
ALPS: A Logic for Program Synthesis

(Motivated by Fuzzy Logic)

D.E. Cooke, V. Kreinovich, and S.A. Starks, University of Texas at El Paso, El Paso, TX, USA

1. Introduction

1.1. General problem
One of the typical problems in engineering and sci-

entific applications is as follows:

• we know the values x1, . . . , xn of some quantities;
• we are interested in the values of some other

quantities y1, . . . , ym, and
• we know the relationships between xi, yj ,

and, maybe, some auxiliary physical quantities
z1, . . . , zk.

There can be two types of relationships:

• We may know an algorithm that allows us to com-
pute some of the unknown values yj or zk from
xi and, maybe some other yl and/or zm

For example, we may know how to compute
y2 from x1, x3 and y1.

• We may also know an equation that relates some
of the values yj , zk, and xi.

For example, we may know an equation
F (x1, x2, y1) = 0, where F is some known
expression.

The question is: given this knowledge, can we compute
the values of yj , and, if we can, how to do it?

This is a general problem of data processing:

• we measure something,
• we know something, and
• we are interested in whether we can extract, from

what we know and from what we have measured,
the values of some quantities that we could not
measure directly.

Let us briefly describe a pedagogical example from [15]
and a real-life example.

Our pedagogical example is a triangle. A triangle is
described by its angles A,B, C and side lengths a, b, c,
and we know the following relations between them: A+
B+C = π (the sum of the angles is 180o, or π radians),

a2+b2−2ab cosC = c2 and similar expressions for a and
b (cosine theorem), and a/ sin A = b/ sin B = c/ sin C
(sine theorem). Now we can ask all kinds of questions:
If we know a, b and c, can we determine A? If we know
a, b and A, how to compute b? etc.

For example, if we know a, b and c, and we want to
determine A, then:

• x1 = a, x2 = b, x3 = c;
• y1 = A, and
• zk’s are B and C (namely, z1 = B and z2 = C)

because these quantities are neither known, nor
desired, but they are part of the relations that
connect xi and yj .

It is a pedagogical example, because there are only
finitely many possible problems, and all of them have
been solved in elementary geometry.

A reader may get a wrong impression that prob-
lems of this sort are very simple and are mainly already
solved. So we will just mention a real-life problem in
solving which one of the authors (V.K.) participated
[4, 5, 6]. In Very Long Baseline Interferometry:

• We measure the phase shift between the radiosig-
nals that are received by two distant antennas, so
xi are shifts.

• We are interested in the coordinates yj of the ra-
diosources.

The formulas that relate xi and yj includes also
such unknown variables as the initial clock instabil-
ity, distance between antennas, atmospheric shifts, etc.
(which play the role of zk).

Initially, it was believed that there is no way to re-
construct yj from xi and these relations. Therefore, the
values of zk were crudely estimated, and the errors of
these estimates led to crude estimates for yj . A mathe-
matical analysis of these relations revealed that we can
reconstruct the values of yj from xi, and, therefore, we
became able to reconstruct the coordinates with a hun-
dred times better precision.



1.2. Methods of numerical mathematics
At first glance, the problems that we describe are

the problems of numerical mathematics. And, indeed,
there exist numerical methods to solve them. These
methods are based on the well-known least squares
techniques.

The idea of the least squares method is as follows:

• First, we represent all our knowledge in terms of
equations.

If we have an algorithm that computes a
from b and c, then we represent it as an
equation a − f(b, c) = 0, where by f(b, c)
we denote a function that is the result of
those computations.

After this representation, we have p equations
fe(~a) ≈ 0, 1 ≤ e ≤ p, to determine the unknown
parameters ~a = (a1, . . . , an).

• Then, we formalize this problem as a mathemat-
ical optimization problem

∑
e f2

e (~a) → min.

In case the statistical error is distributed according to
the Gaussian law, this expression can be statistically
justified.

There exists software packages that use this method.
In our case, we can use a similar method: namely, if

we have p equations Fe(xi, yj , . . . , zk) = 0 that relate
xi, yj , and zk, then we determine the values yj from
the condition that E → min, where by E we denoted
the sum

E =
p∑

e=1

F 2
e (xi, yj , . . . , zk).

