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Abstract— This paper is a short overview
of our NASA-supported research into the op-
timal choice of fuzzy control techniques for
space exploration problems.

I. INTRODUCTION: INTELLIGENT CONTROL IS
NECESSARY FOR SPACE EXPLORATION

Control is necessary for space missions. For
a space mission to be successful, it is vitally impor-
tant to have a good control strategy for all possible
situations. For example:

e For a Space Shuttle, it is necessary to guar-
antee the success and smoothness of docking,
the smoothness and fuel efficiency of trajectory
control, etc.

e For an automated planet mission, e.g., for a
rover mission to Mars, it is important to con-
trol the spaceship’s trajectory, and after that,
to control the rover so that it would be operable
for the longest possible period of time.

It is often difficult or impossible to apply
methods of traditional control theory. In
many complicated control situations, in particular,
in many control situations related to space flights,
methods of traditional control theory are difficult or
even impossible to apply. The main reason for that
difficulty is as follows:

e For traditional control, we must know (more or
less precisely) the properties of the controlled
System.

e However, space missions are usually sent to ex-
plore new phenomena, and must operate under
extreme conditions. Therefore, our prior knowl-
edge about the situation is not complete.

Even when we do know the system precisely, this
description may be so complicated that computing
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the optimal control is computationally intractable
[31].

Intelligent control is needed. In general, in un-
certain situations, where no routine methods are di-
rectly applicable, we must rely on the creativity and
skill of the human operators. And, indeed, expert
controllers are very good in controlling complicated
processes (not only in space missions, but also in
the chemical industry, in metallurgy, in business).
These experts usually cannot explain their control
strategy in precise mathematical terms, but they
can describe their strategies in terms of natural lan-
guage, by phrases like “If a Space Station is close,
and the relative speed is medium, decelerate a little
bit”. So, in order to develop an automated con-
troller,

we must somehow transform these informal rules
into a precise control strategy.

The methodology of such transformations is called
intelligent control.

Intelligent control is useful also for non-automatic
control: For example, for manned space missions,
there are astronauts who are the best in solving the
control problems. We cannot clone the best con-
trollers, but we want to have an automated device
that would simulate the best experts, and thus help
other astronauts to control the mission.

Intelligent control is possible. There exist sev-
eral dozens of different methods for intelligent con-
trol. This activity started in the 1970’s by L. Zadeh
and Mamdani, and has now many important appli-
cations, ranging from the Japanese automated sub-
way system to various appliances.

II. THE CHOICE OF INTELLIGENT CONTROL
METHODOLOGY CAN DRASTICALLY CHANGE
THE QUALITY OF THE RESULTING CONTROL

The experience in applying intelligent control shows
that sometimes a transformation method leads to
unstable or non-smooth control. In such situations,
a different transformation of rules into control would
be more appropriate.



Usually the choice of an appropriate technique is
made on a trial-and-error basis.

For space applications, it is necessary to have
theoretical methods for selecting the best
intelligent control methodology. Experiments
performed at Johnson Space Center on the Shuttle
and rover simulators, showed that intelligent con-
trol techniques really lead to high quality control of
space missions and planet rovers.

However, most of the existing intelligent control
techniques are semi-heuristic, in the sense that they
rely partly on trial-and-error. This may be accept-
able for an appliance, but it is definitely unaccept-
able to choose a technique on a trial-and-error basis
for a billion-dollar project. So, we need guaranteed
(theoretical) methods to choose an appropriate tech-
nique.

So, we must:

e analyze the existing intelligent control tech-
niques, and

e find out which of these techniques is the best
with respect to the basic optimality criteria:
stability, smoothness, robustness, etc.;

e if for some problems, none of the existing tech-
niques is of satisfactory quality, design new, bet-
ter intelligent control techniques.

This paper is an overview. The results of our
research are described in detail in the papers [1]—[32]
and in the student thesis supported by this project
[T1]. In this paper, we give a brief overview of these
results.

