
How To Make World Wide Web Sites Faster and Easier to Use

Misha Koshelev
Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968
mkosh@cs.utep.edu

Abstract

We propose a new idea of organizing Web sites
so that the Web will be easier and faster to use.

Problem
The World Wide Web is currently a very important
way of disseminating information. Most WWW sites
are organized as follows:

• The main page of the site usually contains a small
amount of information and links to other pages in
this Web site.

• These other pages, in turn, consist of either (more
or less) “pure” information or of other links.

Sometimes, to be able to access the information he or
she needs, the user has to go through several (interme-
diate) pages to get to the desired page. These inter-
mediate pages contain, to the user, no useful informa-
tion other than a link to either the next intermediate
page or to the final page for which the user is looking.
The retrieval of the intermediate WWW pages takes
up the user’s time (especially if either the user or the
server has a relatively slow Internet connection, or if
the server is very busy).
Therefore, if too many clicks are necessary to reach

the desired page, the user will simply give up and leave
the site.

A Trivial “Solution” Does Not Work
To solve this problem, one could place all the links on
one page, but this would be inconvenient: It is known
in psychology that, in general, humans are most com-
fortable with 5 to 9 items to choose from (“7 plus minus
2” law, see, e.g., (Milner 1970)).

Precise Formulation of the Problem
It is desirable to organize a Web site in such a way
that every intermediate page has no more than nine

links, and the average number of clicks is the smallest
possible.
If we have n pages, and we know the number of peo-

ple pi who have visited the i-th page and the number
of clicks ci necessary to access the i-th page, then the
average number of clicks is equal to

C =
p1 · c1 + p2 · c2 + . . .+ pn · cn

p1 + p2 + . . .+ pn
. (1)

The existing structure of a Web site can be repre-
sented by a tree of its links, with the main page as the
tree’s root, etc. We must also get information from the
Web site’s maintainer about the possible new interme-
diate pages that we can create, i.e., about all possible
meaningful groupings of the links. For example, if a
page contains eight links, the maintainer may prompt
us that, if necessary, this page can be subdivided into
three meaningful groups: links 1–4, 5–6, and 7–8.

The Main Idea of the Solution

To minimize C, we suggest adding “hit counters” to all
of the “leaf” WWW pages on a Web site (i.e., the pages
which contain the actual information of the site). After
the hits have been counted, we can try different tree
rearrangements and find the tree with the smallest C.

Preliminary Results

Our experiments show that we can get up to a 50%
decrease in the average number of clicks by using this
method.

Toy Example: Formulation of the
Problem

Let’s describe the Web site of a fictitious company
called El Paso Hot Dogs Co. Its main page has three
links:

• Our Products

• Our Services



• Miscellaneous

Each of these links, in turn, leads to a new page. For
example, the link to Our Products leads to a new page
with the following three links:

• Hot Dog

• Hot Dog with Cheese

• Hot Dog with Chili

The last two links leads directly to the corresponding
leaf pages, while the first link leads to a new page with
2 links in it: to Picture and Hot Dog Coupon Book.
The resulting “link tree” (with the numbers of hits in
parentheses) is as follows:

• Our Products

– Hot Dog

∗ Picture (5)

∗ Hot Dog Coupon Book (50)

– Hot Dog with Cheese (10)

– Hot Dog with Chili (10)

• Our Services

– Hot Dog Parties/Catering (50)

– Hot Dog Weddings (10)

– Hot Dog Prom (1)

• Miscellaneous

– Our History (1)

The average number of clicks C for this site is 2.4.

Toy Example: Solution
If we move the two most frequently accessed pages in
this site (the Hot Dog Coupon Book and Hot Dog Par-
ties/Catering) to the main page, then the resulting link
structure can be represented by the following tree:

• Our Products

– Hot Dog

∗ Picture (5)

– Hot Dog with Cheese (10)

– Hot Dog with Chili (10)

• Hot Dog Coupon Book (50)

• Our Services

– Hot Dog Weddings (10)

– Hot Dog Prom (1)

• Hot Dog Parties/Catering (50)

• Miscellaneous

– Our History (1)

with C = 1.3 (≪ 2.4).

Similar Problem

A similar problem of organizing information kiosks was
considered by J.-Y. Jaffray (Jaffray 1995), (Jaffray and
Lorit 1996), (Jaffray 1997) (his toy example is a kiosk
for the Louvre).

Our problem is much simpler than the kiosk problem
because most information kiosks provide no method of
determining the number of “hits” to a certain page.

