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Abstract. Interactions that explain quark confinement corre-
spond, in the first approximation, to interactions in 2-D space-time.
In this paper, we show that this fact has a geometric explanation:
Namely,
• on the most fundamental geometric level (of causality rela-

tions) quark confinement means that causality forms a lattice
(i.e., an ordering in which every two events have the least up-
per bound and the greatest lower bound); and

• a space-time is a lattice if and only if its proper space is 1-D
(i.e., if the space-time itself is 2-D).

1. INTRODUCTION

Quarks: brief success history and quark confinement prob-
lem. Quark theory, proposed by M. Gell-Mann in the 60s to ex-
plain the properties and interactions of hadrons and mesons, has
been a great success. Practically all its predictions were experimen-
tally confirmed, from the indirect ones (numerical values of particle
characteristics) to the direct ones: that scattering amplitudes must
behave as if a proton contains three particle-like parts (partons).

This experimental confirmation clearly indicated that quarks
are not idealized mathematical constructions, helpful to describe
real world, but they are real elementary particles bound together
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by some force. (It turned out that previously known interaction
forces could not explain quarks interaction, so special interaction
particles called gluons were invented to describe quark interaction.)

Traditionally in physics, such an indirect “proof of existence”
of new particles (from the properties of their bounded states) was
usually followed by a direct observation of these new particles in the
free state: sometimes, by using an accelerator with energy sufficient
to brake the bonds; sometimes, by observing these free particles in
the cosmic rays, etc.

Unfortunately, all the efforts to extract the quarks from
hadrons and mesons and/or directly observe them as free parti-
cles were unsuccessful. Quarks behaved as if they were confined in
a hadron or in a meson.

1.2. Quantum Chromodynamics explains quark confine-
ment on mathematical level; a more fundamental expla-
nation is desired. Several theories have been proposed to ex-
plain this phenomenon of quark confinement. These efforts led to
a theory called Quantum Chromodynamics (QCD) that is consis-
tent with all known observations and that explains why free quarks
are impossible (see, e.g., (Quark 1977), (Yndurain 1983), (Astbury
1995)). From the mathematical viewpoint, the problem of quark
confinement is solved.

However, from the physical viewpoint, the situation is not com-
pletely satisfactory: Indeed, QCD is not a final theory because it
does not describe all physical interactions and particles; hence, we
must generalize it. From the purely mathematical viewpoint, ev-
ery mathematical theory has a huge amount of different generaliza-
tions; the only way to restrict this variety is by applying physical
intuition.

To use this intuition, we need, in addition to mathematical
equations, to be able to formulate the main ideas behind them in
simple physical terms.

Generalizations of physical theories are often based on aban-
doning some previous physical concepts: e.g., special relativity got



rid of absolute time, quantum mechanics – of the precise values of
the particle’s coordinate and momentum. So, if we want our phys-
ical explanations to be as general as possible, we must formulate
them in terms of the most fundamental physical concepts, i.e., the
concepts that are most likely to remain physically meaningful in
the generalized theory.

An ideal explanation should only use causality. One of the
most fundamental physical notions is the notion of causality. Many
notions can be described in terms of causality: e.g., from the causal-
ity relation of special relativity, we can uniquely determine the
linear structure on the space-time Alexandrov 1950, Alexandrov
1953, Zeeman 1964, Naber 1992, Kreinovich 1994). The successful
reformulation of different physical concepts in terms of causality
relation lead many physicists to believe that causality is the “only
physical variable” in the sense that everything else can be described
in terms of it. Therefore, the ideal, most fundamental explanation
of quark confinement must be in terms of causality only.

What we are planning to do. We start the paper with the
description of the main idea of the existing physical explanation (in
Section 2), and show that these explanations can be reformulated
in terms of the most fundamental, geometric notion: the notion
of causality (in Section 3). For this reformulation, we will need a
mathematical theorem; for reader’s convenience, the proof of this
theorem is placed in a separate section (Section 4).

