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1. Formulation of the problem.

1.1. Traditional problem of interval computations research: designing a
method.

Historically, in interval computations, the main emphasis was on developing a method for
solving a given numerical problem: to compute a range f(x1,...,X,) of a given function
f over given intervals x1,...,X,; to compute the root of a given function; to solve a given
system of equations, etc. In the recent past, the main user’s problem was to find an
algorithm for solving his problem.

1.2. New problem: choosing a method.

In course of time, many methods have been designed, and not often, the user faces a
different problem: to choose between a variety of different interval techniques. The big
problem here is: how should we choose?

1.3. This problem is difficult.

This problem is difficult first of all because it is difficult to formalize. A user would like
the chosen method to be better “on average” on the problems that he will encounter, but
usually, no reliable statistics on the frequencies of different problems is available. Moreover,
these frequencies of different problems wvary with time (in a hard-to-predict way), and,
what makes the problem seemingly hopeless, these frequencies depend on what method we
choose: if someone invents a good method of solving linear programming problems, then
the frequency of such problems increase, because users translate their problems into linear
programming in order to solve them.

1.4. This problem is important.

How are methods chosen now? The typical way is by using either intuition or benchmark
problems. Both approaches are very subjective and therefore, error-prone.

It is therefore desirable to design a methodology of choosing the “best” (in some sense)
numerical method in the situation of uncertainty (when no numerical optimality criterion
J(m) exists for choosing the best method m).



2. Our Idea: Group-Theoretic Approach to Optimization

In many cases, although we do not know the objective function J(m), we do know that
the problem possesses some natural symmetries (i.e., invariance with respect to rotations,
changing measuring units, etc). In this case, we can assume that the (unknown) optimality
criterion is invariant with respect to these transformations. This sounds like a very weak
assumption at first glance, but in many cases this information about symmetries is sufficient
to solve the optimization problem!

In this talk, we will present a survey of such situations:

e In [Gerasimov 1988], this idea was used for choosing the best interval-based model in
measurement theory.

e In [Kreinovich 1994], this idea was used to choose the best interval model for software
testing.

e In [Lea 1996], it was used for applications to interval-based intelligent control.

e In [Koltik 1986], this idea is used in the design of an optimal method for the problem
that is similar to interval computations: the problem of estimating the stochastic error
of indirect measurements.

Other applications will be described, including:
e Choosing the optimal penalty function.
e Choosing the optimal set representation of n—dimensional uncertainty (why ellip-
soids?).
e Choosing the optimal e—inflation (G. Mayer, 1996).

3. This Approach is Very Successful in Other Areas

As an additional argument in favor of this group-theoretic approach, we can say that
this approach (described first in [Kozlenko 1989], [Kreinovich 1990], [Kreinovich 1990al) is
known to be very successful in different areas. For example:
e In theoretical physics, it can be used as a “major physical law” from which all funda-
mental physical equations can be derived [Finkelstein 1985], [Finkelstein 1986].
e In intelligent control, it leads to a control that is more stable and smooth [Smith 1995].
e In expert systems, this idea leads to the best choice of knowledge representation [Ko-
zlenko 1988|.
e In genetic algorithms, it leads to the best scaling.
e In system theory, it leads to the optimal description of the dynamics of the unknown
system [Kozlenko 1988a].
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