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Abstract

We characterize the solution set S of real linear systems Az = b by a set of
inequalities if b lies between some given bounds b, b and if the n x n coefficient
matrix A varies similarly between two bounds A and A. In addition, we
restrict A to a particular class of matrices, for instance the class of the sym-
metric, the skew—symmetric, the persymmetric, the Toeplitz, and the Hankel
matrices, respectively. In this way we generalize the famous Oettli-Prager
criterion [7], results by Hartfiel [5] and the contents of the papers [1], [2].
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1 Introduction

When solving n x n linear systems Az = b on a computer, the coefficients of the
matrix A and the righthand side b are not always representable by machine numbers.
Therefore one often solves linear systems Az = b with input data A, b which differ
slightly from the original ones, i.e., with A and b from some mterval quantities [A]
and [b], respectively, which also contain A, b. Sometimes one is also interested in the
solutions of linear systems in which, in advance, the input data A and b are unknown
to a certain extent. In this case, they normally are also limited to some n x n interval
matrix [A] and to some interval vector [b] with n components. Therefore, it is an
interesting question to discuss how the set

S:={z e R"| Az =b, A €[A], be [b]} (1)

looks like provided that [A] does not contain a singular matrix. This question was
answered in [5], [7], e.g., where it was shown that the intersection of S with any
orthant O of R” can be described by a set of linear inequalities which characterize a
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compact, convex polyhedron in O. The union of the corresponding polyhedrons of
all orthants forms the set S which needs no longer to be convex but which remains a
compact polyhedron and is therefore a connected set. This result was generalized in
[1], [2], where only linear systems with symmelric matrices A € [A] were considered.
It was shown that in each orthant O the corresponding set

Sym:={r €R" Az =b, A=AT c[A],bec b} CS (2)

is the intersection of S with compact sets whose boundaries are quadrics, i. e., Sgym N
O is described by a set of linear and quadratic inequalities. A similar result holds for
the skew—symmetric matrices from [A] and for the persymmetric ones, respectively,
as was proved in [2].

A. Neumaier already drew attention to Sgym in a letter to J. Rohn in 1986 [8].
Bounds for Sgym can be obtained by methods in [4] and [6]; see also [9], where linear
dependencies of the entries in A, b are allowed.

In [3] it was shown, that each projection of the set of linear systems Az = b with
A € [A], b € [b] can be described by means of algebraic inequalities if the coefficients
of A and b depend linearly on at most finitely many additional parameters, i.e.,

m m
ai = aijo+ Y aijuu,  and by =big+ Y by, (3)
;L:l ;L:l
where a;;,, bi,, ¢t =0,...,m, are real constants and where u, € R, p=1,...m,

are real parameters which vary in given compact intervals [u], = [u,,%,]. It was
shown that even the converse holds, i.e., that every finite union of subsets each of
which is described by algebraic inequalities can be represented as a projection of the
solution set of linear equations Ax = b of the above-mentioned form. This result
was proved without presenting the constructive process explicitly which leads to the
inequalities.

In the present paper, we will fill this gap. To this end we derive a central theorem in
Section 3.1 which is basic for all the subsequent considerations and which ressembles
the Fourier—Motzkin elimination (see [10], e.g.). It shows how parameters in a set
of inequalities can be removed successively. This result can be applied to general
maftrices, to symmetric matrices, skew—symmetric matrices, persymmetric matrices,
Hankel and Toeplitz matrices contained in a given interval matrix [A] in order to
characterize the corresponding solution set by a set of inequalities. For the sym-
metric, persymmetric, and skew—symmetric matrices the starting point differs now
from that in [1], [2]; this time, it is more elementary. We also will outline the par-
ticularities which occur, when describing these solution sets. Thus, it is interesting
to see that for particular solution sets the degree of the polynomials in the algebraic
inequalities can be greater than two and that these inequalities seem to change in
a fixed orthant O in contrast to the case S N O and Sgym N O. We will address to
these problems in Section 3.



