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Abstract— This paper is a short overview
of our NASA-supported research into the
possibility of using interval-based intelligent
control techniques for space exploration.

Interval-values fuzzy sets were introduced by L.
Zadeh, J. A. Goguen, and especially by 1. B.
Tiirksen; they were actively used in expert systems
by L. Kohout. Before we proceed to explain how to
use them in fuzzy control, let us first explain why
we need to use them.

I. WHY INTERVALS? REASONS IA—C:
INTERVALS NATURALLY APPEAR

IA. Traditional fuzzy control techniques start with
the expert’s degree of belief that are represented by
numbers from the interval [0, 1].

e This use of numbers may be natural when we
describe physical quantities, for which there ex-
ists a true value that can be, in principle, mea-
sured with greater and greater accuracy.

e However, for degrees of belief, numbers may not
be the most adequate representation.

Indeed, how are the existing knowledge elicitation
techniques determine these numbers?

e One of the possible techniques is to ask an ex-
pert to estimate his or her degree of belief by
a number on a scale, say, from 0 to 10. Then,
when an expert estimates this degree of belief
by choosing, say, 6, we take 6/10 = 0.6 as the
numerical expression of the expert’s degree of
belief.

At first glance, this may sound like a reason-
able assignment, but in reality, the fact that an
expert has chosen 6 does not necessarily mean
that the expert’s degree of belief is exactly equal
to 0.6; it rather means that this degree of belief
is closer to 0.6 than to the other values between
which we have asked the expert to choose (i.e.,
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to 0,0.1,...,0.5,0.7,...,0.9,1.0). Mathemati-
cally, values that are the closest to 0.6 form an
interval [0.55,0.65]. In other words, the only
thing that we can conclude based on this choice
is that the expert’s true degree of belief belongs
to the interval [0.55, 0.65].

In principle, we could try to get a more precise
value of the degree of belief by asking an expert
for a value on, say, a scale from 0 to 100, but
hardly anyone can distinguish between degree
of belief that correspond to, say, 63 and 64 on
this scale. Thus, the interval [0.55,0.65] is the
best we can get.

e Another way of determining the degree of belief
is to poll experts. If 6 experts out of 10 believe
that, say, a given value of x is small, then we
take 6/10 = 0.6 as the degree of belief pgman ()
that this value x is small.

Polls have their own margins of uncertainty.
Hence, from a poll, we cannot extract the ezact
ratio of experts who believe that x is small; we
can, at best, find an interval of possible values
of this ratio.

In principle, to get a narrower interval, we can
ask more and more experts, but in reality, the
number of experts is often limited, and asking
all of them is not practically possible. As a
result, the interval of possible values is the best
we can get.

Similar conclusions can be obtained for all other
methods of eliciting the values. For all these meth-
ods, an interval is a much more adequate description
of the expert’s degree of belief.

IB. Even if we manage to get narrow enough inter-
vals for degrees of belief, so that these original de-
grees of belief can be adequately described as num-
bers, in the fuzzy control methodology, we need to
process these numbers. The first processing consists
of applying and and or operations.

These operations, in their turn, must also be
elicited from an expert so that they would be most
adequate in describing what the experts mean when
they use the corresponding connectives. We have
already seen that eliciting numbers leads, in real-



ity, to intervals. The resulting uncertainty is even
worse if we try to elicit not a single number, but
several different numbers that describe the desired
functions fg (a,b) and fy(a,b). As a result, instead
of a single pair of functions, we, most probably, will
get an interval of possible functions. If we apply
this interval function to numerical input values, we
get an interval of possible results.

Thus, even if we managed to avoid intervals on
the first stage, they will appear on the second stage
of fuzzy control methodology: when we combine the
original degrees of belief into degrees of belief of dif-
ferent rules.

Ic. Even if we fix and and or operations, for the
same query, we can have different representations
in terms of “and”, “or”, and “not”. These differ-
ent representations are equivalent in classical logic,
but in fuzzy logic, they are not. As a result, de-
pending on which representation we use, we may get
different numerical answers to the query. Hence, if
we only know the query itself, and we are not sure
what “translation” into basic logical operations is
the best, it is natural to return not a single numer-
ical value, but the entire interval of possible values
of degrees of belief that correspond to different pos-
sible translations.

In [61], we show how to compute this interval for
different queries.

Comments.

e These three arguments (also given in [15, 23,
39, 50, 52]) do not exhaust all arguments in
favor of intervals as a better way to describe
uncertainty. Other arguments showing that two
numbers represent uncertainty better are given,
e.g., in [46].

e Intervals are very natural not only in the con-
tents of fuzzy control, but also in computing
in general. It suffices to say that actually, the
modern calculus started with interval compu-
tations [7], and that intervals are the only sets
whose use preserves the invertibility of arith-
metic operations [22].

e So far, we have only said that intervals are a
more adequate tool for describing expert knowl-
edge. This, in itself, does not necessarily mean
that fuzzy control that comes from using inter-
vals is in any sense better. However, it is rea-
sonable to expect that more adequate descrip-
tion of expert’s knowledge leads to the fuzzy
control that more adequately describes expert’s
high-quality control and is, therefore, of a bet-
ter quality itself. In the next section, we will
show that these expectations were correct: in-
terval control is, indeed, in many cases better.