Before we formulate these results, we will briefly
remind the reader of the main features of the most
widely used existing intelligent control methodol-
ogy: fuzzy control.

III. Fuzzy CONTROL: IN BRIEF

Rules. Fuzzy control methodology starts with ex-
pert “if-then” rules, i.e., with rules of the following

type:

If 1 is A{ and x9 is Aé and'. .. and z, is AJ, then
u is BY,

where x; are parameters that characterize the plant,

w is the control, and A7, B7 are the natural language

terms that are used to describe the j** rule (e.g.,

“small”, “medium”, etc).

Mamdani’s transformation. The value u is a
proper value for the control if and only if one of
these rules is applicable.

Thus, the property “u is a proper control” (which
we will denote by C'(u)), can be, therefore, described

as follows:
Cu) = (Aj(z1) & A(z2) & ... & Al (2,) & B (u))V
(A3 (1) & A% (20) & ... & A% (x,,) & B*(u))V

(AK(2)) & A (22) & ... & AK () & B¥ (u))

Membership function. The natural language
terms are described by membership functions, i.e.,
we interpret A](x) as p] (z), the number (called de-
gree of belief) that describes the expert’s degree of
belief that a given value z satisfies the property A7.
Similarly, B7(u) is represented as y;(u).

“And” and “or” operations. The logical con-
nectives & and V are interpreted, in this context, as
operations fg and f\, on degrees of belief. The most
frequent choices of these operations are min(a,b)
and a-b for fg(a,b), and max(a,b) and a+b—a-b
for fy(a,b).

After these interpretations, we can form the mem-
bership function for control:

po(u) = fu(p1, s PK),

where
pi = fe(pj1(@1), ,2(T2), s 0 (Tn), g ().

Defuzzification. The system must supply a con-
trol, so we must end up with a single value u of
the control that will actually be applied. An oper-
ation that transforms a membership function into a
single value is called a defuzzification. To complete
the fuzzy control methodology, therefore, we must
apply some defuzzification operator F' to the mem-
bership function pe(u) and thus obtain the desired
value @ = fo (&) of the control that corresponds to
Z = (x1,...,2n). The most widely used defuzzifica-
tion procedure is centroid defuzzification

Ju-pe(u)du
Jpo(w)du

IV. PRELIMINARY RESEARCH: IS THE EXISTING
INTELLIGENT CONTROL METHODOLOGY
REASONABLE?

UNIVERSALLY APPLICABLE? OPTIMAL?

u =

Before we start fine-tuning the existing intelligent
control techniques, we must first make sure that this
methodology is indeed good, i.e.,

e that this methodology is reasonable, i.e., con-
sistent both with common sense and with other
successful formalisms proposed to represent hu-
man reasoning;



e that this methodology is universally applicable,
i.e., in principle, it can be used for an arbitrary
control situation; and finally,

e that this methodology is indeed optimal in some
reasonable sense, i.e., it can, potentially, lead to
the best possible control.

In our preliminary research, we have shown that this
is indeed the case.

A. Fuzzy control is reasonable

Let us first show that fuzzy logic is indeed consistent
with other formalisms proposed to describe com-
monsense reasoning. All these formalisms can be
viewed as modifications of classical (2-valued) logic,
the logic that describes the ideal reasoning. Both
in classical logic and in its commonsense modifica-
tions, we start with elementary (atomic) statements
and combine them by using logical connectives (such
as “and”, “or”, “not”) and quantifiers (such as “for
all” and “there exists”) into more complicated logi-
cal statements.

The classical 2-valued logic can be characterized
by the following features:

e in classical logic, every elementary statement is
either true, or false;

e these statements can be combined by basic log-
ical connectives and quantifiers;

e the truth value of the resulting complicated
statements is determined by the rules of logic:
e.g., “for all z, A(z)” is true if and only if the
statement A(z) is indeed true for all x.