Fuzzy Case

Optimizing a Web Site Without Hit
Counters

In many cases, setting up hit counters is the best way to
optimize a Web site. However, there are two situations
in which optimization without hit counters is desirable:

• Infrequently Accessed Web Sites. Sometimes,
we may want to optimize a Web site before we have
any hit count data. For example, on Web sites which
have few visitors, it may take a very long time to
collect enough information to be able to correctly
optimize the site.

• Multimedia-Oriented Web Sites. A hit counter,
just like other material on a Web page, takes time
to load. So, for multimedia-oriented Web sites with
a large amount of graphics, adding hit counters to a
page may make it take an intolerably long time to
load.

Fuzzy Logic

When we do not have hit counts, we can ask experts to
predict the number of hits. It is unrealistic to expect
that experts can predict exact numbers, but they are
often able to express their predictions with words such
as “few,” “many,” etc. In order to describe these words
in mathematical terms, we can use fuzzy numbers (see,
e.g., (Klir and Yuan 1995)). To obtain these fuzzy
numbers, we can perform the following standard steps:

1. Suppose that there are E experts who can answer
questions about this Web site. For each page i, select
the expert most knowledgeable about this page, ask
his or her opinion on how many users will visit this
page, and record his or her answer wi (e.g., “a few,”
“lots,” etc.).

2. For each word w used by at least one of the experts,
ask each of the E experts if he/she believes that
this word can be used to describe 0, 1, 2, 3, . . . users
(e.g., that 2 users is a few users). Then, record the
number of experts who believe this to be true as
ew(0), ew(1), ew(2), . . .



3. Having collected this information, define, for each
term w, the membership function µw as follows:

µw(0) =
ew(0)

E
,µw(1) =

ew(1)

E
,µw(2) =

ew(2)

E
, . . .

4. For each page i, we take µi(x) = µw(x), where w is
the natural-language word that the expert used to
identify the number of users that will visit the i-th
page.

How to Formulate the Problem in Precise
Terms

Our goal is to minimize the average number of clicks
C.

• In the previous section, we considered the case when
we know the exact number of visitors pi to our Web
site. In this case, for each rearrangement of the Web
site, we can compute the exact value of C.

• Now, we consider the cases when we do not know the
exact values of pi. Instead, we know the membership
functions µi(x) that describe the number of visitors.
In other words, for every leaf i, we know the fuzzy
number pi.

Since pi are fuzzy numbers, the resulting value C is
also a fuzzy number. To define the corresponding fuzzy
number C, with a membership function µC(x), we can
use a standard tool of fuzzy logic: the extension prin-
ciple (Klir and Yuan 1995). According to this princi-
ple, if we know the membership functions µi(x) that
describe the fuzzy variables x1, . . . ,xn, then the mem-
bership function µ(x) that describes the fuzzy variable
y = f(x1, . . . ,xn) is defined as

µ(y) =

max
x1,...,xn;y=f(x1,...,xn)

(min(µ1(x1), . . . , µn(xn)). (2)

In our case, xi = pi and the function f(x1, . . . , xn) is
given by formula (1).
We want to choose the site organization with the

smallest value of C.

• When we knew the exact number of visitors, we
could directly compare different site organizations by
simply comparing their corresponding average num-
bers of clicks C.

• When the values of C are fuzzy numbers, it is diffi-
cult to compare them directly. So, we need to have
some numerical (crisp) characteristic by which we
can compare different site organizations.

Which characteristics should we choose? A similar
problem of choosing a crisp number that character-
izes a membership function has been thoroughly an-
alyzed in fuzzy control. In fuzzy control, the cor-
responding methods are called defuzzification meth-
ods. The most widely used defuzzification method
is the centroid defuzzification procedure D(µ) =
(
∫
xµ(x) dx)/(

∫
µ(x) dx). Therefore, we will select a

site organization for which this characteristic D(µC)
is the smallest possible.
Now, we are ready to formulate the problem in pre-

cise terms.

Precise Formulation of the Problem

GIVEN:

• Fuzzy numbers p1, . . . ,pn describing the number of
visitors to the leaf pages of an n−page Web site.

• A tree describing the current organization of the
Web site.

FIND:

• A new organization (tree) for the given Web site for

which the defuzzified value C̃ = D(µC) of the (fuzzy)
average number of clicks

C =
p1 · c1 + p2 · c2 + . . .+ pn · cn

p1 + p2 + . . .+ pn
(3)

is the smallest possible.