II. WHY INTERVALS? REASON II:
INTERVALS LEAD TO A BETTER CONTROL

Interval-valued fuzzy control. If we use inter-
vals of possible values of initial degrees of belief,
then, on all further stages of fuzzy control methodol-
ogy, we also have to use intervals of possible values.

General idea behind using intervals in fuzzy
control ([39, 47]). The main idea of using an inter-
val to describe the expert’s degree of belief, instead
of more traditional technique of picking a number
from this interval, is that the actual (unknown) de-
gree of belief is guaranteed to belong to the interval,
but it may be different from the picked value.

From this idea, one can (informally) conclude that
the resulting interval control is often better than the
original number-valued control. It turned out that
this indeed true [39, 46]:

Intervals lead to a more stable control. Tra-
ditional fuzzy control techniques, if used appropri-
ately, lead to a control that is stable.

e However, if we use only a single picked value
from the interval of possible values, we will get
a control that is stable for this particular value,
and may not be stable at all for the actual value.

e The only way to guarantee that the control is
stable for the actual (unknown) value is to guar-
antee that it is stable for all values from this
interval. This requires, at least, that the algo-
rithm that computes the control values should
have this interval at its disposal.

Thus, to improve stability, we must have an algo-
rithm that processes intervals of degrees of belief
(rather than picked numerical values).

Intervals lead to a smoother control. A picked
value of degree of belief is, in general, unpredictably
(“randomly”) different from the actual value. As a
result, the control @ coming from the picked values,
will “wobble” around the control that correspond to
the actual (unknown) degrees of belief. The random
wobbling around a smooth process usually makes it
less smooth.

Thus, the way to avoid this wobbling (and to
make control smoother) is to take into considera-
tion that the actual values are within the intervals,
and then, to choose the smoothest possible control
within these intervals.

Intervals lead to a more robust control. The
control that takes into consideration the possibility
of slightly different inputs is, by definition, more
robust than the control that is based only on the
original picked values.

Intervals sometimes lead to a computation-



ally faster control. In general, computational
simplicity is not the strongest point of interval com-
putations (see below); however, in some situations,
intervals do make computations faster.

Indeed, if we only have numbers, without any in-
dication how accurate these numbers are, then, in
order to guarantee the accuracy the resulting com-
putations, we have to do all the data processing with
all the digits of all these numbers.

If we know intervals instead of numbers, this
means, in essence, that we know the accuracy of
the input values. If the input values are known, say,
with accuracy of 10%, then there is no much sense
to have computations with much better accuracy,
so we can use fewer digilts in our computations and
thus, make these computations much faster.

III. HoOw TO ELICIT INTERVAL MEMBERSHIP
FUNCTIONS?

In order to apply fuzzy control methodology, we
must first elicit the membership functions and “and”
and “or” operations that best describe the expert
(or experts) whose opinions we are formalizing.

For this elicitation, we can use two sources of in-
formation:

e First, we can interview experts and try to ex-
tract the required information from their an-
swers. For interval-valued degrees of belief, the
corresponding problem is formulated and par-
tially solved in [5].

e Interview is an ideal method, but often, experts
who are very good in controlling are not that
good in the ability to describe their control in
words. Actually, the very necessity of fuzzy
control comes from the fact that experts are not
very good in describing their control strategies.
For such experts, an important source of mem-
bership functions and other information is their
actual control: we can

— simulate different situations;

— record how these experts would control the
desired object, and then

— try to extract their membership functions
and other information from these records.

In [4], we show that it is always possible to
extract this information from the records, and
we describe how exactly this can be done.

IV. THE MAIN PROBLEM OF INTERVAL APPROACH
— COMPUTATIONAL COMPLEXITY —
AND POSSIBLE SOLUTIONS OF THIS PROBLEM

The problem. We have mentioned that the use
of intervals often improves the quality of intelligent
control. However, an apparent disadvantage of their

use is that when we consider interval-valued instead
of more traditional number-valued degrees of be-
lief, we need to process twice as many numbers and
therefore, the computational complexity (and thus,
the computation time) increases. This increase can
be very drastic: e.g.,

e While the solution of a linear systems
Y. a;jx; = b; with crisp coefficients a;; and
b; is a relatively easy problem, the solution
of a linear system of equations with interval
coefficients is, in general, computationally in-
tractable (NP-hard) (see, e.g., [13, 33, 45]),
even if we restrict ourselves to narrow inter-
vals only [T3]. This computational complexity
can be “explained” if we look at the geometric
shape of the corresponding solution sets:

— for crisp linear systems, the solution set is
a convex polytope;

— for interval linear systems with symmetric
matrices a;; = aj;, the shape of the solu-
tion set becomes piecewise-quadratic [2];

— for interval linear systems with dependent
coefficients, we can have arbitrarily com-
plicated algebraic shapes [1];

e Even when we have explicit computations (e.g.,
if we compute the value of a polynomial
f(z1,...,2,)) instead of solving systems of
equations, for interval-valued inputs x4, ..., Z,,
the problem becomes NP-hard, and the shapes
become algebraic shapes of arbitrary complex-
ity [24, 32]. (In [29], a similar result is expressed
in a slightly different form: if we want interval
computations without roundoff errors, then we
have to use algebraic numbers of arbitrary com-
plexity.)

e For expert systems that use numerical degrees
of belief, as soon as we have been able to ex-
press a given query as a logical combination of
the statements from the system, computing the
degree of belief in this query becomes a pretty
straightforward and easy task. However, when
we have interval-valued degrees of belief, the
problem becomes NP-hard [T1].

e Closer to home, the problem of eliciting
interval-valued membership functionsis, in gen-
eral, NP-hard [5].

e Also, the problem of finding the optimal control
is, in general, NP-hard [57].

e Unfortunately, these results stay even if we con-
sider a more realistic fuzzy-based formalization
of feasibility [51, 52].