At first glance, these features sounds perfectly rea-
sonable. However, in real life, our reasoning does
not always follow these rules:

e First of all, in real life, we are often not sure
whether a certain statement is true or false.
To describe this “un-sureness”, it is desirable,
in addition to the classical truth values “true”
and “false”, to have intermediate degrees of be-
lief. If we add such degrees of belief, we get a
modification of a classical logic that is called a
multiple-valued logic:

— Fuzzy logic is one particular case of this
logic, in which we assume that there are
infinitely many different degrees of belief
that fill the entire interval [0, 1].

— Other multiple-valued logics, with finitely
many different degrees of belief, have also
been proposed to describe commonsense
reasoning.

Comment. To a certain extent, the third value
— “unknown” — is already present in the clas-
sical logic system, in the sense that in a formal

system, due to Godel’s theorem, a statement S
can not only be true (when S is deducible from
the theory) or false (when its negation —S is
deducible from a theory), but it can also be
unknown, when neither the statement S itself,
nor its negation can be deduced from the the-
ory. In this sense, multiple-valued logics are not
so much replacing the traditional logic, but they
are enriching these logics by providing a finer
structure of this “unknown”. In particular, in
[21], we show that traditional “paradoxes” of
fuzzy logic, like the possibility of a statement to
be (to some extent) true and, at the same time,
(to some extent) false have natural analogies in
classical logic.

Second, in commonsense reasoning, the mean-
ing of connectives is sometimes slightly different
from its meaning in classical logic.

For example, in classical logic, if one of the
atomic statements Ay, ..., A, is false, then the
compound statement A& ...&A,, is false. Not
so in commonsense reasoning. For example, if
the objective of a Space Shuttle’s mission was
to investigate a new geophysical area (A1), to
experiment with the signal transmission (As),
to repair a satellite (Aj3), etc., and to launch a
new satellite (A4,), and the mission succeeded
in all but one parts of this mission, then,

— according to classical logic, we must say
that the mission has failed, while

— from the commonsense viewpoint, this
mission was highly successful.

There are crucial situations where all goals
must be satisfied. Depending on the situation,
the same word “and” can mean different op-
erations. So, another approach to formalizing
commonsense reasoning is to replace a single,
say, “and” operation with several different op-
erations that describe different commonsense
meanings of “and”.

For better understanding, the difference be-
tween the classical logic and this new approach
can be illustrated graphically: if we represent
each statement by a point, then,

— in classical logic, the combined statement
“A and B” is well defined and thus, also
represents a point, while

— in this new approach, we get the whole
line of different values depending on which
interpretation of “and” we choose. In
view of this interpretation, this approach
is called linear logic.

e Finally, formulas of classical logic are known

to be, in general, algorithmically undecidable in



the sense that there is no algorithm for finding
the truth values of all composite logical state-
ments.

Thus, in commonsense reasoning, when we
want to estimate the truth values of these state-
ments, we have to use some heuristic algorith-
mic techniques that, in general, only approxi-
mate the actual (non-algorithmic) truth values
of these statements.

The corresponding approach to commonsense
reasoning, in which we make logical reasoning
algorithmic (i.e., implementable by a program),
is called logic programming.

All three approaches turned out to be consistent
with fuzzy logic:

e Formulas stemming from the finite-valued logic
turn out to be exactly the formulas of fuzzy logic
and fuzzy systems [23].

e Formalisms of fuzzy and linear logic are so close
that we can justifiably call fuzzy logic “applied
linear logic” [14, 22].

e Finally, logical equivalence stemming from logic
programming turns out to be equivalent to the
one that comes from fuzzy logic [18, 19, 20].