So the method is as follows:

• form a function E, and apply some numerical op-
timization techniques to find the values yj , for
which this function E attains its minimum;

• if the minimal value Emin is positive, this means
that the conditions are inconsistent;

• if Emin = 0, and minimum is attained for several
different values of yj , this means that yj cannot
be uniquely determined from xi and the known
relations;

• if Emin = 0, and minimum is attained for only
one value of ~y = (y1, . . . , ym), then this value yj

is the one that is uniquely determined from xi

and a given knowledge.

These conclusions can be easily justified: indeed, the
condition that Fe = 0 for all e is equivalent to the
condition that

∑
e F 2

e = 0. Therefore, if E = 0, this
means that all the equations are satisfied. If Emin > 0,
this means that the equations cannot be satisfied, so

our knowledge is inconsistent with the measurement
results xi.

This method was actually (and rather successfully)
implemented in a system MARS (see, e.g., [8, 9]).

This implementation uses a library of powerful opti-
mization techniques, and therefore, it works reasonably
fast even when we have dozens of different variables and
dozens of relations.

The main drawback is that it is a brute-force
method, aimed at most complicated problems, and it
is not flexible. In many cases we humans know that we
do not need to use all the equations, and thus we can
essentially simplify the problem.

For example, if we apply this method to a trian-
gle problem, we end up with a non-linear functional E
that is equal to the sum of squares of all the equations
that represent cosine law, sine law, etc. To minimize
this function of six variables, we need a lot of compu-
tation time. But in high school geometrical problems
we never do that: if we know A and B and we want
to know C, then we immediately see that one equation
A + B + C = π will be sufficient, and determine C as
π − A − B. If we know a, b, and A, and we want to
determine C, then we determine B from the sine theo-
rem, and then compute C from A and B.

1.3. PRIZ: a case when logic helps
E. Tyugu proposed a two-stage (“lazy computa-

tions”) approach of solving these problems, and imple-
mented it in a system PRIZ [7, 10, 11, 12, 13, 15, 16]:

• On the first stage, we analyze which quantities
are computable from which. Suppose that we
have a relation F (A,B, C) = 0. If we know all
of these values but one (for example, A and B),
then we have an equation with one unknown,
from which in general we can compute C. So,
if we already know A and B, then we are able to
compute C. We will describe this implications,
for short, as A,B → C. Similarly, if we know
A and C, then we can compute B, and from B
and C we can compute A. So each equation leads
to as many computability relations as there are
unknowns in it. In our case we get three com-
putability relations: A,B → C; A,C → B; and
B,C → A.

• Based on this information only (and not using the
specific form of the algorithms or relationships of
the type F (A,B, C) = 0) we find out, whether it
is possible to compute yj , and, if it is possible,
what steps should we follow.

• Finally, we follow the steps and compute yj .

In the triangle case, the relations turn into the fol-
lowing formulas: A,B → C; B, C → A; A,C → B;



(these three stem from the equation A + B + C = π)
A, a, b → B; A, a, B → B; . . . (from sine theorem),
and a, b, C → c; a, b, c → C; a, c, C → b; b, c, C → a;
. . . (from cosine theorem).

There exists a natural algorithm to decide whether
yj is computable: a so-called wave algorithm. Accord-
ing to the wave algorithm, we first mark the variables
that we know; then we look at all the rules, find those,
for which all the conditions are marked and the conclu-
sion is not, and mark the conclusion. Then we repeat
the same procedure.

After each iteration, either we did not add anything,
which means that we are done (nothing else can be
computed), or we add at least one marked variable.
Since there are finitely many variables, this process will
eventually stop. If the desired yj are marked, then we
can compute them, else we cannot.

For example, suppose that in the triangle, we know
A and B, and we want to compute C and a. Then, ac-
cording to the algorithm, we first mark A and B. There
is only one rule whose conditions are marked: the rule
A, B → C. So, we mark C. On the second itera-
tion, we find three rules whose conditions are marked:
A, B → C; B, C → A; and B, C → A, but their con-
clusion have already been marked. So, we stop.

As a result, C is marked, which means that we can
compute C. Moreover, we know how to compute C:
C was obtained from a rule A,B → C that stems
from A + B + C = π, so we must solve an equation
A+B +C = π, in which A and B are known, and C is
the only unknown. The PRIZ system includes an em-
bedded equation solver (based on a version of Newton’s
method) that solves equations with one unknown.

