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Abstract

Sugeno integral was invented a few decades
ago as a natural fuzzy-number analogue of
the classical integral. Sugeno integral has
many interesting applications. It is reason-
able to expect that it can be used in all ap-
plication areas where classical integrals are
used, and in many such areas it is indeed use-
ful. Surprisingly, however, it has never been
used in fuzzy control, although in traditional
control, classical integral is one of the main
tools.

In this paper, we show that the appropriately
modified Sugeno integral is indeed useful for
fuzzy control: namely, it provides numerical
characterization of stability and smoothness
of fuzzy control strategies.

1 Introduction

1.1 The problem

Two decades ago, Sugeno discovered a natural fuzzy
analogue of the classical integral. Sugeno integral has
many interesting applications.

It is reasonable to expect seems that Sugeno integral
can be used in all application areas where classical
integrals are used, and in many such areas it is indeed
useful. Surprisingly, however, it has never been used in
fuzzy control, although in traditional control, classical
integral is one of the main tools.

It is even more surprising because fuzzy control is one
of the main applications of fuzzy systems theory, prob-
ably its most deeply-researched and widely applied
area.
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1.2 What we are planning to do

In this paper, we explain why the original Sugeno in-
tegral has not been used in fuzzy control, and how
we can modify this notion so that it will lead to useful
applications: namely, it will provide numerical charac-
terization of stability and smoothness of fuzzy control
strategies.

1.3 The structure of the paper

In Section II, we start with a brief reminder of the
notion of Sugeno integral. Since our main goal is to
modify this definition, we will give detailed motivations
for the original Sugeno’s definition, motivations that
will help us understand:

e why this definition is not used in fuzzy control,
and

e how we can modify it so that it becomes applica-
ble.

In Section III, we describe the numerical characteris-
tics of the desired properties of the resulting control,
properties such as stability and smoothness. Finally,
in Section IV, we will show how an appropriate mod-
ification of Sugeno integral can describe these charac-
teristics for fuzzy control.

Preliminary results of this research appeared in [5].

2 Sugeno integral: a brief reminder

2.1 Classical Integral as a Natural Method of
Handling Real Numbers That Describe
the Physical World

Why are we interested in the classical integral?
Sugeno integral is a natural fuzzy analogue of the clas-
sical integral. Therefore, to describe the ideas behind
Sugeno integral, we must briefly recall where the clas-
sical integral came from.



Addition as a natural operation with real num-
bers describing the physical world. Classical
mathematics of real numbers was originally invented to
describe the values of physical quantities. For physical
quantities, the most fundamental operations are those
that have direct physical meaning:

e addition x+y, which corresponds, e.g. to the case
when we combine two bodies together; then, the
mass and the charge of the combination is equal to
the sum of the masses (charges) of the combined
component bodies;

e multiplication, which corresponds, e.g., to re-
scaling of physical quantities, etc.

Sums of many numbers, and integral as a de-
scription of such sums. In many physical problems,
we combine finitely many quantities and therefore, it
is sufficient to consider finite sums and products.

However, in some other practically important physi-
cal situations, the number of combined quantities is
so large that it is reasonable to assume that we are
combining infinitely many quantities. For example, a
typical macro-size body consists of ~ 1022 molecules.
This amount is so huge that even with the modern
computers, it is absolutely not possible to handle these
molecules individually. No matter into how many
pieces our computer model divides the body, each piece
still contains many molecules and can be, therefore, di-
vided even further. In other words, a multi-molecule
macro-size body behaves, in our modeling, as if there
is no limit to division, i.e., as if we actually have in-
finitely many parts. This continuous approximation is
indeed very useful in physics.

In this approximation (i.e., in this limit), the sum turns
into its limit, which is exactly the classical integral.

2.2 Handling expert information: a modified
integral is needed

Why fuzzy? Traditional (pre-fuzzy) mathematics is
very good in processing measurement results. In some
applications areas, this is quite sufficient for making
reasonable decisions, but in many application areas,
measurement, results themselves are not sufficient for
making reasonable decisions: In addition to the mea-
surement results, we must take into consideration hu-
man expertise, expertise which is usually formulated
not in precise mathematical terms, but by words from
natural language.