2. QUARK CONFINEMENT:
THE MAIN PHYSICAL IDEA

Quark confinement is a non-relativistic phenomenon. Since
quarks are confined within hadrons and mesons, theirs speeds are
much smaller than the speed of light, and so, we can use non-
relativistic physics to describe their interaction.

3-D non-relativistic fields (described by traditional field
equations) cannot explain quark confinement. In non-
relativistic physics, interaction can be described by fields with



quanta of different rest mass m0. The potential function ϕ(~r) of a
field with quanta of rest mass m0 is described by an equation

4ϕ + m2
0ϕ = 0.

In 3-D space, the fundamental solution of this equation is well
known:

ϕ(~r) =
exp(−m0r)

r
.

This potential function tends to 0 as ~r → ∞; therefore, if we
have a particle bound by such interaction, then a finite amount
of energy can allow this particle to get out of the potential well.
In other words, standard 3-D interactions cannot explain quark
confinement.

Main idea: to describe quark interaction, we need space
of dimension d 6= 3. Since we cannot explain quark confinement
by interactions in a 3-D space, it is natural to try to describe it by
assuming that locally, the space dimension d is different from 3.

Only 1-D space can explain quark confinement. For d > 3,
we also have ϕ → 0; hence, to explain confinement, we must take
d < 3, i.e., d = 1 or d = 2.

For d = 2, the fundamental solution for a massless interaction
field (m0 = 0) is ϕ(~r) = ln(r). The corresponding potential energy
E = Qϕ(~r) = Q·ln(r) does tend to∞ as r →∞, so, from the purely
mathematical viewpoint, we do have confinement in the sense that
for any given amount of energy E, the particle remained confined
to a finite region; the radius r of this region can be determined from
the equation E = Q · ln(r). The resulting radius r = exp(E/Q)
grows exponentially with E and therefore, does not describe the
observed fact that the quarks are confined to a small region whose
radius does not grow that drastically with the increase in energy.

So, the only remaining case if d = 1. In this case, the equations
of massless interaction lead to ϕ(~r) = r. The resulting potential
energy grows fast with r, and this growth explains why quarks
cannot be separated.



In view of this explanation, the formula ϕ(r) = r is used as a
first approximation to the description of gluonic potential.

3. QUARK CONFINEMENT IN TERMS OF
THE MOST FUNDAMENTAL NOTION: CAUSALITY

Confinement reformulated in terms of causality: main
idea. Confinement means that although quarks that form, say,
a meson, are independent particles, located at different spatial
points, they cannot be separated in the sense that:
• their joint influence on any future event can be explained as if

these quarks formed a single particle; and
• the influence of any part event on these two quarks can also

be explained as if these quarks formed a single particle.

Formal description of this idea: causality must be a lattice
ordering. In the above description, “influence” means any type
of influence, i.e., influence means causality relation. So, to describe
the above idea formally, we can use the standard denotation a ¹ b
as a shorthand for “event a can causally influence event b”.

In terms of ¹, this idea sounds as follows:
1. For every event e1 (= point in space-time) on the first quark

and for every event e2 on the second quark, there exists a
(fictitious) single event e+ such that for any future event f ,
we have e1 ¹ f and e2 ¹ f (i.e., f is influenced by both events
ei) iff e+ ¹ f .

2. Similarly, for every event e1 on the first quark and for every
event e2 on the second quark, there exists an event e− such
that for any past event p, we have p ¹ e1 and p ¹ e2 (i.e., p
influences both events ei) iff p ¹ e−.

Quarks are bound no matter where exactly they are located in-
side the meson (or a hadron). Therefore, the property described
above must be true for every two events ei in this area. In other
words, locally, the causality relation must satisfy the following two
properties:



1. For every two events e1 and e2, there exists an event e+ such
that for any other event f , e1 ¹ f and e2 ¹ f iff e+ ¹ f .

2. For every two events e1 and e2, there exists an event e− such
that for any other event p, p ¹ e1 and p ¹ e2 iff p ¹ e−.