As for a, it is not marked, and therefore, cannot be
computed.

Actually, the wave algorithm is the simplest algo-
rithm, and the PRIZ system implements a more com-
plicated but faster method (for the fastest possible
methods, see [2]).

G. Mints showed (see, e.g., [12, 13]), that the first
step of PRIZ can be reformulated in logical terms.
Namely, we can interpret each rule A, B → C that
stem from the relations as a propositional formula
A&B → C with variables A, B, . . . that can take the
values “true” or “false”: “true” means that we can
compute the corresponding variable, and “false” means
that we cannot. So our knowledge can be represented
as a set of propositional formulas that include all the
rules and all the atoms A that represent the known
variables xi.

We want to know whether the values yj are com-
putable, or, in the propositional terms, whether the
variables that correspond to yj are true. So, in logical

terms, we want to know whether these variables are
deducible from the knowledge base.

In the triangle case, we have a knowledge base
A&B → C; B&A → C; . . . ; A; B, and we want to
know whether C and a follow from these formulas.

In this example, the application of logic is (some-
what) trivial, but in many complicated cases it really
helps.

In many cases, but not always: there exist cases in
which this logical approach does not work.

1.4. Cases in which traditional logic does not
help

Let us consider the case when we want to know the
values of two unknowns y1 and y2, and we know two
relations between them: y1 + y2 − 1 = 0 and y1 − y2 −
2 = 0. In this case, we can determine both y1 and y2,
because we have a system of two linear equations with
two unknowns. However, Tyugu’s approach will not
work:

Indeed, the first equation will translate into two
rules Y1 → Y2, Y2 → Y1, where propositional vari-
ables Yi correspond to yi. The second equation will
lead to these same rules. From these two formulas we
cannot logically conclude that Y1 is true (because if Yi

are both false, still both rules are true), and therefore,
we cannot conclude that yi are computable.

This is not a specific feature of this weird example:
the same situation occurred in the above-described ra-
dioastronomical example.

In PRIZ, there are some means of handling these
situations, but they are rather ad hoc: they are based
on trying to determine whether there is a system of
two equations with two unknowns, or a system of three
equations with three unknowns, etc. These heuristic
are often helpful, but they do not give a general so-
lution. (And we do not want to use any general-case
monster system inspired by numerical mathematics, if
we can avoid it.)

There exist several other approaches that attempt
to incorporate equations into the rule-based knowledge
(see, e.g., [1, 3, 17]), but none of them gives a general
solution to our problem.

We would like to have a sort of logical approach that
would be applicable also to the case when we have sev-
eral equations with the same unknowns. Since tradi-
tional propositional logic does not help, we need a new
logic.

2. Informal Discussion of the New Logic

Let us start with the simplest equation F (A,B) = 0.
As we have already argued, this equation means that



if we know A, then we can compute B, and vice versa.
So this equation will give way to two rules: A → B and
B → A. The most wide-spread deduction techniques
for propositional formulas is the resolution method (and
it is also one of the basic techniques of PRIZ). In order
to apply it, we need to reformulate the propositional
formulas in terms of disjunctions, i.e., rewrite A → B
as ¬A ∨B, and rewrite B → A as A ∨ ¬B.

Suppose that we have a rule A → B. This means
that we are able to compute B from A. Let us de-
note by f(A) the result of applying these computations.
Then we have a relation between A and B: B = f(A),
or, in terms that we got used, B − f(A) = 0. But this
means that, in general, we can reconstruct A from B
as well, i.e., that we have a rule B → A.

Indeed, if we know that a variable B is uniquely
determined by the value of the variable A, then it is
natural to expect that we can invert this relation and
use B to determine A. For example, if the tempera-
ture T determines a density ρ of a substance, and we
know the dependency, then from this dependency we
can reconstruct a temperature if know ρ.

In terms of disjunctions, our conclusion is that if
¬A∨B, then A∨¬B. Similarly, if we consider a relation
with three unknowns, we come to a conclusion that if
¬A∨¬B∨C is true, then both A∨¬B∨¬C and ¬A∨B∨
¬C are true. It looks like the truth of the disjunction
does not depend on which variables we negate. In other
words, it looks like the negation symbol ¬ does not
influence on the truth of the formula, and can therefore
be omitted.