In all three cases, we not only show that fuzzy logic
is consistent with the other formalisms, but we get
a new justification of previously heuristic methods
and formulas of fuzzy logic in terms of these other
formalisms:

e Finite-valued logic helps to justify certain and
and or operations of fuzzy logic (namely, min
and max), the extension principle, fuzzy opti-
mization, etc. [23].

e Axioms of linear logic justify the general prop-
erties of fuzzy and and or operations, such as
associativity [14, 22].

e Finally, logic programming explains why in the
most successful approach to fuzzy control —
Mamdani’s approach — implication is (weirdly)
interpreted as “and” [8, 20].

B. Fuzzy control is universally applicable

Main result: fuzzy control is a universal ap-
proximation for (crisp) control strategies. It
has been known that fuzzy control is a universal
methodology for traditional control problems, with
one or several inputs. To be more precise, it has
been known that an arbitrary control can be, within
an arbitrary accuracy, approximated by an appro-
priate fuzzy controller.

In [12, 26], this result is extended to distributed
systems in which the state is described by a function,
and to even more general control situations.

Auxiliary result: “fuzzy control”-type state-
ments are a universal approximation for ar-
bitrary fuzzy statements about control. The
universality results mentioned above mean, in par-
ticular, that if we know a crisp (non-fuzzy) control
strategy, then we can have a set of fuzzy control
rules that approximate this strategy with any given
accuracy.

In real life, however, we do not know this crisp
strategy; instead, we have a (fuzzy) expert knowl-
edge about it. In some cases, this knowledge is
already formulated in terms of if-then fuzzy rules;
in fuzzy control methodology, these rules are trans-
formed into statements that only use connectives
“and”, “or”, and “not”.

However, in many other real-life cases, the fuzzy
knowledge about control can be of much more gen-
eral type. Therefore, the question appears: can we
approximation an arbitrary fuzzy knowledge, that
uses arbitrary logical connectives (including differ-
ent versions of fuzzy implication), by a knowledge
described in terms of “and”, “or”, and “not” fuzzy
connectives? In other word, can we approximate an
arbitrary fuzzy logical connective by a combination
of these three basic ones?

It may seem, at first glance, that different unusual
connectives are purely mathematical constructions,
but, as we show in [32], even those connectives that
may appear this way actually result from very nat-
ural axioms. In view of this result, it is desirable
to consider the approximability of arbitrary logical
connectives.

It turned out [24, 27] that in general, such an
approximation of an arbitrary connective is possi-
ble, but only when we, in addition to these three
basic connectives, allow modifiers such as “very”,
“slightly”, etc. (that without the modifiers, such an
approximation is impossible, is also shown in [13]).

C. Fuzzy control is optimal

Main result: fuzzy control is optimal (in some
reasonable sense). In many space-related prob-
lems, we need the control results really fast; in these
situations, to speed up the computations, it is nat-
ural to use several processors working in parallel. In
[17], we have shown that if we want the fastest pos-
sible parallel universal computer (i.e., a computer
with the ability to approximate an arbitrary func-
tion), then we get an architecture that corresponds
exactly to fuzzy control methodology.

Thus, fuzzy control methodology is indeed, in the
above sense, optimal.

Fuzzy control and neural control: which is
the best? The paper [17] also contains a compar-



ison between the fuzzy control methodology and an-
other widely spread area of intelligent control: neu-
ral network control. Namely:

e If we consider digital processors, then fuzzy con-
trol is the optimal methodology.

e However, if we consider analog processors, then
the same optimality criterion leads to the selec-
tion of neural network control methodology.

On one hand, neural network control is somewhat
similar to the fuzzy control:

e the description of a fuzzy controller consists of
elementary objects rules;

e the description of a neural network controller
consists of elementary objects: neurons.

This similarity shows itself in the fact that for a
natural expert system application, both approaches
lead to the same class of methods [10].

On the other hand, this analogy is not complete,
there are major differences in these two methodolo-
gies:

e In fuzzy control, rules (i.e., the corresponding
elementary objects) come directly from the ex-
perts.

e On the other hand, for neural network control,
neurons and their weights usually come from
a lengthy and extremely time-consuming train-
ing.