To formalize this expert knowledge (and thus, to make
it available for computers and therefore, for automa-
tion), L. Zadeh invented fuzzy logic and fuzzy set the-
ory [12].

Enter real numbers. In the original version of fuzzy
set theory, real numbers were used to describe the ex-
pert’s degrees of certainty (also known as truth values).
Later on, more general objects have been proposed to
describe truth values, but so far, real numbers from
the interval [0, 1] remain the main truth value domain
in applications of fuzzy logic and fuzzy set theory.

In fuzzy logic, real numbers are the same as in
crisp data processing, but natural operations
are different. Since we use the same real numbers
as in traditional mathematics, at first glance, it may
seem that all notions of classical mathematics, includ-
ing the notion of an integral, are naturally applicable
to fuzzy values as well. In reality, the situations is not
so straightforward:

e Indeed, for real numbers that describe the val-
ues of physical quantities, the most fundamental
operation is addition, and therefore, an integral,
which is, in essence, nothing else but a limit of
the sums, is a very natural tool.

e On the other hand, for real numbers that describe
the expert information, addition is an artificial
operation, which not only is not easy to inter-
pret, but that is even not always applicable: e.g.,
since we are only considering real numbers from
the interval [0,1], sums like 1 + 1 whose values
are greater than 1 have no meaning at all. Since
the sum is not natural, the integral is not natural
either.

We do need a fuzzy analogue of the integral.
This un-naturalness does not mean that we can sim-
ply dismiss the notion of an integral from fuzzy logic:
Similarly to processing measurement results, we often
face the necessity of processing many expert estimates,
and it would be nice to have an integral-like limit tool
that can handle these situations. Thus, it is desirable
to develop fuzzy analogues of the integral, analogues
that are based, instead of addition and multiplication,
on operations that are more natural in fuzzy logic.

Operations with real numbers that are natural
in fuzzy logic. Since fuzzy logic describes human
reasoning, the most natural operations in fuzzy logic
are “or” and “and” operations V and & on truth values
(these operations are usually called t-conorms and t-
norms; see, e.g., [2, 8]).

There is an analogy between logical and arithmetic
operations that goes back to Boole, the founding father
of modern formalized logic:

e V is a natural analogue of addition, and

e & is a natural analogue of multiplication.



In fuzzy logic, this analogy goes even further than in
classical logic:

e multiplication is actually one of the most widely
used version of an “and” operation (it is one of
the two “and” operations proposed by L. Zadeh
in his pioneer paper), and

e one of the widely used “or” operations is a Vb =
min(a + b,1), i.e., addition corrected in such a
way that the result of this operation always stays
within an integral [0, 1].

It is therefore, desirable to describe an analogue of the
classical interval in which addition is replaced by an
“or” operation and multiplication by an “and” opera-
tion.

This idea was first implemented by M. Sugeno in his
dissertation [10]; the main results of this dissertation
were later published in a paper form [11]; for a lat-
est survey on Sugeno integral and related topics, see,

e.g., [1].

2.3 Sugeno integral: deriving the original
definition

The domain of the future definition. We have
already mentioned that in physical applications, the
classical integral is used to describe the case when we
have a large number of variables xy, ..., ,, and when,
instead of describing them separately, we assume that
we have a continuous family of variables z(t) depend-
ing on a continuous parameter ¢. Then, the sum > z;
tends to a limit [ z(t) dt.

Similarly, in fuzzy case, we consider the situation,
when we have expert degree of certainty u; assigned to
a large number of situations. So, instead of analyzing
these situations one-by-one, we assume that we actu-
ally have a degree of certainty u(t) for an arbitrary
value of the continuously changing parameter. This
assumption goes back to the pioneer paper of Zadeh:
it represents a membership function depending on the
parameter t. So, the fuzzy analogue of the classical in-
tegral should be applicable to membership functions.

First try. Historically, an integral [ z(t)dt was first
defined as a limit of the integral sums Y z(t;) - At. A
natural idea is, therefore, to replace the sum by a “or”
operation V, i.e., to consider V¢(u(t) - At), where V,
means that V is applied to infinitely many values u(t)
of the membership function u(t). In particular, if we
take max as an “or” operation, we have (max; u(t)) -
At.

