This result is similar to the known result that Kolmogorov complexity is
not decidable [15]. In effect, our result sounds slightly stronger because
we have proven that not only computing the actual values of complexity
is impossible, but even deciding which of the values has larger complexity
is also impossible.

e Simplicity seems to be a natural criterion for choosing a representative, but
we can also look for other ways in which a number can be representative.
For example, we may want a number that is the most “typical” of the
elements of the given set; this approach is outlined, for different notions
of “typicality”, in [11, 12, 13, 10, 6].

6.2 Proof of Propositions 2—4

Let us first prove Proposition 3. Then, we will show that the Corollary (and
hence, Proposition 2) is also true.

6.2.1 Case of the Simplest Possible Definable Real Number F(y)

Let F(y) be the simplest possible definable real number. This means that its
complexity D(F) is the smallest possible complexity that a real number can
have. In other words, the number F(y) is defined by a formula of length I,
that is the shortest possible formula defining a real number. For such F(y),
it is easy to describe the desired algorithm: from every interval [F(y), F'(y)]
or [F'(y), F(y)] that has F(y) as one of its endpoints, we can return this very
definable number F(y) as the desired simplest representative.

6.2.2 Case of a Definable Real Number F(y) That Is Not the Sim-
plest Possible

Let now F(y) be not the simplest possible real number. For such F(y), we will
prove the impossibility of an algorithm by reduction to a contradiction. Let us
assume that there exists an algorithm U that, given any other definable real
number F'(y):

e chooses the simplest representative s from the corresponding interval
[F(y), F'(y)] or [F'(y), F(y)]; and

o if this simplest representative coincides with one of the endpoints, returns
— or + depending on whether s is the left or the right endpoint.

The fact that F(y) is not the simplest possible number means that there exist
other definable real numbers whose complexity is smaller than D(F'), i.e., that
are defined by formulas shorter than D(F). We have already shown in the proof

13

of Proposition 1 that for every length [, there exist finitely many definable real
numbers of complexity I. Thus, there exist finitely many definable real numbers
that are simpler than F(y). From these numbers, let us pick the formula G(y)
for which the number defined by it is the closest to F(y) (if there are two such
numbers, let us pick the one that is greater than the number defined by F(y)).

Without loss of generality, we can assume that the number zz defined by the
formula F'(y) is smaller that the number zg defined by the formula G(y) (the
case g < xF can be considered similarly). Now, let f(n) be any algorithmic
function from natural numbers to natural numbers. It is known that every
algorithmic sequence is definable in Peano arithmetic, and therefore, since out
theory T includes Peano arithmetic, f(n) is definable in T as well.

For every such function, we can define a new definable number z; as follows:

o If Vn(f(n) = 0), then 25 = zg.

o If In(f(n) # 0), then zy = zg — 27™ i~ . (xg — &F), Where nmin is the
smallest natural number n for which f(n) # 0.

(We have used words to define 2y, but this definition can be easily reformulated
in terms of formulas, so, the number z; is indeed definable.)

For each function f, it is easy to see which element from the interval [z, 2]
is the simplest:

e If In(f(n) # 0), then zp < 2y < xzg. Since we have chosen zg as the
closest of all definable real numbers that are simpler than xy, and since all
the elements of the semi-open interval (r, 2] are closer to xr than z¢,
we can conclude that none of the real numbers from the interval (zr, 2y]
is simpler than zp. Thus, zp is the simplest of all real numbers from the
interval [zp, 2z¢].

e If Vn(f(n) = 0), then z; = zg. Since we have chosen zg as the closest
of all definable real numbers that are simpler than zp, and since all the
elements of the open interval (xp,zg) are closer to zr than zg, we can
conclude that none of the real numbers from the open interval (zr,zg)
is simpler than zr. Thus, zg is the simplest of all real numbers from the
interval [zr,zg] = [zF, 2¢]-

In both cases, the simplest element coincides with one of the endpoints, so, the
algorithm U will return either — or +:

e If In(f(n) # 0), then the lower endpoint () is the simplest, and hence,
the algorithm U will return —.

e If Vn(f(n) = 0), then the upper endpoint (zy) is the simplest, and hence,
the algorithm U will return +.