This specific neural problem of determining the
weights of the neurons naturally leads to the fol-
lowing two questions:

e First of all, how uniquely are these weights de-
termined by the control that we are trying to
approximate? The answer to this question —
“yes, uniquely” — is given in [29)].

e Second, how many neurons do we need to ap-
proximate a given control? In general, we may
need a lot, but in [15, 16], a general class of
controls is described for which the number of
necessary neurons remains quite feasible.

V. THE OprpTIMAL CHOICE OF THE Fuzzy
CONTROL TECHNIQUE

A. Criteria for choosing a control

What do we want of the control?

e First, the control must control. In other words,
if some external force has shifted the controlled
object from the desired trajectory, then the sys-
tem must return to the desired trajectory as
soon as possible. In control theory, this prop-
erty is called stability.

e Second, the control must lead to a smooth tra-
jectory. Smoothness is extremely important

both for manned and for automated space mis-
sions, because abrupt accelerations can be very
uncomfortable to human astronauts and dam-
aging for the sensitive equipment.

e The input data for control usually comes from
sensors, and sensors are not 100% accurate. As
a result, the measured values of the input vari-
ables that are used by the controller may be dif-
ferent from the actual values of the measured
quantities. The ideal control must, therefore,
work well not only for the input values, but
also for the values that are close to the input
ones. In other words, the uncertainty in the
final control value, that is caused by the uncer-
tainty of the input data, must be the smallest
possible. Such controls are called robust.

e Finally, we want the computations of the con-
trol value to be as fast as possible. This compu-
tation speed is important for many control sit-
uations, but it is especially important for space
missions, where decisions often need to be made
in no time. As a result, in such situations, we
must select the fastest possible algorithms, i.e.,
in computer science terms, algorithms with the
smallest possible computational complexity.

Ideally, we would like to have a control that is the
best according to all of these criteria, but in reality,
these criteria are often conflicting with each other:
e.g., if we want the system to be the stablest pos-
sible, i.e., return to the original trajectory as fast
as possible, then a small deviation would result in
a fast jerk back, making the trajectory non-smooth.
In different situations, different criteria are most ap-
propriate:

e For example, when we dock a Space Shuttle to
a Space Station, the main criterion is smooth-
ness, because non-smooth docking can seriously
damage both the Space Shuttle and the Space
Station.

o When we track a satellite by a radio signal, then
our main goal is not to lose it; in this case, if we
have accidentally deviated from the satellite’s
position, we want to get the signal back as soon
as possible. In terms of our criteria, in this
situation, the main criterion is stability.

In this report, we describe which techniques are the
best w.r.t. these basic criteria.

Comment. In addition to the situations where one
of the above-described criteria is the most appro-
priate, we may have more complicated situations in
which the objective function is the result of a trade-
off between different criteria. A critical survey of
different methods of optimizing a (crisp) criterion
under (possible fuzzy) constraints was published in



[4, 5, 6, 11].

Since we can have (potentially) infinitely many
different combinations of criteria, we cannot explic-
itly describe the best control for all possible combi-
nations. However, we hope that the general meth-
ods developed and used in this project can help in
these more complicated situations as well.

B. How we solve the corresponding optimization
problems

We must optimize under uncertainty. Fuzzy
control is mainly used in situations when we do not
have a complete knowledge about the controlled sys-
tem; in other words, fuzzy control is mainly used in
the presence of uncertainty. Hence, the problems of
choosing the best technique (that we are interested
in solving) are particular cases of optimization under
uncertainty.

Optimization under uncertainty also occurs
in fundamental physics. Choosing the best con-
trol technique is not the only real-life area where we
must make conclusions in case of strong uncertainty.
Strong uncertainty is also present in fundamental re-
search, i.e., research in the areas where we have just
started collecting data.

To handle such situations, theoretical physics has
developed many useful approaches. One of these ap-
proaches that turned out to be one of the most suc-
cessful in theoretical physics, is the so-called group-
theoretic (symmetry) approach.