Drawback of the resulting definition. The main
drawback of the resulting definition is that most mem-

bership functions are normalized, i.e., for them pu(t) =
1 for some t. For such membership functions, the
above-defined “integral” is simply equal to At.

Why this drawback? To find out why this definition
did not work, let us go back to the original definition of
the integral that we were trying to fuzzify. This defi-
nition was originally proposed and used for continuous
functions.

e For functions that describe the dependency be-
tween physical quantities, continuity is a very nat-
ural requirement: For example, if we know that
voltage is determined by current, this means that
small changes in voltage should lead to small
changes in current, i.e., that the dependence
should be continuous.

e On the other hand, for membership functions,
continuity is not so natural. A reasonable exam-
ple of a membership function is an example of a
crisp property, in which for every ¢, we are either
sure that this property is true for ¢ (i.e., p(t) = 1),
or we are sure that this property is false for %, i.e.,
w1(t) = 0. Such functions, that only take values 0
and 1, are not continuous.

For discontinuous functions, the above definition of an
integral often does not work, so no wonder that its
fuzzy version is not working either.

To make it work, we need to fuzzify a different defi-
nition of the classical integral, a definition that would
be applicable to discontinuous functions as well.

Sugeno’s definition of an integral. The exten-
sion of the notion of the integral to complicated dis-
continuous functions was proposed by Lebesgue, the
founder of the modern integration theory. For his gen-
eralization, Lebesgue used the fact that the function
z(t) itself can be represented as an integral fom(t) 1da.
If we substitute this formula into the desired integral
J z(t) dt, and swap the variables ¢ and «, we conclude
that [z(t)dt = [ po({t|z(t) > a})da, where po(A)
denotes the Lebesgue measure of a set A (we can take
any other measure instead of Lebesgue’s measure). If
we replace the product by “and” and the sum by “or”,
we get Sugeno’s formula V (a&epo({t| n(t) > a})).

Usually, in this formula, the simplest possible “and”
and “or” operations are taken: V = max and & = min.
In this case, Sugeno’s formula turns into

max, min(a, o ({¢| u(t) > a})).



2.4 Successes and drawbacks of the original
Sugeno’s definition

Successes. Sugeno’s definition is very suitable for
describing expert knowledge. Let us give an example.
One of the most natural way to assign the values to
a membership function u(t) that describes a certain
property P is to use polling: for every value t, we
ask experts whether they believe that ¢ satisfies this
property P, and take, as u(t), the fraction of experts
who answered “yes”.

In some cases, the property P is true for all values ¢t. In
other words, for 100% of all the values ¢, 100% of all the
experts believe that P is true (i.e., u(t) = 1). What
does it means that a property is, say, at least 90%
true? It is natural to define this notion by requiring
that for at least 0.9 of all values ¢, at least 90% of
all experts believe that ¢ is true. In other words, for
some a > 0.9, we have po({t|un(t) > a}) > 0.9, ie.,
we have max, min(a, po({t | u(t) > a})) > 0.9. Thus,
the degree d to which all elements satisfy the property
P can be defined as the largest d which satisfies this
inequality for some a, i.e., as one can easily check, as
the Sugeno integral.

Sugeno integral is also efficiently used in image pro-
cessing and in other important computer applications
areas.

Main drawback. There is only one area where fuzzy
logic is actively used but where applications of Sugeno
integral are lacking: fuzzy control. At first glance, this
is very strange, for three reasons:

e Fuzzy control is, currently, one of the main ap-
plications of fuzzy logic, and probably the most
well-researched one.

e In traditional control, integration is one of the
main tools, so one should expect that a fuzzy ana-
logue of the classical integral should be widely in
fuzzy control as well.

e Sugeno himself is not only the author of the notion
of Sugeno’s integral, but he is one of the world’s
leading researchers in theory and application of
fuzzy control, and still he has not found a rela-
tionship between these two areas in which he is so
proficient.