In mathematical theory of orderings:
• the element e+ that satisfies the first property called a union

(or least upper bound) of the two elements e1 and e2, and
denoted by e1 ∨ e2;

• the element e− is called an intersection (meet, or greatest lower
bound) of the two elements e1 and e2 and denoted by e1 ∧ e2;

• an ordered set in which for every two elements, there exists a
union and an intersection, is called a lattice.

So, we can conclude that quark confinement means that the causal-
ity relation on a space-time forms a lattice.

The natural question is: how is this conclusion related to the
above explanation in terms of dimension d of (proper) space?

First (simple) result: when the space is Euclidean, causal-
ity is a lattice iff d = 1. If the space itself is Euclidean, i.e., if we
take a (d + 1)−dimensional Minkowski space-time with the usual
causality relation

(t, x1, . . . , xd) ¹ (t′, x′1, . . . , x
′
d) ↔

t′ − t ≥
√

(x′1 − x1)2 + . . . + (x′d − xd)2,

then, as is well known, this causality relation is a lattice only when
d = 1.

For d = 1, this relation can be reformulated as

(u, v) ¹ (u′, v′) ↔ u ≤ u′& v ≤ v′,

where u = t + x1 and v = t − x1, and therefore, for every two
events e1 = (u1, v1) and e2 = (u2, v2), we can define their union
e1∨e2 = (max(u1, u2), max(v1, v2)) and their intersection e1∧e2 =
(min(u1, u2),min(v1, v2)).



This result is not fully realistic. At first glance, this simple
result reformulates quark confinement in terms of the most funda-
mental relation, the causality:
• we started with the description of quark confinement in terms

of causality, and
• we showed that this description is equivalent to space being

(locally) 1-D: this is exactly what is needed to describe quark
confinement in terms of non-relativistic field theory.

However, this result is not fully realistic: namely, we assumed that
the space is Euclidean, but at the same time, since we assume
that the space is assumed to be 1-D in the vicinity of a meson or
a hadron and 3-D in other places, it is not exactly a typical flat
Euclidean space.

To make this reformulation more convincing, it is therefore
desirable to prove that this equivalence of lattice causality and 1-D
character of space is true for curved spaces as well.

This is what we will do in the remaining part of the paper.

Motivations of the following model. Let us denote space by
S, and the distance between spatial points s and s′ by d(s, s′). In
mathematical terms, we assume that S is a metric space, i.e.:
• that d(s, s′) = 0 iff s = s′;
• that d is symmetric, i.e., d(s, s′) = d(s′, s); and
• that d satisfies the triangle inequality d(s, s′′) ≤ d(s, s′) +

d(s′, s′′).
Since for quarks, gravity is negligible, and gravity corresponds to
curving time (or, to be more precise, space-time), we can safely
assume that the time is not curved and can be therefore described
by special relativity-like formulas.

In other words, time can be described by a temporal coordinate
t, and we can assume that the speed of light c (maximal possible
velocity that determines the causality relation) is constant.

Here, events are pairs (t, s), where t is a real number (t ∈ R)
and s ∈ S. So, the space-time, i.e., the set of all possible events,



is the set of all possible pairs (t, s), or, in mathematical terms, a
Cartesian product R× S of the sets R and S.

An event (t, s) can causally influence an event (t′, s′) iff during
the time t′ − t between these two events, some effect of the first
event could have reached the second event. The largest distance
that the effect can travel during the time t′−t is c(t′−t). Therefore,
the above description of causality can be reformulated as follows:

(t, s) ¹ (t′, s′) ↔ c(t′ − t) ≥ d(s, s′). (1)

Historical comment. If d is an Euclidean metric, this is a causality
relation of special relativity. For a general metric space S, this
(very natural) definition was first formulated by H. Busemann in
(Busemann 1967).

The question is: to describe metric spaces S for which the
causality relation (1) on R × S is a lattice. We will show that all
such spaces are 1-D.

Since we consider very general spaces, we must specify what
we mean by 1-D.

What is 1-D? Discussion. Among planar geometric objects (i.e.,
points, straight lines, planes, hyperplanes, etc), a 1-D set (i.e., a
line) can be characterized by requiring that for every three points,
one of them is between the two others. In terms of Euclidean
metric, the fact that s′ is “between” s and s′′ can be described as
follows: d(s, s′′) = d(s, s′) + d(s′, s′′).

