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I. INTRODUCTION

A. Why Bisect a Box?

Several important numerical optimization
methods, especially methods with automatic re-
sults verification, contain the following bisection
step (see, e.g., a survey [2]): at any given moment
of time, we have a set of “boxes” (i.e., sets of the
type [a1,b1] X ... X [an,by]) that contain potential
optima of the given function ¢(z1,...,x,). To pro-
ceed, we must divide one of these boxes into two
smaller ones.

B. Where to Bisect a Box?

The Problem

We can bisect a given box in n different ways,
depending on which of n sides we decided to halve.
So, the natural question appears: which side should
we cut? i.e., where to bisect a given box?

Traditional Bisection
Historically the first idea was to cut the longest
side (for which b; — a; — max).

Ratz’s Bisection is Better

Ratz has shown (in [3, 4]) that much better re-
sults are achieved if we choose a side ¢ for which
|d;|(b; — a;) — max, where d; is the known approx-
imation for the partial derivative
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Is Ratz’s Bisection Optimal?
This is a purely experimental result, without a
theoretical explanation. So, the natural question is:
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e is Ratz’s box-splitting strategy really the best
one, or

e is it simply better than the ones known be-
fore, but an even better bisection strategy is
possible?

In this paper, we show that (under certain reason-
able assumptions) natural conditions really lead to
Ratz’s bisection.

II. INFORMAL (HEURISTIC)
JUSTIFICATION OF RATZ’S BISECTION

Before we start a formal analysis of this prob-
lem, let us given an informal (heuristic) justification
of Ratz’s method.

One of the natural goals of bisection is to mini-
mize the range of values of the optimized function ¢.
Most optimization methods are first order methods
in the sense that at any given moment of time, we
have estimates f for the value of the optimized func-
tion ¢ and d; for the values of its derivatives. Based
on these estimates, we can estimate the range of
values ¢([a1,b1], ..., [an, by]): namely, if we assume
that all the intervals are narrow, we can approxi-
mate the function ¢ by a few first terms in its Tay-
lor series. Since we only know the first derivatives,
it is natural to use a linear approximation:

go(xl, cee ,Z‘n) ~ @approx(xlv ey xn);

where
@approx(xla---yl‘n) :f+zdz(-rl_cl)7 (1)
=1

and ¢; = (a; + b;)/2 is a midpoint of i—th side.
When z; € [a;, b;], the largest possible value of
Capprox(T1, ..., Tn) is attained when each z; = b;
for d; > 0 and x; = a; for d; < 0. Hence, this
largest values is equal to Y |d;|(b; —a;)/2. Similarly,
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the smallest possible value of Qapprox(T1,. .., %) is
equal to — Y |d;|(b; — a;)/2. Hence, the range of ¢
is approximately equal to

n

D |dil (b — a).

i=1

Our goal is to choose a bisection after which this
range becomes the smallest possible. When we bi-
sect i—th side, the i—th term in this sum halves.
So, to get the smallest possible range after bisection,
we must choose a side i for which the corresponding
term is the largest possible. This is exactly Ratz’s
bisection strategy.

Comment. This explanation is only applicable when
the box is already narrow. But the whole idea is
to find the best bisection for the cases when the
boxes are wide. So, this explanation is a heuristic
argument in favor of Ratz’s method, but it does not
answer the question of whether this method is in-
deed the best for boxes of arbitrary size. To answer
that question, we need a more formal analysis of
this problem.

III. OUR MAIN IDEA

We want to design a method that, based on the
estimate f for the function, on the estimates d; for
its derivatives, and on the coordinates a;, b; of the
box, chooses a side to be bisected.

There are some cases when the choice is clear:
e.g., when all estimates d; are the same (d; = do =
... =dy), then it makes sense to bisect along the
longest side (b; — a; — min).

To choose a method in the general case, we will
apply the following idea: The main objective of nu-
merical algorithms is to solve real-life problems. In
real-life problems, the numerical values of the vari-
ables x1,...,x, depend on the choice of the mea-
suring units:

o If, e.g., x1 is length, and we originally mea-
sured length in inches, then we could switch
to centimeters and get new numerical values
x} = Axy (where A =1 in/1 cm).

e If e.g., x3 is a spatial coordinate, then we can
define it as going in an opposite direction, thus
changing z3 into =5 = —xs.

In general, the numerical value of a physical quan-
tity z; is defined modulo an arbitrary re-scaling

The optimal optimization algorithm should not
depend on what exactly units we use, because oth-
erwise, if it works optimally for inches, and differ-
ently for centimeters, it will thus not be optimal for
the centimeters! As a result, the optimal method
of choosing a bisection should not change when we
apply arbitrary linear transformations.

Under transformations (2), the values of the
function remain unchanged, the coordinates of the
box change accordingly, and the partial derivatives
change as

dp 1 Oy
— — .

It is therefore natural to require that the estimate
d; for the partial derivative change as d; — d;/k;.
Now, we are ready to formalize this idea.

IV. FORMALIZATION OF OUR IDEA
AND THE MAIN RESULT

Denotation. Let I denote the set of all (closed)
intervals on the real line R. For an interval [a,b]
and a real number k, the product k - [a,b] is defined
as |ka, kb] if k > 0 and [kb, ka] if k < 0.

Definitions. Let an integer n > 1 be fixed.

e A function

S(fa d17 e 7dn7 [a17b1]7 ey [anvbn])
from R" ™ x I" to {1,...,n} is called a bisec-
tion strategy if for dy = ... = d,, its value is

equal to i for which the width b; — a; of the
interval [a;, b;] is the largest.

e By a re-scaling, we mean a transformation

di

f—f di— T @i, bi] — K - [ai, bil,

where k; # 0 are real numbers.

e A bisection strategy is called invariant if the
value of the function S does not change under
an arbitrary re-scaling; in other words, if

d dn
S<f7éa"'aE7kl'[ahbl]w"akn'[anabn]) =
S(fa d17 ... 7dna [ahbl]a ey [anybn])
for all possible numbers f,dy,...,d,, for all
possible intervals [a1,b1], ..., [an, bs], and for

all possible ky, ..., k.
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PROPOSITION. The only invariant bisection
strategy is choosing i for which |d;|(b; —a;) — max.

So, we get a justification of Ratz’s bisection strat-
egy.

Idea of the Proof

It is easy to check that Ratz’s strategy is indeed
invariant.

Let us now show that every invariant strat-
egy has the desired form. Let an arbitrary tuple
(f,d1,...,dn,[a1,b1], ..., [an,by]) be given. To find
the value of the invariant bisection strategy S for
this tuple, let us take k; = d;. Then, from invariance
of S, we conclude that the original choice coincides
with choice for the new tuple

(ffsdy, .o dy, [ay, 0], lan, b)) =
d dy,
(f’ilw"yiadl'[a’lvbl]a"'adn'[anvbn]):
k1 k
(fa]-v"'a]-vdl : [alabl]a'“vdn : [anabn])
For this new tuple, di = ... = d), (= 1), there-

fore, according to the definition of the bisection
strategy, we must choose ¢ for which the interval
[a;, bi] = d; - [a;, b;] is the widest. The width of i—th
interval [a}, b}] = d;-[a;, b;] is equal to |d;|(b;—a;), so,
we choose i for which |d;|(b; — a;) — max. Q.E.D.
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