2 Notations

By R™, R**" IR, IR", IR"*" we denote the set of real vectors with n components,
the set of real n x n matrices, the set of intervals, the set of interval vectors with
n components and the set of n x n interval matrices, respectively. By interval we
always mean a real compact interval. Interval vectors and interval matrices are
vectors and matrices, respectively, with interval entries. As usual, we denote the

lower and upper bound of an interval [a] by a and @, respectively. Similarly, we
write [A] = [A, A] = ([a;;]) = ([a;;, @;]) € IR**™ without further reference. We call

[A] € IR™ " regular if it contains no singular matrix A € R"*".

We denote any orthant of R” by O and the first orthant by O;. As usual, we call
A e R™™ persymmelric if a;; = app for k =n+1—j5, 1l =n+1—1, 1e,if it
is symmetric with respect to the northeast—southwest diagonal, we call it a Hankel
matriz if a;; = ay for 1 + 3 = k + [, i.e., if its entries are constant along each
northeast — southwest diagonal, and a Toeplitz matriz if a;; = ap for 1 — 5 =k —1,
i.e., if its entries are constant along each northwest—southeast diagonal for all indices

i, 7, k, Led{l,... n}

3 Results

3.1 A central theorem

We start this section with a theorem, which forms the basis for our subsequent
considerations. It contains the constructive process which, for fixed x, is just the
Fourier—Motzkin elimination (cf. [10], e.g.) and which leads to the inequalities
mentioned in Section 1. In order to motivate the theorem we start by an example
which shows how to describe S from (1) in a fixed orthant by means of inequalities
as was done by Hartfiel in [5]. For simplicity we restrict ourselves to 7 := SN D
where D := 0. Trivially, Sy is characterized by

Si={x€D|3Ja;;,b; e R : (4) - (6) hold }

where

Zaig’l’jﬁbiﬂzaijl’ja v=1,...,n, (4)
=1

=1
a;; < aij < dij, ij=1,...,n, (5)
b; < b < b, i=1,...,n (6)

Those inequalities in (4) — (5) which contain ay; can be rewritten as

by — Zaul'j < anry, (7)
1=2
ayq < an, (8)



apry < by — Z ay;;j, (9)
=2
apn < an. (10)

Multiply (8) and (10) by x; and combine each left-hand side of (7), (8) with each
right—hand side of (9), (10) and drop the two trivial inequalities. Then this action
results in the two nontrivial inequalities

bl — Zaljl’j S 6111’1, (11)

1=2
n

apr < by — Zaljxjv (12)
1=2
which are supplemented by
the original aq;—free inequalities. (13)
Hence

SiCSy={zreD|Jay (i£1ifi=j),b;cR: (11) - (13) hold }.

Since the converse Sy C Sy is also true (see the proof of the subsequent theorem)
one ends up with S; = S, where in Sy the entry ay; is replaced by the bounds
ayy, dapp of the given interval [a]i;. It is obvious that this process can be repeated
for the remaining entries a;; and b;. One finally gets the inequalities in [5] which
were derived there in a different manner.

We will generalize this elimination procedure in the subsequent theorem. There
we do no longer distinguish between a;; and b; but introduce parameters u,, p =
1,...,m, instead. Moreover, we replace the constants 1 in front of b; and a;; in
(5) and (6) (which we did not write down, of course) and the linear expressions z;
behind a;; in (4) by more general expressions f,(z), + € D C R”, and the constants

a;;, @ij, b;, bi by expressions gy(x) which are independent on the parameters u,,.
For simplicity we also cancel the inequalities of the form (13) since they remain

unchanged in 57 as well as in 5.