In view of this three reasons, the absence of applica-
tions cannot be attributed simply to lack of trying, we
rather view it as a drawback of the original Sugeno’s
definition.

Why this drawback, and what we can do about
it. The above motivations for Sugeno integral explain

why the existing form of Sugeno integral is not directly
used in fuzzy control:

e Traditional integral is based on the addition and
multiplication operations that are natural for
measurement results but un-natural for expert
degrees of certainty. Therefore, this integral is
very useful when we only have measurement re-
sults and no expert information (e.g., in tradi-
tional control).

e Sugeno integral is based on the operations V and
& that are natural for expert degrees of uncer-
tainty, but un-natural for measurement results.
It is therefore very useful in the situations when
we only have expert information but few measure-
ment results (e.g., in traditional expert systems).

e In fuzzy control, however, we need both the mea-
surement results and the expert estimates. So, we
cannot use the original formula for Sugeno inte-
gral, because the operations underlying this for-
mula are un-natural for half of the data.

In view of this conclusion, what we need for fuzzy
control is a modification of Sugeno integral that uses
both arithmetic operations (addition and multiplica-
tion) that are natural for measurement “half” of the
data and logical operations that are natural for the
expert “half” of the data.

In the next two sections, we will see that this modifi-
cation is indeed possible and helpful. Before we start
doing that, let us describe which numerical character-
istics of fuzzy control it is desirable to describe.

3 Numerical characteristics of the
ideal control

3.1 What is ideal control?

Engineers rarely explain explicitly what exactly they
mean by an ideal control. However, they often do
not hesitate to say that one control is better than an-
other one. What do they mean by that? Usually, they
draw a graph that describes how an initial perturba-
tion changes with time, and they say that a control is
good if this perturbation quickly goes down to 0 and
then stays there.

In other words, an ideal control consists of two stages:

e On the first stage, the main objective is to make
the difference x+ = X — X between the actual
state X of the plant and its ideal state X¢ go to
0 as fast as possible.



e After we have already achieved the objective of
the first stage, and the difference is close to 0, then
the second stage starts. On this second stage, the
main objective is to keep this difference close to
0 at all times. We do not want this difference to
oscillate wildly, we want the dependency z(t) to
be as smooth as possible.

This description enables us to formulate the objectives
of each stage in precise mathematical terms.

3.2 First stage of the ideal control: main
objective

For readers’ convenience, we will illustrate our ideas
on a simple plant. So, let us consider the case when
the state of the plant is described by a single variable
z, and we control the first time derivative . For this
case, we arrive at the following definition:

Definition 1. Let a function u(zx) be given (this func-
tion will be called a control strategy). By a trajectory
of the plant, we understand the solution of the differ-
ential equation = u(z). Let’s fix a positive number
M (e.g., M = 1000). Assume also that a real number
& # 0 is given. This number will be called an initial
perturbation. A relaxation time t(§) for the control
u(z) and the initial perturbation ¢ is defined as fol-
lows:

e we find a trajectory z(t) of the plant with the
initial condition z(0) = §, and

e we take as t(9), the first moment of time starting
from which |z(t)| < |z(0)|/M (i.e., for which this
inequality is true for all t > t(6)).

For linear control, i.e., when u(z) = —kz for some con-
stant k, we have z(t) = z(0) exp(—kt) and therefore,
the relaxation time ¢ is easily determined by the equa-
tion exp(—kt) = 1/M, i.e., t = In(M/k). Thus defined
relaxation time does not depend on §. So, for control
strategies that use linear control on the first stage, we
can easily formulate the objective: to minimize relax-
ation time. The smaller the relaxation time, the closer
our control to the ideal.

In the general case, we would also like to minimize
relaxation time. However, in general, we encounter the
following problem: For non-linear control (and fuzzy
control is non-linear) the relaxation time ¢(0) depends
on 0. If we pick a § and minimize ¢(J), then we get
good relaxation for this particular §, but possibly at
the expense of not-so-ideal behavior for different values
of the initial perturbation §.