14

Thus, by checking whether the sign returned by the algorithm U is — or +, we
will be able to check, for a given computable function f, whether Vn(f(n) = 0)
is true or not.

However, it is known (see, e.g., [14, 16, 17]) that there exists no algorithm
for deciding whether a program (to be more precise, a program that always
finishes its computations) always returns 0. In other words, there exists no
algorithm, that, given an algorithmic (everywhere defined) function f(n) from
natural numbers to natural numbers would check whether Vn(f(n) = 0). This
contradiction shows that our initial assumption — that the problem of choosing
the representative from an interval is algorithmically solvable — is false. Hence,
this problem is not algorithmically solvable. Proposition 3 is proven.

6.2.3 Proof of the Corollary

Let us now prove the Corollary (and thus, Proposition 2). In the proof of Propo-
sition 1, we have already shown that for every length [, there exist finitely many
definable real numbers of complexity /. In particular, this means that there exist
finitely many definable real numbers of the smallest possible complexity Imin.
Thus, every property (including the property *) that holds for all definable real
numbers, except for the simplest ones, is thus true for almost all definable real
numbers. Corollary is proven. Q.E.D.

6.2.4 Proofs of Proposition 4

Proposition 4 can be proven similarly to the proof of Proposition 3.

6.3 Proof of Propositions 5-7

If x is the simplest possible constructive real number, then we can always return
x.

If = is not the simplest possible constructive real number, then we can use
the same construction as in the proof of Proposition 3. To complete the proof,
we must now prove only the following two additional statements:

e First, we need to prove that z; is a constructive real number (and that,
given a program f, we can construct a program (algorithm) for computing
Zf).

e Second, in our definition, we no longer require the algorithm to return —
or +. Therefore, to complete the proof, we must show that if an algorithm
returns a constructive real number s that is equal to one of the endpoints

(i.e., to = or to z¢), then we can algorithmically check whether this con-
structive real number coincides with the left or with the right endpoint.

Both statements are (relatively) easy to prove:

15

e To compute z; with an accuracy (z — z) - 27, it is sufficient to compute
first k£ values of f, and take:

o If Vn<p(f(n) =0), then ar = 2.

o If In,<i(f(n) #0), then ap = z —2~"™i» . (2 —), where npy;y is the
smallest natural number n < k for which f(n) # 0.

Then, as one can easily see, |ar — 25| < 27%- |z — 2| < 27%- |2 — 2|. From
these values ay,, we can easily compute the desired rational approximations
Zfk to zf.

o If an algorithm returns a constructive real number s that coincides with
one of the constructive endpoints of the interval [z, z¢], then, by computing
z, z¢, and s with sufficient accuracy (namely, with accuracy
€ < (z7 —x)/4), and comparing the corresponding rational numbers, we
will be able to check whether s = x or s = z¢. Indeed, in this case, from
|sk — s| <€, and |z5x — 27| < €, we can conclude that

|zpk — sk > |27 — 8| — sk — 8| — |zpk — 24| >

lzp — 8| —2-(1/4) - |25 — 8] > (1/2) - |25 — |-
Hence:

e If s = z, then, similarly, |sy — 2| > (1/2) - |z — z|. On the other
hand, in this case, |sp —zk| < |sk —s|+|zr —2| < 26 < (1/2)- (25 —2).
Therefore, in this case, |sy — zk| < |sk — 2fk]-

e Similarly, if s = 2z, then |s; — zx| > |sp — 21 |-

Thus, comparing two rational numbers |s, — x| and |s; — 21|, we can
tell with which of the endpoints s coincides.

Q.E.D.