Indeed, if we have a relation F (A,B, C) = 0, then
with negation we will have three rules A,B → C;
B, C → A; and A,C → B, that in disjunctive form
are ¬A ∨ ¬B ∨ C, A ∨ ¬B ∨ ¬C, and ¬A ∨ B ∨ ¬C.
If we delete negations, then all three disjunctions will
turn into one and the same rule: A∨B ∨C. Similarly,
any relation leads to only one rule.

So, we decrease the total number of rules, and, there-
fore, the amount of computations.

What we really want is to be able to use a logic in
which some statements A are equivalent to their nega-
tions ¬A. In classical (two-valued) logic, this is clearly
impossible. But luckily, there is another logic: a fuzzy
logic, in which the equivalence between A and ¬A is
quite possible. This made us think that logic can be
useful in non-traditional program synthesis situations.

In principle, we could have probably used the gen-
eral fuzzy logic, but since we only needed one feature
of it (and enlarging logic would make computations
more complicated), we decided to restrict ourselves to
a specially tailored logic, which can be thus viewed as
a intermediate logic between classical and fuzzy, a logic

that incorporates only some features of fuzzy logic in
its definitions.

3. The New logic: Definitions and Prop-
erties

3.1. Description of the new logic
In accordance with the above informal descrip-

tion, in this logic, we start with the list of variables
A1, . . . , An. These variables can be combined into dis-
junctions, i.e., into formulas D of the type A ∨ B,
A ∨B ∨ C, etc.

A typical problem in this logic is as follows: we know
that several disjunctions D1, . . . , Dk are true, and we
must check whether some other disjunction D follows
from these ones. This implication will be described as
D1& . . . &Dk → D or as a deduction

D1, . . . , Dk

D
.

To complete the description of the logic, we must spec-
ify when a deduction is true and when it is not true.

We interpret each variable as a physical quantity,
and each disjunction as a relationship between physical
quantities. For example, a disjunction A ∨ B means
that there is a relationship F (A,B) = 0 between the
values of the variables A and B.

In general, this relationship can be non-linear. How-
ever, we usually know the approximate values Ã and B̃
of the measured quantities, i.e., we know that A be-
longs to a small neighborhood of Ã, and that B be-
longs to a small neighborhood of B̃. In these small
neighborhoods, the function F (A,B) can be, within a
reasonable accuracy, replaced by the first order terms
of its Taylor expansion, i.e., by a linear relation of the
type c1A + c2B = c3. Therefore, in the following text,
we will interpret each formula as the existence of such
a linear relation.

At first glance, it looks like we are ready for a defini-
tion: we may proclaim the deduction D1& . . . &Dk →
D as true if for all possible values of the coefficients
describing relations Di, there exists some non-trivial
relation corresponding to D. However, this is not ex-
actly what we want. Let us give a simple example why.

If we have two identical disjunctions A∨B and A∨B,
this means that we have two relationships between the
same variables. Of course, if the corresponding two
linear equations simply coincide, then we cannot find
the value of A from these two equations. However,
from a physical viewpoint, it is highly unprobable that
two different relations would lead to exactly the same
equations, and if these two equations are different, we
can indeed get A.



So, it is reasonable to interpret deduction as mean-
ing not “for all values of the coefficients”, but “for al-
most all values of the coefficients”, where “almost all”
is understood in the standard mathematical sense (ev-
erywhere except for a set of measure 0).

Thus, we arrive at the following formal definition:
Let D1, . . . , Dk, D be disjunctions. To check

whether the deduction D1& . . . &Dk → D is true, we
do the following:

• We represent the first disjunction D1 = A∨. . .∨B
as a linear equation c1 · A + . . . + ck · B = ck+1,
the second disjunction D2 = C ∨ . . . ∨ D as an
equation ck+2 ·C+. . .+cl ·D = cl+1, etc., until we
represent the last disjunction Dk by an equation
. . . = cN .

• Then, we say that a disjunction is true if for
almost all values of the coefficient vector ~c =
(c1, . . . , cN ), from the equations that represent
Di, we can conclude that there is a non-trivial
linear relation between the variables that repre-
sent D.