Group-theoretic (symmetry) approach in
physics. It is well known that if a problem has
a certain symmetry, then solving this problem be-
comes a much simpler task.

For example, if we are looking for a gravitational
potential (¢, x1,z2,x3) generated by several mov-
ing celestial bodies, then we must find a function
of four variables by solving the corresponding par-
tial differential equation. If, however, we know that
there is only one body, and that this body is station-
ary and spherically symmetric, then we have two
reasonable symmetries: invariance w.r.t. shift in
time t — t 4 to) and invariance w.r.t. rotations. In
this situation, we must look for a solution that also
has similar symmetries. If a function ¢ is invariant
w.r.t. shift in time, this means that it does not de-
pend on time at all. If a function is invariant w.r.t.
rotations around the body’s center O, this means
that ¢ depends only on one variable: the distance
r from a given point to the point O. Thus, the
function ¢ turns into a function of 1 variable only:
o(t, 1,2, x3) = @(r), and a difficult-to-solve par-
tial differential equation runs into a (much easier to

solve) ordinary differential equation.

This idea of symmetries is used in physics not only
to find solutions, but also to describe fundamental
physical theories, the equations of most of which can
be uniquely determined by the corresponding invari-
ance requirements. This trend started with special
relativity theory, whose main postulate was the pos-
tulate of relativity, i.e., invariance w.r.t. constant-
speed motion. The notion of symmetry is so wide-
spread that new physical theories are often formu-
lated not in terms of different equations, but in
terms of the corresponding symmetries.

Since symmetries are such a useful tool in physics,
we want to use them for our problems as well.

Group-theoretic (symmetry) approach can
be also used for selecting the best fuzzy con-
trol technique. In order to apply the ideas of
symmetry to our problems, we must find out what
the symmetries are in these problems.

There is a very natural symmetry here: namely,
the very “fuzziness” of assigning crisp numbers to
different “fuzzy” expert’s degrees of belief means
that different assignment procedures can be equally
adequate. It is therefore natural to require the re-
sults of our processing the membership values (i.e.,
processing the results of this assignment) should not
depend on which of the several possible equally ad-
equate assignment procedures we choose. In other
words, our processing algorithms must be invariant
w.r.t re-scaling, i.e., w.r.t. moving from one scale of
membership values to another possible scale.

It turns out that a natural formalization of this
invariance can indeed solve the original optimization
problems [4, 5]:

C. Results: the list of optimal methods

Optimal methods w.r.t. major optimality cri-
teria. Part I. Choice of membership func-
tions. The most robust membership functions are
piecewise-linear ones [20, 25].

This result explains why the piecewise-linear
membership functions are, at present, most fre-
quently used.

Optimal methods w.r.t. major optimality cri-
teria. Part II. Choice of “and” and “or” op-
erations. (These results are (mainly) summarized
in [4, 5, 20, 25].)

o If we are looking for the most stable con-
trol, then the best choice is to use fg(a,b) =
min(a,b) and fy(a,b) =a+b—a-b [13].

e If we are looking for the smoothest control, then
the best choice is to use fg(a,b) = a-b and
fv(a,b) = min(a, b).



e If we are looking for the control that is most
robust, then, depending on what we are looking
for, we can get two different results:

— if we are looking for the control that is the
most robust in the the worst case, then the
best choice is to use fg(a,b) = min(a,b)
and fy(a,b) = max(a,b) [20, 25];

— if we are looking for the control that is
the most robust in the average, then the
best choice is to use fg(a,b) = a-b and
fvla,b) =a+b—a-b 20, 25];

— instead of minimizing the average error,
we can try to minimize the corresponding
entropy [11, 13]:

* if we use the average entropy (in some
reasonable sense), we get the same
pair of optimal functions as for aver-
age error;

x for an appropriately defined worst-
case entropy (see also [30]) the
optimal operations are fg(a,b) =
min(a, b) and fy(a,b) =a+b—a-b.

e Finally, if we are looking for the control that
is the fastest to compute, then the best choice
is to use fg(a,b) = min(a,b) and fy(a,b) =
max(a, b).