A general survey of such problems was given in [34]
(see also [49]).



Comment. A similar trade-off between the control
quality and its computational complexity can be ob-
served if we compare interval methods with more
traditional statistical methods:

o interval methods lead to better estimates [60],
but

e interval methods are, in general, more compu-
tationally complicated [21].

How can we solve this problem? There are
several possible ways to solve this problem:

— If we cannot find fast algorithms that work well
in all cases, then we can look for algorithms that
work well in almost all cases. In particular, for nar-
row intervals, the existence of such algorithms was
shown in [44].

— If we cannot find an algorithm that works well in
almost all cases, then, at least, we can try to look
for specific cases in which fast interval algorithms
are possible. In particular, we discovered such algo-
rithms for the following problems that correspond
to different stages of fuzzy control methodology:

e for some “and” and “or” operations, the prob-
lem of eliciting the interval-valued membership
functions becomes computationally feasible [5];

e fast algorithms are also known for the case
when the functions are monotonic [18]; “and”
and “or” operations are usually monotonic;

e computing the range of fractionally linear func-
tions [47]; this is important for applying de-
fuzzification, which is usually described by a
fractionally linear transformation;

e “smoothing” an interval function [43]; this is
very important for designing a smooth control;

e locating local extrema of a function of one vari-
able from interval measurement results [48, 59];
this is extremely important for optimization;

e finally, a fast algorithm is designed that checks
stability of the resulting control [52].

— If we cannot find methods that are guaranteed
to work well, then at least we may find heuristic
methods that may often work. As part of this re-
search, we have proposed and analyzed both the
modifications of the existing heuristic methods, such
as genetic algorithms [14] and chemical computing
[28, T2], and proposed new interval-based heuristics
[28, 58].

For heuristic methods, two questions naturally
arise:

e We know that sometimes these methods do not
lead to the best possible results. Can we, given
the inputs, check whether this method will work
or not? and how good the results are?

e In many cases, heuristic methods contain sev-
eral parameters that need to be tuned. De-
pending on how we choose the values of these
parameters, we may get very good results or
very lousy results. How can we choose the op-
timal values of these parameters?

In this research, we attack both question:

o In [38], we design a method for estimating the
quality of interval computations. To be more
precise, there exist several methods that com-
pute the enclosure (superset) of the desired in-
terval. Methods from [38] generate a subset of
this interval. If the resulting two interval are
close, this means that the enclosure is a good
estimate of the desired interval.

In a more general context, the rating of different
methods is proposed and justified in [T4].

e To find the optimal values of the parameters
of heuristic methods, we use the general group-
theoretic (symmetry) approach [42]. In partic-
ular, in [53], we show that re-scaling, a useful
heuristic technique in fuzzy control and in ge-
netic algorithms, should be best avoided in the
case of complete uncertainty.

— If the interval-related mathematical problem that
we are trying to solve is still too complicated, we
may want to check whether this mathematical prob-
lem is indeed an adequate formalization of the orig-
inal real-life problem.

In many cases, as Zadeh himself mentions, the
complexity of the model is caused by the fact
that the model tries to describe the original low-
granularity problem, with few distinct levels of a cer-
tain quantity (like “small”, “medium”, and “large”)
by a model in which this quantity is described by a
real number and thus, has infinitely possible values
(high granularity).

Discovering that this indeed is the source of the
problem is one thing; the next important step is to
see what we can do in this situation to speed up com-
putations. In [31], we describe how we can possibly
do computations directly with low-granularity val-
ues, without translating them into high-granularity
numbers.

— Finally, if we cannot think of any way of making
an algorithm faster, we can still speed up the com-
putations if we make interval operations hardware
supported (and thus, faster).

It is impossible to hardware support all possible
operations with intervals. In view of that, in [40, 54],
we analyze (and solve) the problem of choosing
the interval operations whose hardware support will
lead to the largest computation speed-up; the an-
swer, crudely speaking, is as follows: in addition



to interval analogs of standard arithmetic opera-
tions, we must support an operation of weighted dot
(scalar) product aq,...,an,b1,..., by = > w;-a;-b;.

V. APPLICATIONS TO SPACE-RELATED
DATA PROCESSING

A. Data Processing is Important

Computation of the optimal control strategy is not
the only space-related computation. Indeed, why do
we need to launch space missions in the first place?
One of the main objectives of the space flights is to
bring the information about objects and processes,
both in space and on the Earth. This information
rarely comes in the desired form, it usually requires
some processing.