We will also consider deduction of the type
D1& . . . &Dk → ⊥, where ⊥ stands for “false”; such
a deduction would mean that for almost all values of
the coefficient vector ~c, the corresponding linear equa-
tions are inconsistent.

3.2. Examples
To illustrate this definition, let us give examples of

formulas that are true according to this definition:
A&A → ⊥. Indeed, if we have two different equa-

tions that describe the same value, then in almost all
cases, these two equations are inconsistent.

(A∨B)&(A∨B) → A. If we have two equations with
two unknowns, then, in general, we can reconstruct A
(and, similarly, B). This example can be generalized
to n equations with n unknowns:

A1 ∨ . . . ∨An, . . . , A1 ∨ . . . ∨An (n times)
Ai

.

3.3. Similarity to resolution method
These examples illustrate a natural derivation idea:

If we have a relationship that relates A, . . . , B, and
some variable C, and some other relationship that re-
lates C with other variables D, . . . , E, then, we can use
the first equation to express C in terms of A, . . . , B,
and substitute the resulting expression into the second
equation. As a result, we get a new equation that con-
tains A, . . . , B,D, . . . , E, and does not contain C any

more. So, we have the following derivation rule:

A ∨ . . . ∨B ∨ C, C ∨D ∨ . . . ∨ E

A ∨ . . . ∨B ∨D ∨ . . . ∨ E
.

This rule is very similar to the above-mentioned reso-
lution method, one of the main methods of automated
reasoning. Thus, hopefully, we can still use modern au-
tomated reasoning techniques to check implication in
the new logic, and thus, to solve our program synthesis
problems.

3.4. Differences with the resolution method
The above useful analogy does not mean that we

can immediately apply the resolution techniques from
classical logic; these techniques must be changed.

In the traditional resolution method, we have a
slightly different resolution rule: it is indeed similar to
the above one, but with C in one of the disjunctions,
and its negation ¬C in another disjunction. Since we
are identifying each variable with its negation, we get
this rule in its above form.

In the traditional resolution rule, we use multi-step
(chain) reasoning, and for that, we need deductions in
which the conlusion is not only a single disjunction,
but several of them. In classical logic, we simply say
that a formula D = D1& . . . &Dk implies a formula
D′ = D′

1& . . . &D′
l if the first formula implies all the

disjunctions D′
j from D′.

If we simply repeat a similar definition for our new
logic, then, for thus defined implication →, we lose the
ability to perform chain reasoning, i.e., to conclude,
from D → D′ and D′ → D′′, that D → D′′. Indeed,
from D = A, we can deduce each of the disjunctions
of D′ = A&A, but from D′, we can deduce the contra-
diction D′′ = ⊥, while from the original formula D, we
cannot deduce the contradiction.

Thus, if we want to be able to make meaningful
chain deductions in the new logic, we cannot use →,
we must use a more complicated implication operation
D ⇒ D′ meaning that for every other formula D′′, if
D′ → D′′, then D → D′′.

Examples: A&A ⇒ ⊥; (A ∨B)&(A ∨B) ⇒ A;
(A∨B)&(A∨B) ⇔ A&B (meaning that (A∨B)&(A∨
B) ⇒ A&B and A&B ⇒ (A ∨B)&(A ∨B)).

The new implication implies the old one, but not the
other way around: e.g., A → A&A, but A 6⇒ A&A.

One can easily check that thus defined new implica-
tion is already transitive: if A ⇒ B and B ⇒ C, then
A ⇒ C.

The fact that A is not equivalent to A&A also re-
minds of fuzzy logic, in which, unless we use min as a
t-norm, A&A is not equal to A.



3.5. How can we actually check deducibility in
the new logic?

One possibility is to use a Monte-Carlo method that
is based on the following idea: When the values of the
coefficients ci are fixed, we can use linear algebra pack-
ages to check whether the variables from D are really
linearly related. So, we can: use random number gener-
ators to generate random values ci, and check whether,
for these values, we get the desired conclusion.

If the desired conclusion is true for almost all ~c, then
it should be true for random coefficients with probabil-
ity 1, i.e., practically always. On the other hand, if this
conclusion is not true with probability 1, then, as one
can see, it is true with probability 0, i.e., practically
never.

Ideally, we would like to have a purely logical algo-
rithm.