Optimal methods w.r.t. major optimality cri-
teria. Part III. Choice of defuzzification. In
[11, 13], we show that the optimal defuzzification is
given by the centroid formula.

Optimal methods w.r.t. additional optimal-
ity criteria: robustness w.r.t. possible com-
puter malfunctions. Robustness can also mean
robustness w.r.t. possible computer malfunctions.
In principle, there are two possible types of mal-
functioning:

e It can be a temporary malfunction, so all we

need to do is undo the faulty operation and
start again.
In this case, we would like to have algorithms
that make this “undoing” the easiest. In [3],
we show that the possibility to undo is always
present if and only if all membership functions
are fuzzy numbers, i.e., if they have the simplest
possible monotonicity structure (namely, they
first increase, and then decrease).

e It can also be a serious malfunction, after
which, for a certain period of time, further com-
putations are impossible. In this case, we would
like to have control implemented by an inter-
ruptible algorithm, i.e., by an algorithm that, if

interrupted in the middle of the computations,
still produces a reasonable control. In [1], it
was shown that it is possible to transform ev-
ery algorithm into an interruptible one without
making its computation time much worse.

Optimal methods w.r.t. additional optimal-
ity criteria: optimal tuning in adaptive con-
trol. Similar optimization techniques have been
applied to show that certain (fractionally linear)
tuning formulas are the best in adaptive fuzzy con-
trol [T1].

Multi-criteria optimization. So far, we have
considered situations in which we have a well-
defined optimality criterion. However, in real life,
we often have several conflicting criteria, especially
when different participants of a project have slightly
different aims. Optimization methods for such con-
flict situations are considered in [11].

VI. ADDITIONAL METHOD OF IMPROVING FUZZY
CONTROL

An additional method of improving the quality of
fuzzy control was proposed in [7].

The main problem that this method is dealing
with is that in traditional fuzzy control techniques,
all rules are on equal standing. As a result, even
when an expert explicitly says that for z = 1 the
control should be exactly u = 4, the technique mixes
this conclusion with other rules (like “when z is
small, u should be small”) and, as a result, returns
the control @(1) that is often different from the de-
sired u = 4.

R. Yager and other researchers have proposed to
remedy this situation by introducing the explicit
priorities of different rules. In [7], we show that
the same effect can be achieved without any addi-
tional information, simply by (slightly) modifying
Mamdani’s logical transformation.

A similar idea leads to a more adequate formal-
ization of more complicated expert knowledge that
includes binary properties like “x is approximately
equal to y” [9].

VII. AUXILIARY RESULTS:
TECHNICAL DIAGNOSTICS

Traditional fuzzy control techniques are designed
mainly for the case when the controlled system func-
tions well, and the question is only how to control it.
In real life, however, and especially in space flights,
malfunctions are quite possible. In this case, we
have a problem of finding out which exactly compo-
nent of the system is wrong.



If the system is simple and all its components are
easily accessible, then we can simply test all its com-
ponents. In space missions, however, systems are
very complicated, and some components are diffi-
cult to access. As a result, we cannot simply test all
the components, we need some intelligent algorithm
to find the faulty component without testing all of
them.

Similarly to fuzzy control, there are engineers who
are very good in such a diagnosis, so it is natural to
use their experience to diagnose the systems. Such
technical diagnostic methods are developed for two
possible types of malfunction:

e In [11], methods are described that find the
faulty component for the case when the system
stops functioning.

e In [2], methods are described that locate the
faulty component in the situations when the
system continues to function, but the value at
least one of the critical parameters (that char-
acterize the system’s behavior) gets out of the
interval of admissible values.
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