Motivation for the Algorithm

To solve this problem, we will first develop an algo-
rithm for computing C̃, and then use a genetic algo-
rithm to find the desired Web site organization.
To compute the membership function µC(x) (that

corresponds to C̃), we will use a known result (see,
e.g., (Klir and Yuan 1995)) to break down this prob-
lem from a problem with fuzzy numbers to several
problems with intervals. Namely, if y is determined
by formula (2), then for every α ∈ [0, 1], the α-cut
y(α) = [y−(α), y+(α)] (defined as {x : µ(x) ≥ α} if
α > 0 and {x : µ(x) > 0} for α = 0) is related to the
α-cuts of xi by the formula

y(α) = f(x1(α), . . . ,xn(α)) =

{f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}.

To use this idea, we must repeat these computations
for several values of α : α = 0,∆α, 2 · ∆α, . . . , 1.0.
The value of α describes an expert’s degree of be-
lief. It is difficult to imagine that an expert would
be able to distinguish between, say, the degree of



belief 0.87 and 0.88. Therefore, to describe the ex-
perts’ beliefs, it is quite sufficient to use eleven values
α = 0, 0.1, 0.2, . . . , 1.0 that correspond to ∆α = 0.1.
In our case, the function f(x1, . . . , xn), as described

by formula (1), is fractionally-linear. Therefore, to
compute the corresponding intervals C(α), we can use
an existing algorithm developed in (Lea, Kreinovich,
and Trejo 1996).
To compute the defuzzification result, we will use a

method of computing the centroid defuzzification pro-
cedure described in (Nguyen and Kreinovich 1996).
Now, we are ready to describe the algorithm.

Algorithm for Computing C̃

Take ∆α = 0.1 (any value of ∆α ≤ 1.0 may also be
chosen) and repeat the following steps 1–5 for α =
0,∆α, 2 ·∆α, . . . , 1.0 :

1. For each leaf page i, use the binary search algo-
rithm to find the values p−i (α) ≤ p+i (α) for which
µi(p

−
i (α)) = µi(p

+
i (α)) = α. (For α = 0, p−i (α) is

the smallest value for which µi > 0 and p+i (α) is the
largest value for which µi > 0.)

Then, in the following four steps, we will use an algo-
rithm from (Lea, Kreinovich, and Trejo 1996) to com-
pute C :

2. If ci = cj for some i ̸= j, replace pi(α) and pj(α)
with a single new interval pi(α), for which ci stays
the same as before, but for which the new inter-
val pi new(α) is equal to pi old(α) + pj(α), i.e., for
which p−i new(α) = p−i old(α) + p−j (α) and p+i new(α) =

p+i old(α) + p+j (α).

3. Sort the intervals pi(α) in the increasing order of the
corresponding coefficients ci.

4. Compute
C+(α) = max(C+

0 (α), C+
1 (α), . . . , C+

n (α)), where

C+
k (α) =

N+
k (α)

D+
k (α)

,

N+
k (α) = p−1 (α) · c1 + p−2 (α) · c2 + . . .+

p−k (α) · ck + p+k+1(α) · ck+1 + . . .+ p+n (α) · cn,

and
D+

k (α) = p−1 (α) + p−2 (α) + . . .+

p−k (α) + p+k+1(α) + . . .+ p+n (α).

5. Compute C−(α) = min(C−
0 (α), C−

1 (α), . . . , C−
n (α)),

where

C−
k (α) =

N−
k (α)

D−
k (α)

,

N−
k (α) = p+1 (α) · c1 + p+2 (α) · c2 + . . .+

p+k (α) · ck + p−k+1(α) · ck+1 + . . .+ p−n (α) · cn,

and

D−
k (α) = p+1 (α) + p+2 (α) + . . .+

p+k (α) + p−k+1(α) + . . .+ p−n (α).

Let’s now find a defuzzified value C̃ of C (by using an
algorithm from (Nguyen and Kreinovich 1996)). First,
find the midpoint

m(α) =
C−(α) + C+(α)

2

and the width l(α) = C+(α)− C−(α) of each interval
C(α). Then, compute:

C̃ =

m(0) · l(0) +m(∆α) · l(∆α) + . . .+m(1.0) · l(1.0)
l(0) + l(∆α) + . . .+ l(1.0)

.

Optimization Using Genetic Algorithms

Since the Web site optimization problem is discrete,
we cannot use differentiation to find the organization
corresponding to the smallest average number of clicks.
Instead, we will use genetic algorithms (see, e.g., (Alan-
der 1993), (Kreinovich, Quintana, and Fuentes 1993),
(Goldberg 1994), (Mitchell and Forest 1993), (Srinivas
1994)).
In this algorithm, each possible organization of the

Web site will be represented in the computer by the
depths c1, . . . , cn of each leaf page within the newly
organized site (i.e., the number of clicks that are nec-
essary to get to this page). Therefore, it is desirable
to know the maximum possible depth Mi of each leaf
page i. This number can be computed based on the
initial information about the meaningful groupings.
In order to be able to check whether a given inter-

mediate page has no more than nine links, we assign
a unique label to each intermediate page and to each
meaningful grouping. For every leaf, we store the list
of all labels which describe its ancestors.
To use genetic algorithms, we represent each organi-

zation by its genetic code: a sequence c⃗ of n bytes that
contain integers c1, . . . , cn. In each generation, we will
have the same number N of organisms: c⃗1, c⃗2, . . . , c⃗N .
To simulate selection, we use the following fitness

function:

• First, we compute the average number of clicks
C(c⃗k) (in the crisp case) or the defuzzified average

number of clicks C̃(c⃗k) (in the fuzzy case).