What to do? The problem that we encountered was
due to the fact that we considered a simplified con-

trol situation, when we start to control a system only
when it is already out of control. This may be too
late. Usually, no matter how smart the control is, if a
perturbation is large enough, the plant will never sta-
bilize. For example, if the currents that go through
an electronic system exceed a certain level, they will
simply burn the electronic components. To avoid that,
we control the plant from the very beginning, thus pre-
venting the values of 2 from becoming too large. From
this viewpoint, what matters is how fast we go down
for small perturbations, when § = 0.

What does “small” mean in this definition? If for some
value § that we initially thought to be small, we do
not get a good relaxation time, then we will try to
keep the perturbations below that level. On the other
hand, the smaller the interval that we want to keep the
system in, the more complicated and costly this control
becomes. So, we would not decrease the admissible
level of perturbations unless we get a really big increase
in relaxation time. In other words, we decrease this
level (say, from dg to d1 < dg) only if going from #(do)
to ¢(41) means decreasing the relaxation time. As soon
as t(61) = t(do) for all 61 < o, we can use do as a
reasonable upper level for perturbations.

In mathematical terms, this condition means that ¢(dg)
is close to the limit of ¢(§) when § — 0. So, the smaller
this limit, the faster the system relaxes. Therefore,
this limit can be viewed as a reasonable objective for
the first stage of the control.

Definition 2. By a relaxzation time T for a control
u(x), we mean the limit of t(§) for § — 0.

So, the main objective of the first stage of control is to
mazimize relazation time.

3.3 Second stage of the ideal control: main
objective

After we have made the difference x go to 0, the second
stage starts, on which z(¢) has to be kept as smooth
as possible. What does smooth mean in mathematical
terms? Usually, we say that a trajectory z(t) is smooth
at a given moment of time %, if the value of the time
derivative Z(tg) is close to 0. We want to say that a
trajectory is smooth if %(t) is close to 0 for all ¢.

In other words, if we are looking for a control that is
the smoothest possible, then we must find the control
strategy for which #(¢) ~ 0 for all ¢. There are in-
finitely many moments of time, so even if we restrict
ourselves to control strategies that depend on finitely
many parameters, we will have infinitely many equa-
tions to determine these parameters. In other words,
we will have an over-determined system. Such situ-
ations are well-known in data processing, where we



often have to find parameters p1,...,p, from an over-
determined system f;(p1,...,pn) ®qi,1 <i < N. A
well-known way to handle such situations is to use the
least squares method, i.e., to find the values of p; for
which the “average” deviation between f; and g; is the
smallest possible. To be more precise, we minimize the
sum of the squares of the deviations, i.e., we are solv-
ing the following minimization problem:

N
> (filpr,---,pn) — @)?) = min
=1 PlyeeesPn

In our case, f; = %(t) for different moments of time
t, and ¢; = 0. So, least squares method leads to the
criterion ) (#(t))? — min. Since there are infinitely
many moments of time, the sum turns into an integral,
and the criterion for choosing a control into J(z(t)) —
min, where J(2(t)) = [(#(¢))*dt. This value J thus
represents a degree to which a given trajectory x(t) is
non-smooth. So, we arrive at the following definition:

Definition 3. Assume that a control strategy x(t)
is given, and an initial perturbation ¢ is given. By a
non-smoothness I1(0) of a resulting trajectory x(t), we
understand the value J(z) = [ (&(t))? dt.

The least squares method is not only heuristic, it has
several reasonable justifications. So, instead of simply
borrowing the known methodology from data process-
ing (as we did), we can formulate reasonable conditions
for a functional J (that describes non-smoothness),
and thus deduce the above-described form of J with-
out using analogies at all. This is done in [4].

What control to choose on the second stage? Simi-
larly to relaxation time, we get different criteria for
choosing a control if we use values of non-smoothness
that correspond to different §. And similarly to relax-
ation time, a reasonable solution to this problem is to
choose a control strategy for which in the limit § — 0,
the non-smoothness takes the smallest possible value.