Computation of the best control strategy can also
be viewed as a particular case of data processing:
namely, we take as inputs the sensor data, and we
return the desired control. It is therefore reasonable
to try to apply the methods and results, that were
originally designed for control-related data process-
ing, to general space-related data processing.

B. Magjor Areas of Space-Related Data Processing

In order to describe how these ideas can be used in
space-related data processing, let us first enumerate
the major areas of space-related data processing:

e At present, most space missions occur in the
close vicinity of the Earth, and all of them
are in the Solar system. Thus, the major area
of space-related data processing is the analysis
of near-Earth environment from the results of
data processing.

e The near-Earth environment is not the only
area about which we learn more after the space
missions. Space is also the area from where,
undisturbed by the Earth atmosphere, we can:

— clearly observe the distant bodies and
thus, get a large-scale picture of our
Galaxy and of the Universe as a whole;

— precisely trace the effects of the gravita-
tion and thus, get a very clear picture of
the relativistic effects and, in general, of
the space-time (in particular, Dr. Jorge
Lopez from Physics Department of the
University of Texas at El Paso is doing
this data processing from JPL);

— observe high-energy particles and pro-
cesses and thus, get a clearer understand-
ing of the fundamental physical processes.

e Last but not the least, space flights, especially
near-Earth space flights, brings us a lot of geo-
physical information, i.e., information about
our Earth. The importance of this application

area is emphasized by the fact that the Mis-
sion to Planet Earth is one the main missions
of NASA.

C. Near-Earth observations

For near-Earth observations, we can formulate the
following three problems:

e First, we would like to estimate the accuracy of
the existing indirect measuring techniques.

e Second, for the situations when the resulting
accuracy is not sufficient, we would like to de-
sign mew, more accurate indirect measurement
(= data processing) methods.

e Traditional data processing results in numbers
that still have to be analyzed. Therefore, it
is desired, in addition to this traditional data
processing, to have more intelligent data pro-
cessing that would provide us directly with the
answers to the fundamental questions about the
Solar system, questions that we are really inter-
ested in.

As part of the project, we solved the simplest cases
of all these three problems:

Error estimation.

e Most of the instruments and sensors used in
space missions are similar to the instruments
used on Farth, and so, we can use the results
of error estimation obtained in the analysis of
Earth measurements (see, e.g., [3, 6, 12, 15, 23,
37]).

e There are, however, a few instruments and sen-
sors that are more specific for space environ-
ment.

Namely, one of the main advantages of space ob-
servations is that in space, there is practically no
atmosphere, and therefore, optical observations can
be drastically more accurate than on Earth. This
comment relates both:

e to passive observations, when we simply use an
orbital telescope to observe the light coming
from the celestial bodies, and

e to active observations, when we artificially
“brighten” the objects and then observe the re-
flected light.

To “brighten” the images, we must use a very strong
source of light; so far, the strongest sources of light
are lasers, so, we arrive at the problem of estimating
accuracy for laser observations.

A particular case of this problem was considered
and solved in [56].

New data processing methods. As we have just
mentioned, most near-Earth measurements are very
similar to Earth measurements. There are, however,



a few things that are radically different in space.
The major difference is that:

e on Earth, all the matter is usually in one of the
three main states: solid, liquid, and gas.

e In space, many substances are in the fourth
state: of plasma, where, instead of electrically
neutral atoms, we have charged particles: elec-
trons and ions.

The abundance of charged particles often cre-
ates currents, magnetic fields, etc., that are much
stronger than we are used to, and therefore, can-
not be directly measured by means of traditional
sensors. For these measurements, we need a new
methodology.

In [41], we design a new method of measuring
string current by measuring magnetic fields that
these currents generate; so far, the algorithm is ap-
plied to the Earth situations in which strong current
are artificially created: to the string currents used
in aluminum production.

Fundamental questions about the solar sys-
tem. So far, the Solar systems works as a clock-
work; it looks like catastrophes are highly unprob-
able. However, the huge masses of celestial bodies,
together with the high speeds, make every collision
truly catastrophic. So, one of the most fundamen-
tal questions is: Is the Solar system truly stable or
a big collision is inevitable?

This problem is very difficult to solve numerically
because small numerical uncertainties (that are in-
evitable in calculations) increase exponentially and
make the results of long-term numerical calculations
useless for predictions. So, the only way to guaran-
tee stability is to have predictions with a guaranteed
accuracy.

In [30], we apply interval methods to the stabil-
ity problem: namely, we show that within a certain
reasonable hypothesis, our Solar system is stable.

D. Relativistic Effects and the Structure of
Space-Time

For these applications, to measuring geometry of

space-time, we have two types of results:

e First, we show that the corresponding prob-
lems are, in general, very computationally com-
plicated [19]. Even when the corresponding
problems are computationally feasible [20], the
problems of measuring proper distances and
proper times in space-time geometry are much
more complicated than the problems of mea-
suring distances in Euclidean space [25].

e Second, we show that the general group-
theoretic methodology can be successfully ap-
plied to these problems.

In particular, we show that reasonable axioms
of space-time geometry that are usually formu-
lated in geometric and causal terms can be re-
formulated in terms of symmetries [27]. This
general reformulation turns out to be quite
useful: e.g., causality explains the previously
unexplained physical fact about symmetries:
that spatial and temporal translations com-
mute [26].