Theorem 1

Let fap, g, A =1,...k (> 2), p =
(1,...,2,)T on some subset D C R"
ki < k such that

1,...,m, be real valued functions of x =
. Assume that there is a positive integer

Ha(x) Z0 forall X e {1,... k}, (14)

hualz) >0 forallz € D and all X € {1,... Kk}, (15)
for each x € D there is an index §* = 3*(x) € {1,... ,k1} with fz1(z) >0
and an index v* = y*(z) € {ky + 1,... ,k} with fi«(2) > 0. (16)
For m parameters uy,...,u, varying in R and for x varying in D define the sels
Sl, A92 by
Sy = {zeD|Ju, eR, p=1,...,m: (17), (18) hold },
Sy == {zeD|Ju, eR, p=2,... ,m: (19) holds},
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where the inequalities (17), (18) and (19), respectively, are given by
x)—l_zfﬁﬂ(x)u#gfﬁl(x)ul? 5: 17 7k17 (17)

f'yl( > ‘|'Zf'w um 7:k1+17---7k; (18)
and

) fyi(x ‘|’Zfﬁn V(@) < gy(2) for( +wa ) ()uy,  (19)
5—1, ,kl, ")/—kl—|—1, ,k‘.

(Trivial inequalities such as 0 < 0 can be omilted.)

Then

Sl — SQ.

Before proving Theorem 1 we remark that the parameter u; which occurs in the
definition of S} is no longer needed in order to describe S;. Therefore, we call the
transition from the inequalities (17), (18) to the inequalities in (19) the elimination

of uy.

It is obvious that the assertion of Theorem 1 remains true if the inequalities in
(17), (18) and the inequalities in (19) are supplemented by inequalities which do not
contain the parameter uy, as long as these inequalities are the same in both cases.

Proof of Theorem 1.
Sl Q SQI

W.lo.g. let S; # (), fix z € S; and let uy,...u, € R be such that the inequalities
(17), (18) hold for z. Multiply (17) by f,1(z) and (18) by fai(z). This implies

fvl + Zfﬁﬂ fwl
< fm(ﬂf)fﬂ(ﬂf)m SgW fﬁl +wa fﬁl

for =1,... ,k and v = k; +1,... ,k. Dropping the middle term results in (19)
whence S; C S,.

51 2 Sgi

W.lo.g. let Sy # (), fix z € Sy and let uy,...u, € R be such that the inequalities
(19) hold for z. Divide (19) by fsi(x) if fgi(x) > 0, and by f,i(x) if fy1(z) > 0.
Unless fz1(z) =0 and f,1(x) = 0 (in this case (19) reads 0 < 0 and can be omitted)



one gets equivalently

D)+ Y foulx)u, <0, i foi(x) = 0and fu(2) >0, (20)
0<gy(2) + Y foutty, if f51(z) > 0and f,(z) =0, (21)

(gﬁ($)+zfﬁu( ) [ for() ( +wa ) [falz),  (22)

lf far(®) fu(z) >0

Due to (16) there exists at least one pair (5*,v*) € {1,... ki } x {ki + 1,... ,k}
such that fg«(z)fy+1(2) > 0. Let M; be the maximum of the left—-hand sides of all
inequalities (22) and let M, be the minimum of the righthand sides of all inequalities
(22). Then My, M, are attained for some indices 8 = By and v = 7o, respectively.
Since [ and « vary independently there is an inequality (22) with 3 = By and v = 7o
simultaneously. This proves My < M,. Choose uy € [My, My] and apply (20) and
(22), respectively, with v = 7o (which implies f,1(z) > 0) and g = 1,... k. If
fa1(z) = 0 then (20) yields to the corresponding inequality in (17). If fzi(z) > 0
then

(95(55) + > fau(x)u ) [fo(z) < My < uy

implies the corresponding inequality in (17). By applying (21) and (22), respectively
with 3 = B the inequalities (18) can be seen analogously whence Sy C Sj.
Ol