Mathematically, this solution is a little bit more diffi-
cult to implement than the solution for the first stage:
Indeed, the relaxation time ¢(§) has a well-defined non-
zero limit when § — 0, while non-smoothness simply
tends to 0. Actually, for linear control, I(4) tends
to 0 as 62. To overcome this difficulty and still get
a meaningful limit of non-smoothness, we will divide
J(z) (and, correspondingly, I(4)) by 62 and only then,
tend this ratio J(z(t)) = I(§) to a limit. This di-
vision does not change the relationship between the
functional and smoothness: indeed, if for some d, a
trajectory () is smoother than a trajectory zs(t) in
the sense that J(z1(t)) < J(z2(t)), then, after divid-
ing both sides by 62, we will get J(z1(t)) < J(z2(t)).
So, a trajectory z(t) for which J(z) is smaller, is thus
smoother.

As a result, we arrive at the following definition.

Definition 4. By a non-smoothness I of a control
u(x), we mean the limit of 1(8)/6% for § — 0.

Thus, the main objective of the second stage of control
is to minimize non-smoothness.

4 Modified Sugeno integral helps

4.1 Fuzzy control: in brief

In general, fuzzy control starts with the rules of the
type

If x4 is A{ and z» is Ag and...and z, is Al then u
is BY,

where z; are parameters that characterize the plant,
u is the control, and A7, BJ are the terms of natural
language that are used in describing j—th rule (e.g.,
“small”, “medium”, etc).

The value u is a proper value of the control if and only
if one of these rules is applicable. Therefore, if we use
the standard mathematical notations & for “and”, v
for “or”, and = for “if and only if”, then the property
“u is a proper control for a given z” (which we will
denote by C(u,z)) can be described by the following
informal “formula”:

Cu,z) = (Al (z1) & Ay (z2) & ... & A} () & B (u))V

(A2(x)) & A2(22) & ... & A%(x,,) & B?(u))V

(AK (2)) & AK(22) & ... & AK () & B¥ (u))

If we use membership functions to describe these
natural-language terms, we describe AJ(z) as p; (),
the degree to which given value z satisfies the prop-
erty AJ. Similarly, B’(u) is represented as p;(u).
Then, after choosing an appropriate & and V oper-
ations, we get the membership function for control:

pe(u,z) = fu(pi,...,pk), where

p; = fe(pji(w1), pi2(x2), - - jn(@n), pj(u)).

To get a unique control value, in this paper, we will
use a centroid defuzzification

() = Ju-po(u,z)du
= T

For detailed description and alternatives, see, e.g., [3,
7).



4.2 Case study: a simple plant

Plant. In this paper, we will consider a simple system,
in which the state of the plant is described by a single
variable x, and we control its time derivative .

Properties and membership functions. Both for
z and for v = %, we will consider the membership
functions that are most frequently used in fuzzy con-
trol applications:

e A property Mo(z) (“x is negligible”) is char-
acterized by an even function po(z) (uo(z) =
po(—x)) that is different from 0 only on the in-
terval (—A, A) and for which uo(1) = 1;

e We also have properties M;(x) described by func-
tions p;(x) = po(x — i - A). For example, M;(x)
describes “small positive”, the property M_(zx)
describes “small negative”, etc.

Membership functions that describe the properties
N;(u) of the control u are assume to have the same
shape. These functions may differ by a scaling, but,
without losing generality, we can always assume that
the units for both = and u are chosen in such a way
that the membership functions for z and v are simply
identical.

In the above definitions of stability and smoothness,
we used derivatives. Usually, in applications, contin-
uwous membership functions are considered which are
not necessarily differentiable. It is known, however,
that an arbitrary continuous function can be approxi-
mate, with an arbitrary given accuracy, by a differen-
tiable function. Therefore, without losing generality,
we will assume that the function uo(z), when limited
to the interval [0, A], is everywhere differentiable; we
will also assume that, like for a triangular function,
the derivative uj(A) at = A is different from 0.

Rules. According to our definitions of stability and
smoothness, we are only interested in the values of the
z that are close to 0. For such values, only three of the
above membership functions may be different from 0:
My, My, and M_;. Moreover, for every z, only two
membership functions are different from 0:

e when z < 0, we only need My and M_y;
e when z > 0, we only need My and M;.
For such z, the only reasonable rules are: “if My(x)

then No(u)”, “if M_;(x) then Ny (u)”, and “if M;(z)
then N_;(u)”.