E. Fundamental Physical Processes

Modern physics is based on quantum mechanics,
which is usually interpreted in probabilistic terms.
At first glance, there seems to be no big need for
using fuzzy and/or interval methods. However, a
more attentive analysis reveals some fundamental
problems in traditional probabilistic approach:

e First, the equations of quantum filed theory of-
ten lead to meaningless infinities instead of the
physically meaningful finite values. There ex-
ist several semi-heuristic methods of handling
these infinities, but it is definitely desirable to
avoid them from the very beginning.

e For some possible physical processes that are
seriously considered in modern physics (e.g., for
acausal processes), the standard probability ap-
proach encounter problems (see, e.g., [8]).

To handle both problems, we first showed, in [17],
that standard quantum mechanics approach can be
viewed as a particular case of the more general fuzzy
approach (of which interval uncertainty is another
particular case), and that many supposedly specif-
ically quantum phenomena can be thus explained
[36] as pure mathematical consequences of the for-
malism rather than a necessity for a new specifically
quantum approach. With this embedding, we have
a more general formalism, and we show that both
problems can be naturally handled within this more
general formalism:

e In [16], we show that if we take into considera-
tion measurement uncertainty, in particular, in-
terval uncertainty, then the equations of physics
become consistent.

e In [8], we show that the natural description of
acausal processes leads to non-probabilistic un-
certainty.

As a side effect of these results, in [35], we explain
why the group-theoretic (symmetry) approach, an
approach which has originated on physics and which
we have so successfully used in our research, is useful
in physics.



F. Mission to Planet Earth

Specific feature of geophysical data process-
ing is that we also have lots of Earth data.
The processing of geophysical data is one of the
main areas of space-related data processing. In par-
ticular, this data processing is one of the main ar-
eas of the NASA Pan-American Center for Earth
and Environmental Studies (PACES) that operates
in El Paso, Texas.

The specific feature of this application area (as
opposed to pure space research) is that, in addition
to information coming from space flights, there is
also lots of geophysical information about the same
areas coming from the Farth measurements. It is
therefore important to process both types of mea-
surement results.

With new space data, a new problem arises:
estimating accuracy of the results of data
processing. Many data processing methods have
been developed in traditional geophysics. Tradi-
tional methods are based on the processing of the
hard-to-get Earth information. This information is
usually so scarce that, by itself, it does not lead to
any meaningful results; to come to useful conclu-
sions (e.g., where oil most likely is), we must, in
addition to the raw measurement results, use the
experts’ intuition and knowledge. In such situation,
conclusions are reasonably subjective, and therefore,
there is no question of estimating the accuracy of
these conclusions: if the expert intuition turn out
to be wrong (and once in a while it is wrong), the
results are way off.

Space measurements radically change the situ-
ation. From the traditional geophysical situation
where measurements results are scarce and hard-to-
get, we get into a new situation (typical for space-
related research) where space observations literally
flood us with data, to the extent that we are un-
able to process it in real time (this inability is one
of the main reasons why the PACES Center was es-
tablished).

With this abundance of data, the results of data
processing become more and more reliable, and it is
reasonable to start asking the question: how accu-
rate are they? This question is not easy to answer
by traditional statistical methods, because differ-
ent pieces of sensor information come from different
sources, with different (and often unknown) error
distribution. To estimate uncertainty of the results
of data processing in such situations, we have com-
bined statistical and interval methods; the resulting
estimates are described in [9, 10].

Can the geophysical results be applied to
other planets? Space analysis of Earth geophys-

ical structures is not only helpful for geophysics, it
also creates a testing ground for different methods
that will later be applied to the research of the dis-
tant planets.

With this application in mind, it is important to
clearly distinguish between the geophysical features
that are specific to our Earth, and the features that
are of fundamental origins and will, therefore, by
typical for other planets as well.

The first question is: which planet areas are most
informative? According to modern geophysics, the
most interesting dynamical processes occur at the
area where different tectonic plates interact. On
Earth, in addition to heads-on collisions and pull-
apart motions, there are few areas where plates col-
lide at oblique angles.

On Earth, these oblique collisions are rare but
important. Since these areas are rare on Earth, a
question may be asked: will we find such areas on
other planets? should we, therefore, prepare meth-
ods and models for handling these areas? Or should
we rather concentrate on the methods of analyzing
hands-on and pull-apart collisions?

In [11], fundamental geometric and topological
methods are used to show that oblique collisions
are inevitable on every planet on which surface is
subdivided into tectonic plates, and therefore, their
analysis is important for future planetary missions.

REFERENCES

[1] G. Alefeld, V. Kreinovich, and G. Mayer, “The
Shape of the Solution Set for Systems of In-
terval Linear Equations with Dependent Coef-
ficients”, Mathematische Nachrichten, 1997 (to
appear).

[2] G. Alefeld, G. Mayer, and V. Kreinovich, “The
shape of the symmetric solution set”, In: R. B.
Kearfott et al (eds.), Applications of Interval
Computations, Kluwer, Dordrecht, 1996, pp.
61-79.

[3] A. Bernat, V. Kreinovich, T. McLean, and G.
N. Solopchenko, “What are interval computa-
tions, and how are they related to quality in
manufacturing?”, [55], pp. 10-12.