• Then, we penalize the organizations with more than
nine links on some pages by computing the corrected
objective function P (c⃗k) = C̃(c⃗k) + b(c⃗k) · p, where
b(c⃗k) is the number of such “bad” pages, and p is a
large positive number.

• The classical genetic algorithm maximizes the ob-
jective function J(x). Since we are trying to mini-
mize our objective function, we take J(c⃗k) = Pmax−
P (c⃗k), where Pmax = max(P (c⃗1), . . . , P (c⃗N )).

Mutation is also simulated in a slightly different way:

• In standard applications of genetic algorithms, all
bits of the genetic code are usually meaningful, and
thus mutation usually consists of changing a single
bit.

• In our case, however, some of the bits in each byte
of the genetic code will remain unused:

– We use 1 byte (= 8 bits) to store each number of
clicks ci.

– In principle, eight bits can store all integers from
zero to 28 − 1 = 255.

– However, even 16 = 24 clicks is too much. There-
fore, we will use at most four bits to store ci, and
the four remaining bits will be simply zeroes.

Thus, instead of changing a bit, we mutate the entire
byte by replacing it with a random value between 0
and Mi.

Acknowledgments

This work was partially supported by the SC-COSMIC
Consortium in Computational Sciences and by NASA
through grants No. NCCW-0089 and NCC 5-97. The
author is very grateful to Professor Jean-Yves Jaffray
(LAFORIA–IBP, Université Paris VI) for his encour-
agement and support, and to all the participants of the
1996 SC-COSMIC Conference for valuable discussions.

References

Alander, J. 1993. Robot navigation and GA, In: Alan-
der, J. ed. Proceedings of the First Finnish Workshop
on Genetic Algorithms, November 4-5, 1992, 127–138.
Helinski: Helsinki University of Technology.

Goldberg, D. E. 1994. Genetic and Evolutionary Al-
gorithms Come of Age. Communications of the ACM
37(3): 113–119.

Jaffray, J.-Y. 1995. On the Maximum-Entropy Prob-
ability Which Is Consistent with a Convex Capacity.
International Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems 3(1): 27–33.

Jaffray, J.-Y., and Lorit, S. 1996. On the Maximum
of Conditional Entropy for Upper/Lower Probabili-
ties. In Proceedings of the Sixth International Con-
ference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU ‘96),
Granada, July 1–5, 1996, Vol. 3, 1331–1336.

Jaffray, J.-Y. 1997. On the Maximum of Conditional
Entropy for Random Sets Generated by Upper/Lower
Probabilities. In Proceedings of the IMA Workshop on
the Applications and Theory of Random Sets, August
22–24, 1996, N.Y.: Springer-Verlag (to appear).

Klir, G., and Yuan, B. 1995. Fuzzy Sets and Fuzzy
Logic: Theory and Applications. Upper Saddle River,
NJ: Prentice Hall.

Kreinovich, V., Quintana, C., and Fuentes, O. 1993.
Genetic Algorithms: What Fitness Scaling is Opti-
mal? Cybernetics and Systems: an International Jour-
nal 24(1): 9–26.

Lea, R. N., Kreinovich, V., and Trejo, R. 1996. Opti-
mal interval enclosures for fractionally-linear functions,
and their application to intelligent control. Reliable
Computing 2 (3) 265–285.

Milner, P. M. 1970. Physiological psychology. N.Y.:
Holt.

Mitchell, M., and Forrest, S. 1993. Genetic Algorithms
and Artificial Life, Technical Report No. 93-11-072.
Santa Fe Institute.

Nguyen, N. T., and Kreinovich, V. 1996. Nested Inter-
vals and Sets: Concepts, Relations to Fuzzy Sets, and
Applications. In Kearfott, R. B., and Kreinovich, V.
eds. Applications of Interval Computations, 245–260.
Dordrecht: Kluwer Academic Publishers.

Srinivas, M. and Patnik, L. M. 1994. Genetic Algo-
rithms: A Survey. IEEE Computer, June 1994, 17–26.