Strictly speaking, this was a definition of a “no more than
1-dimensional” set, which could possible be 1-D or 0-D (i.e., a
point). To exclude a point (or a discrete set of points) and thus, to
guarantee that we indeed have a 1-D space, we must also require
that the set is convex, i.e., that with every two points, it contains
the entire interval, i.e., the entire set of points between them.

For curved spaces, these definitions have to be slightly modi-
fied, because, e.g., a circle is clearly a 1-D space, but if we take 3



points at 120◦ from each other, then they do not satisfy the above
equality. As a result, we arrive at the following definition:

Definitions of 1-D and the Main Result.

Definition 1. We say that a point s′ of a metric space S lies
between s and s′′ if d(s, s′′) = d(s, s′) + d(s′, s′′).

Definition 2. We say that a metric space S is convex if for every
s, s′′ ∈ S and for every real number d from the interval [0, d(s, s′′)],
there exists a point s′ between s and s′′ for which d(s, s′) = d.

Definition 3. We say that a metric space S is acyclic 1-
dimensional if the following property is true: If s′ is between s
and s′′, and s0 is any other point from S, then:
• either s′ is in between s and s0,
• or s′ is in between s′′ and s0.

Comments. Clearly, the straight line and any of its intervals are
acyclic 1-D spaces. These two examples do not exhauts all possible
such spaces. Another example is a union of several intervals with
a common point O, equipped with the following internal metric:
• the distance inside each of the intervals is standard, and
• if s and s′ belong to different intervals, then d(s, s′) is defined

as d(s,O) + d(O, s′).
It is easy to check that this space is:
• convex (because the segment [s, s′] between every two points

is isomorphic to an interval) and
• acyclic 1-dimensional (because if s′ is between s and s′′, then

s′ belongs either to the same interval as s, or to the same
interval as s′′).

Theorem. For every metric space S, the following two conditions
are equivalent to each other:
• the space-time (R × S,¹) with with causality relation defined

by formula (1) is a lattice;
• S is a convex acyclic 1-D space.



4. PROOF

This proof will consists of two parts:
• First, we will prove that if R×S is a lattice, then X is convex

and acyclic 1-D.
• Next, we will prove that if S is convex and acyclic 1-D, then

R× S is a lattice.

First part of the proof. Let us assume that R × S is a lattice,
and let us prove that S is convex and acyclic 1-D.

Proof of convexity. Let’s first prove that S is convex.

Assume that 0 < d < d(s, s′′). To prove that S is convex, we
must construct a point s′ for which d(s, s′) = d and d(s′, s′′) = d′′,
where we denoted d′′ = d(s, s′′)− d. To construct such a point s′,
let us consider the events (d/c, s) and (d′′/c, s′′) from the lattice
R× S. Since R× S is a lattice, there exists an intersection (meet)
(t′, s′) of these two events. Let us show that s′ is the desired point.

For convenience, let us denote d′ = ct′, then t′ = d′/c. The fact
that the event (d′/c, s′) is an intersection means that the following
two statements hold:

1. the event (d′/c, s′) precedes each of the events, i.e., (d′/c, s′) ¹
(d/c, s) and (d′/c, s′) ¹ (d′′/c, s′′); and

2. the event (d′/c, s′) is the largest of all events that precede
both (d/c, s) and (d′′/c, s′′), i.e., if (d1/c, s1) ¹ (d/c, s) and
(d1/c, s1) ¹ (d′′/c, s′′), then (d1/c, s1) ¹ (d′/c, s′).

In the following proof, we will use the first statement (we will mark
this part of the proof by 1.), and then, twice, we will use the second
of these statements; the corresponding parts of the proof will be
marked 2.1 and 2.2.