The inequalities in (19) arise by multiplying the corresponding inequalities (17) and
(18) by fyi(x) and fsz1(z), respectively. Sometimes it is more convenient to write

fa1(z) and f,1(x) in the form
fo(z) = hﬁw(x)fﬁl(x)a foi(z) = hpy (2 )fﬂ( )

with nonnegative functions fm, fﬂ, hg, defined on D. Then the elimination proce-
dure gives some hope that it suffices to multiply (17) and (18) only by f,1(z) and
fa1(z), respectively, in order to end up with the modification

+Zm ) fon ( m,+2m )fon(a (23)

521,...,]{1, ’)/—kl—|—1,...,k,

of the corresponding inequality in (19). This multiplication process shows, in par-
ticular, that the inclusion

S CSs:={zeD|Ju, eR, p=2,....,m : (23) holds }

is true. In order to prove S35 C 97 fix * € S3 and choose us, ... ,u,, € R such that
(23) holds for . Multiplying the corresponding inequality (23) by hg,(z) yields
o (19), hence # € S, and Theorem 1 implies € S;. Thus we have proved the
following corollary.



Corollary 1
With the notation and the assumptions of Theorem 1 let

For(@) = hos(2) fr(2),  fr(2) = sy () fon(2)

with nonnegative functions fﬁl; fﬂ, hg. defined on D. Then the assertion of The-
orem 1 remains true if fzi(x), fya(z) are replaced in (19) by fsi(x) and f,1(x),
respectively.

EI

Corollary 1 is particularly useful if fs, = f,1 > 0 where f > 0 means f(z) > 0 for
all z € D. Then hgy := fg1 = f;1 >0, fs1 = f41 := 1 > 0 and the corresponding
inequality in (19) reads

95(x) + Y faulz)u, < go(2) + Y Frulz)u,

Another typical application of Corollary 1 occurs if the functions fy,, g\ all are
polynomials and if fg; and f,; have a non—constant polynomial as a common factor.
We will meet these situations in our subsequent examples.

We remark that no topological assumption such as continuity of f,,, g\ or connec-
tivity of D is required in Theorem 1. The assumption (14) prevents fy; from being
completely omitted in (17), (18) and (19). If fi;(x) < 0 on D one can simply fulfill
(15) by multiplying the corresponding inequality by —1. If neither fii(z) > 0 nor
frui(z) <0 holds uniformly on D on can split D in several appropriate subdomains
D; with |J; D; = D for each of which the assumptions of Theorem 1 hold. The

restriction (16) cannot be dropped. This can be seen from the example

L+ zyup < zuq, 2quyp <1+ zous, D=0 :={(21,29)| 1 20, 2, >0}
(24)

where fi1(z) = fa(z) 1= 2, fiz(z) = fa(z) := 21, 1(z) = g2(x) := 1 and where
kE=m=mn=2, ky = 1. The assumption (16) is not fulfilled for x = (0,0) since
£r1(0,0) =0 for A € {1,2}. The inequality (19) reads

2 2
Ty + viug < Tg + T3Ug

which is true for z; = 23 = 0 while (24) apparently does not hold for z; = 23 = 0
and any choice of u; € R.

Note that in our example the functions f,, are continuous. Therefore, the equiva-
lence in Theorem 1 apparently cannot be forced by requiring continuity of fy,, g
at the expense of dropping (16). We will illustrate a possible reason in our exam-

ple. To this end we choose D := 01\{(0,0)} for the moment. Then (16) holds and
Theorem 1 can be applied. Choose z1 = x5 = ¢ > 0. By (24) we get 1 + cus = euy

whence u; = — + uy. Let ¢ tend to +0 which means that (x,z3) approaches the
€

origin in Oy along the line x1 = z4. In order to fulfill (24) the two parameters u, uy
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must necessarily be chosen in such a way that the absolute value of at least one of
them tends to infinity. This situation does, however, not occur in our subsequent
considerations since our parameters u, will be the matrix entries a;; and the com-
ponents b; of the righthand side b of a linear system Az = b. They will be restricted
to compact intervals by A € [A] and b € [b]. This generates inequalities of the form
a < u, <@ with a corresponding function fy, = 1. Since such an inequality depends
on a single u,, it is only used when this parameter is eliminated. Therefore, in the
sequel the assumption (16) will be fulfilled for any domain D.