Acknowledgments. This work was partially supported by NASA Grants No.
NAG 9-757, NCC5-209, and NCC 2-1232, by the Future Aerospace Science
and Technology Program (FAST) Center for Structural Integrity of Aerospace
Systems, effort sponsored by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under grant number F49620-00-1-0365, by
NSF grants CDA-9522207 and 9710940 Mexico/Conacyt, and by Grant No.
W-00016 from the U.S.-Czech Science and Technology Joint Fund.

This work was partially done when V.K. was an invited professor at Laforia,
University of Paris VI, and partially done during V.K.’s visit to Wuppertal. The
authors are thankful to Bernadette Bouchon-Meunier and to the anonymous
referees for valuable comments and help.

16

References

[1] J. Barwise (ed.). Handbook of Mathematical Logic. North-Holland, Amster-
dam, 1977.

[2] M. J. Beeson, Foundations of constructive mathematics, Springer-Verlag,
N.Y., 1985.

[3] N. Ben-Or, D. Kozen, and J. Reif, “The complexity of elementary algebra
and geometry”, Journal of Computer and System Sciences, 1986, Vol. 32,
pp- 251-264.

[4] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.
[5] E. Bishop, D. S. Bridges, Constructive Analysis, Springer, N.Y., 1985.

[6] B. Bouchon-Meunier, M. Rifqi, and S. Bothorel, “Towards general measures
of comparison of objects”, Fuzzy Sets and Systems, 1996 (to appear).

[7] D. S. Bridges, Constructive Functional Analysis, Pitman, London, 1979.

[8] J. Canny, “Improved algorithms for sign determination and existential
quantifier elimination”, The Computer Journal, 1993, Vol. 36, No. 5, pp.
409-418.

[9] H. B. Enderton. A mathematical introduction to logic. Academic Press,
N.Y., 1972.

[10] M. Friedman, M. Ming, and A. Kandel, “On the theory of typicality”, Inter-
national Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems,
1995, Vol. 3, No. 2, pp. 127-142.

[11] G. Heindl and E. Reinhart, “Adjustment by the principle of minimal
maximum error”, In: Beitrige aus der Bundesrepublik Deutschland zur
Vorlage bei der XVI Generalversammlung der Internationalen Union fiir
Geodisie und Geophysik, Grenoble 1975, Vertffentlichungen der Deutschen
Geoditischen Kommission, Reihe B, Miinchen, 1975, Vol. 213, pp. 33-43.

[12] G. Heindl and E. Reinhart, Ausgleichung im Sinne minimaler Mazi-
malfehler, Veroffentlichungen der Deutschen Geodatischen Kommission bei
der Bayerischen Akademie der Wissenschaften, Reihe A, Miinchen, 1976,
Vol. 84.

[13] G. Heindl and E. Reinhart, “Experience with a non-statistical method
of directing outliers”, In: Proceedings of the International Symposium
on Geodetic Networks and Computations of the International Association
of Geodesy, Volume V, Network Analysis Models, Vertffentlichungen der
Deutschen Geoditischen Kommission bei der Bayerischen Akademie der
Wissenschaften, Reihe B, Miinchen, 1982, Vol. 258/V, pp. 19-28.

17

[14] L. R. Lewis and C. H. Papadimitriou, Elements of the theory of computa-
tion, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[15] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complezity and its
Applications, Springer-Verlag, N.Y., 1997.

[16] J. C. Martin, Introduction to languages and the theory of computation,
McGraw-Hill, N.Y., 1991.

[17] C. H. Papadimitriou, Computational Complezity, Addison Wesley, San
Diego, 1994.

[18] H. Rogers. Jr., Theory of recursive functions and effective computability,
McGraw-Hill, N.Y., 1967.

[19] J. R. Schoenfield. Mathematical logic. Addison-Wesley, 1967.

[20] A. Seidenberg, “A new decision method for elementary algebra”, Annals of
Math., 1954, Vol. 60, pp. 365-374.

[21] A. Tarski, A Decision Method for Elementary Algebra and Geometry, Uni-
versity of California Press, Berkeley, 1948.

18