1. The two inequalities from the first statement, according to (1),
mean that

d− d′ ≥ d(s, s′) (1)

and
d′′ − d′ ≥ d(s′, s′′). (2)



2.1. Substituting s1 = s into the second statement, we conclude
that if d1 ≤ d and d1 ≤ d′′ − d(s, s′′), then d1 ≤ d′ − d(s, s′).
Hence, if d1 ≤ min(d, d′′ − d(s, s′′)), then d ≤ d′ − d(s, s′). In
particular, for d1 = min(d, d′′ − d(s, s′′)), we conclude that

min(d, d′′ − d(s, s′′)) ≤ d′ − d(s, s′). (3)

By definition of d′′, we have d′′ = d(s, s′′)− d, hence, d′′ ≤ d(s, s′),
d′′ − d(s, s′′) ≤ 0 ≤ d, so min(d, d′′ − d(s, s′′)) = d′′ − d(s, s′′), and
the inequality (3) takes the form d′′−d(s, s′′) ≤ d′−d(s, s′), which
is equivalent to

d′′ − d′ ≤ d(s, s′′)− d(s, s′). (4)

From the triangle inequality, we can conclude that d(s, s′′) −
d(s, s′) ≤ d(s′, s′′). Using (4), (2), and this inequality, we can
now conclude that

d′′ − d′ ≤ d(s, s′′)− d(s, s′) ≤ d(s′, s′′) ≤ d′′ − d′.

In this chain of inequalities, the first and the last term coincide;
therefore, all inequalities in thsi chain are actually equalities:

d′′ − d′ = d(s, s′′)− d(s, s′) = d(s′, s′′).

The second of these equalities means

d(s, s′) + d(s′, s′′) = d(s, s′′), (5)

i.e., that s′ is in between s and s′′. To complete the proof, it is
sufficient to show that d(s, s′) = d.

Indeed, we have already shown that

d′′ − d′ = d(s′, s′′). (6)

2.2. By considering s1 = s′′ in the second statement, we can simi-
larly prove that

d− d′ = d(s′, s). (7)



Substituting (6) and (7) into (5), we conclude that d′′ + d− 2d′ =
d(s, s′′). Substituing the definition of d′′ (i.e., d′′ = d(s, s′′) − d)
into this equation, we conclude that d(s, s′′) − 2d′ = d(s, s′′), i.e.,
that d′ = 0. Hence, from (7), we conclude that d(s, s′) = d. Indeed,
s′ is the desired point.

Proof of 1-dimensionality. Let us now show that S is acyclic and
1-D. Let s′ be between s and s′′, and let s0 be any other point from
S.

The fact that s′ is in between s and s′′ means that d(s, s′′) =
d(s, s′) + d(s′, s′′). Similarly to the previous part of the proof, let
us denote d = d(s, s′) and d′′ = d(s′, s′′). Then, clearly, (0, s′) ¹
(d/c, s) and (0, s′) ¹ (d′′/c, s′′).

According to the previous section of the proof, the intersection
of the two events (d/c, s) and (d′′/c, s′′) has the form (0, s̃′) for
some s̃′ ∈ S. Since this intersection is the largest of all the events
that precede both (d/c, s) and (d′′/c, s′′), it is larger than (0, s′).
Therefore, (0, s) ¹ (0, s̃′), which means that 0 ≥ d(s′, s̃′). So,
d(s′, s̃′) = 0, and s̃′ = s′. Hence, the event (0, s′) is the intersection
of (d, s) and (d′′, s′′).

Let us now apply the second property of intersection to s1 =
s0. For s1 = s0, this property means that if d1 ≤ d − d(s, s0),
and d1 ≤ d′′ − d(s0, s

′′), then d1 ≤ −d(s0, s
′). In other words,

if d1 ≤ min(d − d(s, s0), d′′ − d(s0, s
′′)), then d1 ≤ −d(s0, s

′). In
particular, for d1 = min(d − d(s, s0), d′′ − d(s0, s

′′)), we conclude
that

min(d− d(s, s0), d′′ − d(s0, s
′′)) ≤ −d(s0, s

′). (8)

The minimum in the left-hand side of the inequality (8) is equal
either to the first, or to the second term.