Under appropriate assumptions on the number of the given inequalities and on the
signs of the functions fy, Theorem 1 and Corollary 1 can be applied successively in
order to eliminate some or all expressions in which the parameters u, occur linearly.
However, the number of inequalities might then increase drastically as already simple
examples show.

We shortly summarize the steps to be executed when eliminating the parameters in
the inequalities describing some set Sy C D:

Elimination process

Given a domain D C R”™ and a set of inequalities in x € D with parameters uy, ... u,
which occur linearly. Denote D together with this set of inequalities as a record and
store it on a stack named Stack 1.

Step 1

Felch the first record (i. e., the domain and the corresponding set of inequalities) from
Stack 1, fix a parameter, say uq, bring those inequalities into the form (17), (18)
which contain uy. (Renumber and rename eventually, in order to have a domain
named D, a parameter named uy, and subsequent inequalities according to (17),

(18).)
Step 2

Check the assumptions of Theorem 1 for the inequalities which contain uy. If (15)
is not satisfied then multiply the corresponding inequalilty by —1. If this does not
help split D into appropriate subdomains D; and replace the record with D by corre-
sponding ones with D;. If (16) is not fulfilled for each D; then stop. Otherwise pul
the records to a stack named Stack 2.

Step 3

As long as Stack 2 is not empty fetch from it the last record and eliminate uy ac-
cording to Theorem 1 or Corollary 1. If the new record does no longer contain any
parameter w, then store il into a file. Otherwise put it to Stack 1 as last element.
If Stack 1 is not empty goto Step 1.

EI

Now we want to apply Theorem 1 and, whenever possible, Corollary 1 in order to
characterize particular subsets of S as announced in Section 1.



3.2 Symmetric linear systems

In order to characterize Sgym in (2) we first remark that Sy, apparently is empty
if [A] € IR™" does not contain a symmetric matrix as an element. If A # A" or
A4 A" we could replace [A] by the largest matrix [B] C [A] with [B] = [B]? since
[A]\[B] does not contain a symmetric matrix as an element and therefore does not
influence Sqym. This is the reason why we will assume [A] = [A]T, without loss of
generality, from the beginning.

Let O be a fixed orthant. We start with D = O and (4) - (6), this time reducing
the amount of free parameters nearly to one half by using a;; = aj;. The elimination
process for the b; and the diagonal entries a;; is the same as for S and is left to the
reader. The elimination of the off-diagonal entries a;;, 1 < 7, ¢,5 = 1,... ,n differs
due to the dependency a;; = a;;. For instance, when handling a5 first, one gets the
(non—trivial) new inequalities

n

b, — 6A‘1+1$1 - Z ajjzr; < 6A‘1+25L'27 (25)
J=3
apymy < by — apyzy — Z ai;;, (26)
j=3
by — 43,0 — Z agjr; < afya, (27)
=3
&1_2171 S BQ — &2_2:52 — Z A2;% 5, (28)
=3
bras —afel =Y aywiz; < bfas — anw) — Y aywaz;, (29)
i=3 i=3
by g — ajz? — agjzer; < bz — ajx? — Z ar T, (30)
=3 =3
where
G a;; if$j<0 at — a;; if:l?j<0
t Qij lfl’]ZO ’ v az']‘ lfJ}]ZO ’
a- = gij, if T Z 0 a'»'f . Eij, if TiTj Z 0
CAN a;;, if zix; <0 ’ CA Qs if ziz; <0 ’
¢ bi, fz; <0’ ! éi? iz, <0
The inequalities (25) — (28) coincide with those for S. The inequalities (29), (30) are
new. They contain quadratic polynomials. When eliminating a,; for 5 = 3,... ,n
according to Corollary 1, the i—th inequality in (4) has to be multiplied by z; for
1 =3,...,n. Afterwards, no additional multiplication is needed in inequalities which