Choice of “and” and ‘“or” operations. In prin-
ciple, different “and” and “or” operations are used in

fuzzy control. Some of these operations are not ev-
erywhere differentiable, which, for us, is a drawback,
because we want the resulting formulas to be differ-
entiable. To resolve this problem, we can use our
recent result [6] that an arbitrary continuous t-norm
can be, with any given accuracy, approximated by a
strictly Archimedean t-norm, i.e., by a t-norm of the
type a&eb = ¥~ (¢(a)-1)(b)), for some continuous func-
tion 9 (a). The continuous function ¢(a) can, in turn,
be approximated by a smooth one (and we can also
select this smooth approximation in such a way that
¥'(0) # 0). Thus, an arbitrary continuous t-norm,
can be approximated, with an arbitrary accuracy, by
a strictly Archimedean t-norm with a smooth function
1(a). Therefore, without losing generality, we can as-
sume that out t-norm has this form.

Similarly, without losing generality, we can assume
that out t-conorm (“or” operation) has the form aVvb =
© Hp(a) + (b)) for some differentiable function ((a)
for which ¢'(0) # 0.

4.3 Results

Preliminary results. The above definitions of char-
acteristics of stability and smoothness were rather
complicated, so it was not clear how to compute them.
It is, therefore, desirable to re-formulate these defi-
nition in more directly computable terms. This re-
formulation is given in [4, 9]. Namely, if the result-
ing control strategy u(x) is a differentiable function z,
then the relazation time is equal to In(M)/(—u'(0)),
and the non-smoothness is equal to I = —1/(2a'(0)).
(The proof follows from the fact that for small z,
a(z) ~ @'(0) - z.) Thus, to compute both characteris-
tics, we must estimate |a@'(0)|.

Derivation: main ideas. We are using the centroid
defuzzification formula, according to which @(z) =
N(z)/D(z), where N(z) = [u - pc(u,z)du and
D(z) = [ pc(u,z)du. For z = 0, we get pc(u,0) =
po(u). Since the function pug(u) is even, we have
N(0) = 0. Thus, we can conclude that the deriva-
tive @'(0) of the fraction N(z)/D(z) is equal to
N'(0)/D(0).

Let us compute N'(0) and D(0). From pc(u,0) =
po(u), we conclude that D(0) = [ po(u) du, and, since
the function ug(u) is even, we conclude that D(0) =

2 fOA o (u) du.

Let us now compute N'(0), i.e., equivalently, the linear
term N'(0)-z in the expression N(z) = N'(0)-z+o(x)
for small negative z. When z is negative small (|z| <
A), only two properties of x are satisfied with non-zero
degree: “x is negligible” with the membership function
to(z) = 1+ ui(0) -z +o(z), and “z is small negative”,



with the membership function p_1(z) = po(z + A) =
0+ pp(A) -z + o(z). For these two membership func-
tions, only two rules are applicable: “if Mg(z) then
No(u)” (we will denote it by Ry) and “if M_;(x) then
Ni(u)” (we will denote this rule by R»). The cor-
responding membership functions for w are different
from 0 only when u € [—A, 2A], so the resulting func-
tion pe (u,x) can only be different from 0 for such val-
ues u. We can, therefore, represent the integral N (x)
as the sum of two integrals Ny (z) = ffA u-pc(u, ) dz
and No(z) = sz u - pc(u,x)ds.

Let us start with the integral Na(z). When u €
[A,2A], only the rule Rs is applicable. For this rule,

po(u,x) = p2 = fe(p—1(x), p(u)) =

fe(uo(B) - @ + o(x), po(u — A)).

When one of the arguments of the “and”-operation is
close to 0, we get

fu(zt) =971 (W(2) - 9(t) =

W' (0)29 () +o(2)) = (Y1) (0)4'(0)-2-9(t) +o(2).

Using the formula for the derivative of the inverse func-
tion, we conclude that fg(2,t) = z-19(t) + o(2). Thus,
in our case,

po(u, ) = p2 = pg(A) - @ - Y(uo(u — A)) + o(x).