If this minimum is equal to the first term, then from (8), we
can conclude that d−d(s, s0) ≤ −d(s0, s

′), i.e., that d+d(s0, s
′) ≤

d(s, s0). Since d = d(s, s′), we can reformulate this inequality as

d(s, s′) + d(s′, s0) ≤ d(s, s0). (9)



On the other hand, triangle inequality means that

d(s, s′) + d(s′, s0) ≥ d(s, s0). (10)

Comparing (9) and (10), we conclude that d(s, s′) + d(s′, s0) =
d(s, s0), i.e., that s′ is in between s and s0.

Similarly, if the minimum in the left-hand side is attained at
the second term, s′ is in between s0 and s′′. In both case, 1-D
property is proven.

So, if R× S is a lattice, S is convex and acyclic 1-D.

Second part of the proof. Let’s now prove that if S is convex
and acyclic 1-dimensional, then R×S is a lattice, i.e., that for every
two events (t, s) and (t′′, s′′) from R× S there exist the union and
the intersection.

We will only prove the existence of the intersection; for the
union, the proof is similar.

If one of the two given events precedes another one, then this
preceding events is the desired intersection. So, it is sufficient to
consider the case when neither of the two events precedes another
event, i.e., the cases when s − s′′ < d(s, s′′) and s′′ − s < d(s, s′′);
in other terms, the cases when |s− s′′| ≤ d(s, s′′).

Let us construct the desired intersection. From the first part
of the proof, we know that if (t′, s′) is the intersection, then s′ is
in between s and s′′, and c(t− t′) + c(t′′ − t′) = d(s, s′′). Hence,

t′ =
ct + ct′′ − d(s, s′′)

2c,
(11)

and s′ is a point at a distance

d = c(t− t′) =
ct− ct′′ + d(s, s′′)

2
(12)



from s and at a distance

d′′ = c(t′′ − t′) =
ct′′ − ct + d(s, s′′)

2
(13)

from s′′.

Let us use this conclusion to construct the intersection.
Namely, we will compute t′ according to the formula (11), and
take as s′ the point in between s and s′′ that is at the distance
d from s and at the distance d′′ from s′′. Let us show that the
corresponding event (t′, s′) is indeed the intersection.

Let’s first prove that (t′, s′) ¹ (t, s). Indeed, this requirement
is equivalent to c(t − t′) ≥ d(s, s′), but accordung to our choice
of s′, we have c(t − t′) = d(s, s′). Similarly, one can prove that
(t′, s′) ¹ (t′′, s′′). So, (ct′, s′) indeed precedes both events (t, s)
and (t′′, s′′).

To complete the proof, we must now show that this event
(t′, s′) is the largest of all events that precede (t, s) and (t′′, s′′).
Indeed, let (t1, s1) ¹ (t, s) and (t1, s1) ¹ (t′′, s′′) (i.e.,

ct1 ≤ ct− d(s, s1) (14)

and ct1 ≤ ct′′ − d(s′′, s1)). Let us show that (t1, s1) ¹ (t′, s′), i.e.,
that

ct1 ≤ ct′ − d(s′, s1). (15)

Since the space S is acyclic 1-D, either s′ is in between s and
s1, or s′ is in between s′′ and s1. Without loss of generality, let us
consider the first case. In this case,

d(s, s1) = d(s, s′) + d(s′, s1). (16)

Substituting the right-hand side of (16) instead of d(s, s1) into the
formula (14), we conclude that

ct1 ≤ ct− d(s, s′)− d(s′, s1). (17)



According to our choice of s′, c(t− t′) = d(s, s′), so, ct− d(s, s′) =
ct′, and the inequality (17) turns into the desired inequality (15).
Q.E.D.

5. OPEN PROBLEMS

We have shown that the major idea of quark confinement can be
reformulated in geometric terms. It is desirable to deduce the quan-
titative formulas for quark confinement from the geometric model.
In particular, it is desirable to relate the physical properties of
multi-quark particles (mesons and barions) with the geometric lo-
cation of several quarks, and hopefully, explain the empirical upper
limit on the number of quarks in a particle by geometrical combi-
natoric properties of quark location.
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