[4] B. Bouchon-Meunier and V. Kreinovich, “Sim-
ulating Fuzzy Control as a New Method of
Eliciting Membership Functions”, Proceedings
of the International Conference on Information
Processing and Management of Uncertainty in
Knowledge-Based Systems
(IPMU’96), Granada, Spain, July 1-5, 1996,
Vol. 2, pp. 1043-1048.

[5] B. Cloteaux, C. Eick, V. Kreinovich, and
B. Bouchon-Meunier, From Ordered Beliefs to
Numbers: How to Elicit Numbers Without Ask-



[15]

[16]

[17]

ing for Them (Doable but Computationally Dif-
ficult), Université Paris VI et VII, Institut
Blaise Pascal, Laboratoire Formes et Intelli-
gence Artificielle LAFORIA, Technical Report
96/20, June 1996.

G. J. Deboeck, K. Villaverde, and V.
Kreinovich, “Interval Methods for Presenting
Performance of Financial Trading Systems”,
[55], pp. 67-70.

D. Dennis, V. Kreinovich, and S. Rump, “Cal-
culus: It All Started With Intervals”, Reliable
Computing (to appear).

V. Dimitrov, M. Koshelev, and V. Kreinovich,
“Acausal processes and astrophysics: case
when uncertainty is non-statistical (fuzzy?)”,
BUlletin for Studies and Exchanges on Fuzzi-
ness and its AppLications (BUSEFAL), No. 69,
January 1997 (to appear).

D. 1. Doser, K. D. Crain, M. R. Baker, V.
Kreinovich, and M. C. Gerstenberger, “Esti-
mating uncertainties for geophysical tomogra-
phy”, Reliable Computing, 1997 (to appear).
D. I. Doser, K. D. Crain, M. R. Baker, V.
Kreinovich, M. C. Gerstenberger, and J. L.
Williams, “Estimating uncertainties for geo-
physical tomography”, [55], pp. 74-75.

D. Doser, M. A. Khamsi, and V. Kreinovich,
“Farthquakes and geombinatorics”, Geombina-
torics, Vol. 6, No. 2, pp. 48-54.

B. H. Friesen, V. Kreinovich, “Ockham’s razor
in interval identification”, Reliable Computing,
1995, Vol. 1, No. 3, pp. 225-238.

G. Heindl, V. Kreinovich, and A. V. Lakeyev,
“Solving Linear Interval Systems is NP-Hard
Even If We Exclude Overflow and Underflow”,
Reliable Computing (to appear).

L. Irwin and V. Kreinovich, “Adding predators
to genetic algorithms”, In: Vladimir Dimitrov
and Judith Dimitrov (eds.), Fuzzy Logic and
the Management of Complexity (Proceedings of
the 1996 International Discourse), UTS Publ.,
Sydney, Australia, 1996, Vol. 3, pp. 289-291.
R. B. Kearfott and V. Kreinovich, “Applica-
tions of interval computations: an introduc-
tion”, In: R. B. Kearfott et al (eds.), Applica-
tions of Interval Computations, Kluwer, Dor-
drecht, 1996, pp. 1-22.

A. B. Korlyukov and V. Kreinovich, “Equa-
tions of physics become consistent if we take
measurement uncertainty into consideration”,
[55], pp. 111-112.

M. Koshelev and V. Kreinovich, “Fuzzy inter-
pretation of quantum mechanics made more
convincing: every statement with real num-
bers can be reformulated in logical terms”, In:

[18]

[19]

[20]

[21]

[22]

23]

[26]

[27]

[28]

Vladimir Dimitrov and Judith Dimitrov (eds.),
Fuzzy Logic and the Management of Complex-
ity (Proceedings of the 1996 International Dis-
course), UTS Publ., Sydney, Australia, 1996,
Vol. 3, pp. 296-299.

M. Koshelev and V. Kreinovich, “Why Mono-
tonicity in Interval Computations? A Re-
mark”, ACM SIGNUM Newsletter, 1996, Vol.
31, No. 3, pp. 4-8.

O. Kosheleva and V. Kreinovich, “Unit-
distance preserving theorem is locally non-
trivial”, Geombinatorics, 1995, Vol. 4, No. 4,
pp. 119-128.

O. Kosheleva and V. Kreinovich, “How to mea-
sure arbitrary distances using a given standard
length (i.e., a stick with two marks on it): it is
necessary, it is theoretically possible, it is fea-
sible”, Geombinatorics, 1996, Vol. 5, No. 4, pp.
142-155.

O. Kosheleva and V. Kreinovich, “Error es-
timation for indirect measurements: Interval
computation problem is (slightly) harder than
a similar probabilistic computational problem”,
Reliable Computing, 1997 (to appear).

0. Kosheleva and V. Kreinovich, “Only In-
tervals Preserve the Invertibility of Arithmetic
Operations”, Reliable Computing, 1997 (to ap-
pear).

V. Kreinovich, “Data processing beyond tradi-
tional statistics: applications of interval com-
putations. A brief introduction”, [55], pp. 13—
21.