have a form analogous to (29), (30). This is true because the function f,, in front of



a;j reads fr,(x) = z;z; in these inequalities, and in the remaining (non—quadratic)
inequalities they are given by f\,(z) = z;, fiu(z) = z; and fy,.(z) = 1, respectively.
Note that the sign of the function z;z; remains constant over a fixed orthant O.
This is the reason, why no splitting is needed for D = O during the elimination
process. Pursuing this process shows that the final inequalities for Ssym, N O consist
of the inequalities which characterize S, and quadratic inequalities. We thus get the
following theorem (see also [1], [2]).

Theorem 2

Let [A] = [A]T € TR™™ (nol necessarily regular) and let [b] € IR™. Then in each
orthant the symmetric solution sel Sqym can be represented as the intersection of the
unsymmetric solution set S and sets with quadrics as boundaries.

|

Skew—symmetric linear systems and persymmetric linear systems can be handled
analogously and yield to a result similar to Theorem 2. For details see [2].

3.3 Hankel and Toeplitz systems

Analogously to Section 3.2 we restrict A, A to be Hankel matrices in order to give
some remarks on the solution set

Stank := {x € R"| Az = b, A € [A] Hankel matrix, b € [b] } C Sqym C 5.

Again we do not require that [A] is regular. This time not only the way but also the
results are new and differ essentially from the previous ones. The reason consists in
a possible increase of the polynomial degree of f,, during the elimination process.
In addition, these polynomials have no longer constant sign in a fixed orthant. This
can be seen by the following example of a bidiagonal Hankel interval matrix.

Example 1
0 [s] [d]
A= 8] [ 0 | e®R*, plelrR
[d] 0

We start with

=all

by <sxy+dxs < 51, b, < sz + dxy

~ 25 QS < d$1 < b3
d<d<d, s<s

5

IA A

and, for simplicity, we restrict ourselves to the first orthant Oy, i.e., we apply Corol-
lary 1 with D = O,. After having eliminated the s—terms we obtain

by — dxs < 5y, sty < by — das,
by, — dxy <514, sty < by — dao,
bixy —dryzs < bozy — dmg, byxy — d;tg < byzq — dzixs,
by < dzy < bs, d<d<d,
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whence

by — Sy < dxs < by — 573, b, — sz < dvy < by — sy,
Qﬂ?l - B2$2 < d($1$3 - CC%) < 51»’61 - b23727 (31)
by <dwy <bs, d<d<d.

In order to eliminate the d-terms one has to take into account the signs of the
expression x1x3 — x3. The inequality

T1T3 — :L'% > 0. (32)

describes a circular cone C' which is independent of the coefficients of [A] and [b].!
Its boundary z x5 — % = 0 can be rewritten as x3 + v? — u* = 0 where 7y = u + v
and z3 = u — v. The axis of C is given by (¢,0,4)T, ¢ € R; in particular, C lies

symmetric with respect to the xyxs—plane. It contains the z;— and the z3—axis on

its surface and divides Oy into two parts Dy := O; N C and Dy := (O1\Dy). On D4
the inequality (32) holds while on Dy the inequality sign reverses in (32). From (31)
we obtain as description of Syank N O1:
b1 — Sz < 81’37 QQ — sz < 3«7?27 bg < El’la
biry —5waxy < bawa,  bywy —32i < byxo,  bywy — 572 < byws — 5723,
blxl —52.1'2 S 3(:1?1.173 — %), ifz € Dl,
b ), ifz € DQ,

le% — §2ZL’1$2 g 53(5611}3 — LL’%), lf T € Dl,
bll’% — bglEl.iEQ S QB(ZElLCg — Jf%), if z € DQ,

x
Q1l’1 —byxy < i(%l’s - 55%

§1$1l‘2 - Eﬂ‘%, < (52 - §$1)($1$3 - 33‘%)7 ifz € D17

éll'll'g — ng% S (92 — gl[}l) r1T3 — LL’%), if z € DQ,

(
byxyx3 — Ez$2$3 < (51 - §$2)($1$3 - il?%), ifz € Dy,
él.’lfll’g — 5221’121’3 S (bl — 51;2)(1;11;3 — Zl’}g), if z € D2 .