Acknowledgments. This work was supported in part
by NASA under cooperative agreement NCCW-0089,
by NSF under grants No. DUE-9750858 and EEC-
9322370, and by the Future Aerospace Science and
Technology Program (FAST) Center for Structural In-
tegrity of Aerospace Systems, effort sponsored by the
Air Force Office of Scientific Research, Air Force Ma-
teriel Command, USAF, under grant number F49620-
95-1-0518.

The authors are greatly thankful to A. Gates and
M. Gelfond (El Paso, Texas), A. Dikovskii and M.
Kanovich (Moscow), G. Mints (Stanford), G. Pospelov
(Moscow), E. Tyugu (Tallinn), and to the anonymous
referees for valuable discussions.

References

[1] W. F. Clocksin, “A technique for translating
clausal specifications of numerical methods into ef-
ficient programs”, The Journal of Logic Program-
ming, 1987, Vol. 4, pp. 231–242.

[2] A. Dikovskii and M. Kanovich, “Computational
models with separable problems”, Technical Cy-
bernetics, 1985, No. 5, pp. 36–59 (in Russian).

[3] M. Dincbas and P. van Henenryck, “Extended
unification algorithms for the integration of func-
tional programming into logic programming”, The
Journal of Logic Programming, 1987, Vol. 4, pp.
199–227.

[4] A. Dravskikh, A. M. Finkelstein, and V.
Kreinovich, “Astrometric and geodetic applica-
tions of VLBI ‘arc method’ ”. Modern Astrome-
try, Proceedings of the IAU Colloquium No. 48,
Vienna, 1978, pp. 143–153.

[5] A. F. Dravskikh et al., “Optimization of the proce-
dure for measuring arcs by radiointerferometry”,
Soviet Astronomy Letters, 1979, Vol. 5, No. 4, pp.
227–228.

[6] A. F. Dravskikh et al., “The method of arcs and
differential astrometry”, Soviet Astronomy Let-
ters, 1979, Vol. 5, No. 3, pp. 160–162.

[7] M. Kahro, A. Kalja, and E. Tyugu, Instrumental
programming system ES EVM (PRIZ). Finansy i
Statistika, Moscow, 1981 (in Russian).

[8] V. Kotov, “Concurrency + Modularity + Pro-
grammability = MARS”, Communications of the
ACM, 1991, Vol. 34, No. 6, pp. 32–45.

[9] G. I. Marchuk and V. E. Kotov, Modular Asyn-
chronous Reconfigurable System, Technical Re-
ports No. 86, 87. Academy of Sciences, Novosi-
birsk, Computing Center, 1978 (in Russian).

[10] M. Meriste and J. Penjam, “Toward knowledge-
bases specifications of languages”. In: J. Barzdins
and D. Bjoerner (editors), Baltic Computer Sci-
ence, Springer Lecture Notes in Computer Sci-
ence, Vol. 502, Springer–Verlag, Berlin, Heidel-
berg, 1991, pp. 65–76.

[11] G. Mints, J. M. Smith, and E. Tyugu, “Type-
theoretical semantics of some declarative lan-
guages”, In: J. Barzdins and D. Bjoerner (edi-
tors), Baltic Computer Science, Springer Lecture
Notes in Computer Science, Vol. 502, Springer–
Verlag, Berlin, Heidelberg, 1991, pp. 18–32.

[12] G. Mints and E. Tyugu, “The programming sys-
tem PRIZ”, Journal of Symbolic Computations,
1988, Vol. 5, pp. 359–375.

[13] G. E. Mints and E. H. Tyugu, “Propositional logic
programming and the PRIZ system”, Journal of
Logic Programming, 1990, Vol. 9, pp. 179–193.

[14] A. Togashi and S. Nogushi, “A program transfor-
mation from equational programs into logic pro-
grams”, The Journal of Logic Programming, 1987,
Vol. 4, pp. 85–103.

[15] E. Tyugu, Knowledge-based programming,
Addison-Wesley, Wokingham, England, 1988.

[16] E. Tyugu, “Three new-generation software envi-
ronments”, Communications of the ACM, 1991,
Vol. 34, No. 6, pp. 46–59.

[17] M. H. Van Emden and K. Yukawa, “Logic pro-
gramming with equations”, The Journal of Logic
Programming, 1987, Vol. 4, pp. 265–288.