V. Kreinovich, “Interval rational = algebraic”,
ACM SIGNUM Newsletter, 1995, Vol. 30, No.
4, pp. 2-13.

V. Kreinovich, “Space-time is ‘square times’
more difficult to approximate than Euclidean
space”, Geombinatorics, 1996, Vol. 6, No. 1,
pp. 19-29.

V. Kreinovich, “Causality explains why spa-
tial and temporal translations commute: a
remark”, International Journal of Theoretical
Physics, 1996, Vol. 35, No. 3, pp. 693-695.

V. Kreinovich, “Symmetry characterization
of Pimenov’s spacetime: a reformulation of
causality axioms”, International Journal of
Theoretical Physics, 1996, Vol. 35, No. 2, pp.
341-346.

V. Kreinovich, “S. Maslov’s Iterative Method:
15 Years Later (Freedom of Choice, Neu-
ral Networks, Numerical Optimization, Uncer-
tainty Reasoning, and Chemical Computing)”,
a chapter in Problems of reducing the erhaus-
tive search, American Mathematical Society,
Providence, RI, 1997, pp. 175-189.



[29]

[30]

[34]

[39]

V. Kreinovich, “Roundoff-Free Number Fields
For Interval Computations”, Reliable Comput-
ing, 1997 (to appear).

V. Kreinovich and A. Bernat, “Is solar system
stable? A remark”, Reliable Computing, 1997
(to appear).

V. Kreinovich and B. Bouchon-Meunier,
“Granularity via Non-Deterministic Computa-
tions”, BUlletin for Studies and Exchanges on
Fuzziness and its AppLications (BUSEFAL),
No. 68, October 1996 (to appear).

V. Kreinovich and A. V. Lakeyev, ¢ ‘Inter-
val Rational = Algebraic’ Revisited: A More
Computer Realistic Result”, ACM SIGNUM
Newsletter, 1996, Vol. 31, No. 1, pp. 14-17.

V. Kreinovich and A. V. Lakeyev, “Linear In-
terval Equations: Computing Enclosures with
Bounded Relative Or Absolute Overestimation
is NP-Hard”, Reliable Computing, 1996, Vol. 2,
No. 4 (to appear).

V. Kreinovich, A. Lakeyev, and J. Rohn,
“Computational Complexity of Interval Alge-
braic Problems: Some Are Feasible And Some
Are Computationally Intractable — A Survey”,
In: Goetz Alefeld, Andreas Frommer, and
Bruno Lang (eds.), Scientific Computing and
Validated Numerics, Akademie-Verlag, Berlin,
1996, pp. 293-306.

V. Kreinovich and L. Longpré, “Unreasonable
effectiveness of symmetry in physics”, Inter-
national Journal of Theoretical Physics, 1996,
Vol. 35, No. 7, pp- 1549-1555.

V. Kreinovich and L. Longpré, “Pure Quantum
States Are Fundamental, Mixtures (Compos-
ite States) Are Mathematical Constructions:
An Argument Using Algorithmic Information
Theory”, International Journal on Theoretical
Physics, 1997, Vol. 36, No. 1, pp. 167-176 (to
appear).

V. Kreinovich and G. Mayer, “Towards the fu-
ture of interval computations (editors’ intro-
duction to the student issue)”, Reliable Com-
puting, 1995, No. 3, pp. 209-214.

V. Kreinovich, V. M. Nesterov, and N. A. Zhe-
ludeva, “Interval Methods That Are Guaran-
teed to Underestimate (and the resulting new
justification of Kaucher arithmetic)”, Reliable
Computing, 1996, Vol. 2, No. 2, pp. 119-124.
V. Kreinovich and H. T. Nguyen, “Applica-
tions of fuzzy intervals: a skeletal outline
of papers presented at this section”, In: L.
Hall, H. Ying, R. Langari, and J. Yen (eds.),
NAFIPS/IFIS/NASA’94, Proceedings of the
First International Joint Conference of The
North American Fuzzy Information Processing

Society Biannual Conference, The Industrial
Fuzzy Control and Intelligent Systems Confer-
ence, and The NASA Joint Technology Work-
shop on Neural Networks and Fuzzy Logic, San
Antonio, December 18-21, 1994, IEEE, Piscat-
away, NJ, pp. 461-463.

V. Kreinovich and H. T. Nguyen, “On Hilbert’s
Thirteenth Problem for Soft Computing”, Pro-
ceedings of the Joint 4th IEEE Conference
on Fuzzy Systems and 2nd IFES, Yokohama,
Japan, March 20-24, 1995, Vol. IV, pp. 2089
2094.

V. Kreinovich, J. Perluissi, and M. Koshelev,
“A new method of measuring strong currents
by their magnetic fields”, Computers € Elec-
trical Engineering, 1997 (to appear).

V. Kreinovich and R. Trejo, “Optimal interval
computation techniques: optimization of nu-
merical methods in case of uncertainty”, In:
Marcilia A. Campos (ed.), Abstracts of the II
Workshop on Computer Arithmetic, Interval
and Symbolic Computation (WAI'96), Recife,
Pernambuco, Brazil, August 7-8, 1996, pp. 48—
50.

V. Kreinovich and K. Villaverde,
“A Quadratic-Time Algorithm For Smoothing
Interval Functions”, Reliable Computing, 1996,
Vol. 2, No. 3, pp. 255-264.