Hence, the corresponding integral No(x) can be repre-
sented as x - N5(0) + o(x), where

2A
N0 = (&) [ uwlpo(u—A) du

It is beneficial to use a new variable v = u — A which
runs from 0 to A. In terms of this variable, N;(0) =

1h(A) - [0+ A) - (o (v)) do.

Let us now compute Nj(0). The integral N;(z) is ob-
tained when u goes from —A to A. Alternatively, we
can say that u goes from 0 to A, but for each such u,
we can add the values which correspond to v and —u,
i.e., we can represent N;(z) as

A
/0 [u- po(u,z) + (—u) - po(—u, z)] du =

A
jﬁ u - [ (4, 7) — pe(—u, 2)] du.

Let us find the explicit expressions for the integrand.
For —u € [—A,0], only the rule R; is applicable; so,
pe(—u,z) = p1 = fe(po(—u), po(z)). For small z,
po(z) = po(1) + 2 - pp(0) + o(z). Here, po(1) = 1.

Since po is an even function, we have po(—u) = po(u)
and pg(1) = 0; hence,

po(—u,x) = p1 = fe(po(u), 1+ o(x)) =
fe(po(u),1) + o(x) = po(u) + o(x).

When u € [0,A], both rules R; and R, are appli-
cable, and so, puc(u,z) = fy(p1,p2). We know that
p2 = O(zx), so we can conclude that fy(pi,p2) =
¢ Hplpr) +o(p2)) = ¢~ (1) +¢'(0) - p2+o(p2)) =
¢ H(p(p1)) + (97 1) ((p1)) - p2 + 0(p2). By definition
of the inverse function, ¢~*(¢(p1)) = p1. Due to the
formula of the derivative of the inverse function, we
conclude that (¢=1)(o(p1)) = 1/¢'(p1). Thus, we
have fy(p1,p2) =p1 + ¢'(0) - p2/¢'(p1) + o(p2)-

We already know that p; = po(u) + o(z) and that
pe (—u, ) = po(u) + o(x), so pc (u, x) — po(—u,C) =
@' (0) - pa/¢'(1o(u)) + o(z). Substituting the known
expression ps = pH(A) -z - Y(po(u — A)) + o(z) into
this formula, and using the fact that po(u) is an even
function, we conclude that pc(u,z) — pc(—u,z) =
z-¢'(0)- po(A) -4 (o (A —w)) /¢ (po(u)) + o). Hence,
the corresponding integral Ny (z) can be represented as
x - N{(0) + o(x), where

u po(A — w)
Sy

A
M@FHMAVA ¢/(0)

We thus know the values of Nj(0), N4(0), and D(0).
Hence, we can now compute the desirable value u'(0) =
N'(0)/D(0) = (Ni(0) + N5(0))/D(0):

The resulting formulas.

W (0)] = h ()] 5,

where
A
B=2 [ pofw)du,
0
and
A
A= / a(u) du,
0
with

u - P(po(A — u))
@' (po(u))

a(u) = (u+ A) - P(po(u)) + ¢'(0) -

These formulas are a modification of Sugeno
integral. These formulas involve both the fuzzy logic
operations (via the functions ¢ and ¢ that describe
these operations) and the normal arithmetic opera-
tions. Therefore, these formulas describe the desired
modification of Sugeno integral.

Comment 1. The main ideas (but not the results) of
such an estimation can be found in [4, 9]; the main



difference between those papers and this new one being
as follows:

e In [4, 9], we were looking for “and” and “or” op-
erations that lead to the most stable and, corre-
spondingly, the most smooth control.

¢ In this paper, we do not necessarily restrict our-
selves to these two pairs of operations, because we
realize that there are many other possible objec-
tives of control. Instead, we analyze the degrees
of stability and smoothness for an arbitrary choice
of “and” and “or” operations.

Comment 2. Tt is desirable to relate our results to re-
cently proposed modifications of Sugeno integral, e.g.,
to t-norm based fuzzy integral proposed by M. Gra-
bisch, T. Murofushi, and M. Sugeno, and to Choquet-
like modifications proposed by R. Mesiar, etc.
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