We have omitted here the dual inequalities, which are obtained by reversing the in-
equality signs and by replacing the lower bars by upper ones and vice versa. These
inequalities recommend, in particular, that Syan N O should be better replaced by
the two subsets Sgank N D1 and Sgank N D2 for each of which the set of inequali-
ties remains fixed. Note that for a complete characterization one has to add the
inequalities

Tix3 — 23 >0, (describes ')
z; > 0fore=1,2,3 (describes Oy)

in the case of D; and

Tix3 — 23 <0, (describes R3\(C)
z; > 0fore=1,2,3 (describes Oy)

in the case of Ds.

EI

!Presently we do not know whether this independency always occurs when computing Sank
for more general situations.

11



We consider now Toeplitz matrices. As can be seen from the definition in Section 2
a Toeplitz matrix A becomes a Hankel matrix if it is multiplied from the left by
the permutation matrix £, which has ones in the northeast—southwest diagonal and
zeros otherwise. Therefore, the solution set

Stoep :=1{ 2 € R"| Az = b, A € [A] Toeplitz matrix, b€ [b] } C S

is identical with Syank formed for KA and £b. This means that for Toeplitz matrices
and for Hankel matrices the same phenomena occur in view of the solution set.

Now we address to the question how complicated can the resulting shape of Steep

be.

When we have a linear interval system with independent coefficients and with a
regular interval system matrix, then, due to the Oettli-Prager theorem [7], the
solution set is a compact, convex polyhedron in a fixed orthant O (to be more
precise, a union of finitely many compact, convex polyhedrons that correspond to
different orthants).

In many applications, we are interested only in some of the variables x,... ,z,. In
this case, in mathematical terms, we are interested in the projection of the solution
set on a subspace formed by the desired variables. For interval systems with inde-
pendent coefficients, this projection is a projection of a polyhedron and thus, also a
polyhedron.

In [3], we showed that for arbitrary interval linear systems with dependent coeffi-
cients, we can get projections that are described by algebraic dependencies of ar-
bitrarily high degree (we even showed that an arbitrary algebraic set can be thus
represented).

A natural question is: if we restrict ourselves to Toeplitz matrices only, how compli-
cated this projection can be? The following simple example shows that for Toeplitz
interval matrices we can have, as 2—dimensional projections, curves of degree n at
least. To this end let us consider the Toeplitz system Az = b consisting of the
following equations:

a-r; = 1,
-1 4+a-xy = 1,
—ry—29+a-x3 = 1,
-y — X9 —...—Tp 1 t+a-x, = 1,
where a € [1,2]. Therefore, a vector (zy,... ,7,)T belongs to the solution set if and

only if there exists an a for whicha-z; =1, —x1+a-2, =1, —2;—23+a-23=1,
etc.. From these equations, we can explicitly express x;, ¢ > 1, in terms of x;:

From the first equation, we get 1 = 1/ a; hence, a =1/ z;.

From the second equation, we get 3 = (1 4+ z1)/a = (1 + @)y = 21 + 23
this expression is quadratic in zy.
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Similarly, from the third equation, we get x5 = (1 4+ 21 + 23) /a =
(142 +2z+ :L‘%)”l?l =1+ x1)2x1 = x1 + 22% 4 z73; this expression is cubic in

1.

Finally, for z,, we get an expression of n—th degree in terms of z;:

r,=x(l+z)" P =2+ (n—1)af + ...+ 2.

Thus, when we are only interested in the values of z; and z,, we get a curve of n—th
degree.