A. V. Lakeyev and V. Kreinovich, “If Input In-
tervals Are Small Enough, Then Interval Com-
putations Are Almost Always Easy”, [55], pp.
134-139.

A. V. Lakeyev and V. Kreinovich, “NP-hard
classes of linear algebraic systems with uncer-
tainties”, Reliable Computing, 1997, Vol. 3, No.
1, pp. 1-31 (to appear).

C. Langrand, V. Kreinovich, and H. T. Nguyen,
“Two-dimensional fuzzy logic for expert sys-
tems”, Sizth International Fuzzy Systems As-
sociation World Congress, San Paulo, Brazil,
July 22-28, 1995, Vol. 1, pp. 221-224.

R. Lea, V. Kreinovich, and R. Trejo, “Optimal
interval enclosures for fractionally-linear func-
tions, and their application to intelligent con-
trol”, Reliable Computing, 1996, Vol. 2, No. 3,
pPp- 265—286.

J. Lorkowski and V. Kreinovich. “If we mea-
sure a number, we get an interval. What if we
measure a function or an operator?”, Reliable
Computing, 1996, Vol. 2, No. 3, pp. 287-298.
S. Nesterov and V. Kreinovich, “The worse,
the better: a survey of paradoxical compu-
tational complexity of interval computations”,
In: Marcilia A. Campos (ed.), Abstracts of the
II Workshop on Computer Arithmetic, Inter-



[50]

[51]

[52]

[59]

[60]

val and Symbolic Computation (WAI’96), Re-
cife, Pernambuco, Brazil, August 7-8, 1996, pp.
61A-63A.

H. T. Nguyen and V. Kreinovich, “Towards
theoretical foundations of soft computing appli-
cations”, Proceedings of the 11-th IEEE CAAI
Conference on Applications of Artificial Intelli-
gence, Los Angeles, CA, February 20-22, 1995,
pp. 368-373.

H. T. Nguyen and V. Kreinovich, “When is an
algorithm feasible? Soft computing approach”,
Proceedings of the Joint 4th IEEE Conference
on Fuzzy Systems and 2nd IFES, Yokohama,
Japan, March 20-24, 1995, Vol. IV, pp. 2109-
2112.

H. T. Nguyen and V. Kreinovich, “Towards
theoretical foundations of soft computing ap-
plications”, International Journal on Uncer-
tainty, Fuzziness, and Knowledge-Based Sys-
tems, 1995, Vol. 3, No. 3, pp. 341-373.

H. T. Nguyen and V. Kreinovich, “On Re-
Scaling In Fuzzy Control and Genetic Algo-
rithms”, Proceedings of the 1996 IEEE Interna-
tional Conference on Fuzzy Systems, New Or-
leans, September 8-11, 1996, Vol. 3, pp. 1677—
1681.

H. T. Nguyen, V. Kreinovich, V. Nesterov, and
M. Nakamura, “On hardware support for inter-
val computations and for soft computing: a the-
orem”, IEEE Transactions on Fuzzy Systems
(to appear)

Reliable Computing, 1995, Supplement (Ex-
tended Abstracts of APIC’95: International
Workshop on Applications of Interval Compu-
tations, El Paso, TX, Febr. 23-25, 1995).

E. Serrano, V. P. Pytchenko, V. M. Rubinstein,
and V. Kreinovich, “Error Estimate of the Re-
sult of Measuring Laser Beam Diameter”, [55],
pp. 176-180.

S. Smith and V. Kreinovich, “In Case of Inter-
val Uncertainty, Optimal Control is NP-Hard
Even for Linear Plants, so Expert Knowledge
is Needed”, [55], pp. 190-193.

B. Traylor, V. Kreinovich, “A bright side of
NP-hardness of interval computations: inter-
val heuristics applied to NP-problems”, Reli-
able Computing, 1995, Vol. 1, No. 3, pp. 343—
360.

K. Villaverde and V. Kreinovich, “Parallel al-
gorithm that locates local extrema of a function
of one variable from interval measurement re-
sults”, [55], pp. 212-219.

G. W. Walster and V. Kreinovich, “For
unknown—-but-bounded errors, interval esti-
mates are often better than averaging”, ACM

SIGNUM Newsletter, 1996, Vol. 31, No. 2,

pp. 6-19.

Q. Zuo, 1. B. Turksen, H. T. Nguyen, and V.

Kreinovich, “In expert systems, even if we fix

AND/OR operations, a natural answer to a

composite query is the interval of possible de-

grees of belief”, [55], pp. 236—240.

[T1] L. Chee, Computing the Value of a Boolean ex-
pression with intervals is NP-hard, Master The-
sis, Computer Science Dept., Univ. of Texas at
El Paso, 1996.

[T2] B. Cloteaux, On the Computational Power
of Using Chemical Reactions, Master Thesis,
Computer Science Dept., Univ. of Texas at El
Paso, 1996.

[T3] P.Kahl, Solving Narrow-Interval Linear Equa-
tion Systems Is NP-Hard, Master Thesis, Com-
puter Science Dept., Univ. of Texas at El Paso,
1996.

[T4] R. A. Trejo, An improved rating system: its
foundations and computational problems, Mas-
ter Thesis, Computer Science Dept., Univ. of
Texas at El Paso, 1994.