A similar remark holds for Hankel systems.

It is worth noticing that if we apply Theorem 1 to the interval system above, we get
inequalities of degrees less than n. There is no contradiction here, because a set of
lower degree can have higher—degree projections: e.g., for a curve described by two
second-order equations z3 = z} and z3 = z3, its projection on (zy, x3) has the form
z3 = z7 and is, therefore, of fourth order.

In our next example we show that even the unprojected solution set Stoep needs
algebraic equations whose order exceeds two.

Example 2
Let
[d 0 0 1
[Al:={ [s] [d 0 |}, [b]:=
[ sl [d] 0
with [d] = [1,2], [s] = [-4,—2] and [I] = [-8, —4]. Then each solution of a system
Az = b with a Toeplitz matrix
6 0 0 1
A=\ o 0 0 | €[A] and b=| 0
Ao b 0
is given by
_ ! >0 (33)
ry = 5 5
Ty = —%:1:1 = —ox? >0, (34)
o A z2
r3 = —gl'g — g.ﬁ[}l = ;(;_j - /\.T% > 0, (35)

with 6 € [d], o € [s] and A € [[]. The corresponding set of inequalities reads

<z <1, 22} <xy<A4a? i : i :
<z <1, ] <z < 4z7, + 4z <23 < + 8z7.
1 T

DO | =
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or, equivalently,
1

5 <z <1, 2:[}% <y < 4xf, 4;1;:1)’ < T3 — ;L’g < 8x:1)’. (36)

Thus Stoep lies completely in Oy; its boundary is part of the two planes z; =
1

g T1= 4, part of the two parabolic cylinders z, = 223, z, = 42? and part of the
two algebraic surfaces v z3 — 3 — 427 = 0, z123 — 23 — 827 = 0 which are of order
three. Notice that (36) was derived by decoupling the parameters in the equalities
(33) — (35). Since the last inequality of (36) is the only one which contains x5 the
degree in (36) cannot be reduced. This shows that in the general case the boundary
for the solution set of Toeplitz matrices (and therefore also for Hankel matrices)

cannot be characterized by means of hyperplanes and quadrics.

EI

If [A] is a lower triangular n x n interval matrix and if [b] is a degenerate interval
vector, i.e., [b] = [b,b], then the ideas of Example 2 can be generalized. Using an
inductive argument shows that the boundary of the corresponding solution set Stoep
is composed by parts of algebraic surfaces which have order n at most, with two
of exact order n. A similar remark holds if [A] is an upper triangular matrix, and
for Sgank provided that [A] is a triangular matrix with respect to the counterdiago-
nal. At the moment we do not know how this degree behaves for St,ep and Shank,
respectively, when [b] is non—degenerate or when [A] is not triangular.

3.4 Linear systems with more general dependencies

The elimination process of Section 3.1 can even be applied to systems of linear equa-
tions with dependencies according to (3). Such a system (which may be singular)
reads

gz(;r:)—l—Zfz (2)u, =0, i=1,...,n, (37)
where

gi(z) = —bio+ Z aij,0T;
=1

filw) = =biy+ Y aiu,
7=1

u, € [u]u = [Ewﬂ#] > (38)



and (38) by
w, <u, <uy, p=1,...,m. (40)

Then apply the elimination procedure from Section 3.1 to (39), (40) with D = R™. In
this case D is expected to be split into finitely many subdomains D; in Step 2. Such
subdomains certainly exist due to the particular shape of f;,. (In fact, fi,(z) >0
determines here a half space in R™.)

We emphasize that there is an ambiguity in the order of eliminating the parameters
Uy, ..., U, since we are free to permute the indices. In this respect it is clear by
the equivalence of Theorem 1 that for any order and in each stage the inequalities
describe the same set, namely the corresponding solution set. But we are not sure
whether the inequalities at the end coincide (up to their order of appearence and
after having deleted superfluous ones).
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