OO OR NOT 00O: WHEN OBJECT-ORIENTED IS BETTER
QUALITATIVE ANALYSIS AND APPLICATION TO SATELLITE IMAGE PROCESSING

Ann Gates, Vladik Kreinovich, Leticia Sifuentes, and Scott Starks
Department of Computer Science and
NASA Pan-American Center for Environmental and Earth Studies (PACES)
University of Texas at El Paso, El Paso, TX 79968, USA
emails {agates,vladik,leticia}@cs.utep.edu, sstarksQutep.edu

Choosing o Software Methodology: an Important
Problem of Software Engineering

In software engineering, there are currently
many methodologies of designing software. Each
methodology has its own advantages and draw-
backs, and it is therefore very important to choose
an appropriate methodology for each problem. Un-
fortunately, this choice is often made by trial and
error. For big software projects, this trial-and-error
approach can be very time- and resource-consuming.
It is therefore desirable to come up with reasonable
recommendations that would help designers choose
the optimal software design methodology.

0O or Not 00%

One of the major choices in designing a soft-
ware, a software package for data processing or
a database, is whether we should use an object-
oriented approach. “Object-oriented” (OO, for
short) is a “hot” word. This term includes many
useful features, one of them being the extreme
reusability. Of course, programmers have been aim-
ing at reusability long before OO methodology was
formulated: suffice it to say that reusability is one
of the main reasons behind modularity, the idea of
designing a software product as a collection of inde-
pendently usable modules. However, only the OO
methodology makes an extreme use of reusability:

e in pre-O0 programming, the major require-
ment for a module is that it should work
correctly under the conditions in which it is
used in this particular software package; if
the corresponding pre-conditions are not sat-
isfied, the module may not necessarily work
correctly;

¢ in OO programming, software components are
designed to serve as independent objects, that
must simulate, as closely as possible, real-life
objects, and must, therefore, be as generally
applicable as possible.

Of course, the more reusable the module, the bet-
ter, so at first glance, using OO is always an advan-
tage (and this is exactly what OO proponents say).
However, as every other advantage, this additional
reusability comes at a price:

e to make a module more reusable, we impose
more requirements on it (by requiring that it
always work correctly, even when the precon-
ditions are not satisfied);

e this additional requirement makes a module
more difficult to write and slower to run.

So, to make a meaningful choice of a software
methodology, we must weigh its advantages (e.g.,
reusability) versus its potential disadvantages (e.g.,
increased complexity and running time).

Comment. The reader should bear in mind that
although reuse is an import part of object orienta-
tion (O0), object orientation is more than unlimited
reuse. In this paper, however, we will only handle
the reuse aspects of OO.

Our Results and Future Work

In this paper, we present several preliminary re-
sults that will help in deciding whether we want a
full reusability (as in OO) or a limited one (as in
more traditional, pre-OO modular programming).
These results will deal with the two major aspects
of the resulting software: complexity (broadly un-
derstood) and accuracy.

These results are very preliminary:

e First of all, they are still mainly qualitative.

e Second, they only cover reusability, while OO
methodology has other advantages, such as
inheritance from class to class etc. (and, of
course, this additional advantages may also
take a toll on implementation complexity and
running time).

OO Or Not OO: When Object-Oriented is Better

Formulation of the Problem
For every possible input z, let us denote the
desired output by f(x). We have two alternatives:

e We can design a program that computes f(z)
for every x (this alternative corresponds to

00).

e Alternatively, we can design a program that
computes f(z) only for those z that sat-
isfy a certain pre-condition P(z). This pre-
condition is usually computable (i.e., algorith-
mically checkable).

In order to make a reasonable choice, we must
check whether with pre-condition, we can really get
a simpler program.

What is Known About This Problem

This problem has been actively studied in the
theory of computing, where problems with a fixed
pre-condition are called promise problems (see, e.g.,
[4]); this name comes from the fact that we promise
that when the algorithm will be used, all inputs x
will satisfy the pre-condition P(z).

The general question of comparing promise
problems with the corresponding unrestricted prob-
lem is very difficult, and only for a few pre-
conditions, we know the answer to this question.

Intuition of Software Developers: Why Use It and
an Example

Since there are no results that are general
enough for our task, we have to use, instead, the
software developers’ intuition, experience, and com-
mon sense.

One important part of this common sense
knowledge (confirmed by experience) is as follows:
whether we should use the pre-conditions or not de-
pends on how complicated these pre-conditions are:

e If the pre-conditions are easy to describe and
understand (e.g., they say that some values
are positive, or that some other values be-
long to a certain interval, etc.), then such pre-
conditions often help, and although there is no
guarantee that using these pre-conditions will
indeed lead to a simpler program, it is worth
trying to simplify the program by imposing
these pre-conditions.

¢ On the other hand, if the user describes
his pre-conditions in highly technical and
difficult-to-understand form, e.g., by saying
that a certain integro-differential inequality
must always be satisfied by the input data,

then, for reasonably simple programs, it is eas-
ier to forget about these pre-conditions and
write the most general possible module in-
stead.

We will show that on the qualitative level, this in-
tuition be formally justified.

Intuition Justified

Let p1(z) be a program that computes f(z) for
all z, and let pa(z) be a program that computes f(x)
only for those z for which P(z) is true. It is quite
possible that ps(x) = f(z) also for some z that do
not satisfy the original pre-condition. In this case,
we can say that the program ps(z) works correctly
under a weaker pre-condition P, (x), namely, under
a pre-condition that ps(z) = p1(x).

To check this new pre-condition, it is sufficient
to apply both programs p;(z) and ps(z) and check
whether p; () = p2(z). If both programs p; (z) and
p2(z) belong to a certain asymptotic-time complex-
ity class (see, e.g., [5]), e.g., if both require linear
time, or both require quadratic time, etc., then the
new pre-condition P, (x) also requires a similar com-
putation time. Thus:

e if we have a program p; (z) that computes f(z)
for all z, and

e if the pre-condition P(z) is more complicated
than the function f(z) in the sense that it
takes asymptotically longer to check P(z)
than to compute f(z),

e then our only hope for designing a faster
(simpler, etc.) program ps(z) that computes
f(z) under the pre-condition P(z) is to find
a weaker pre-condition P, (z) that is easier
to check, and to only use this easier pre-
condition.

This conclusion is in perfect accordance with the
above intuition: if no such weaker and easy-to-check
pre-condition can be found, then we cannot simplify
the program by using the pre-condition and there-
fore, we have to design this program to be as general
as possible.

Often, Computation Time is Less of a Problem, but
Accuracy is a Problem

In real-time system, the main objective is to be
able to complete the computations on time: e.g., to
compute the desired trajectory control before it is
too late to use it. However, in many other prob-
lems, where computations are off-line, it is OK to
spend an extra time on computations if this extra

OO Or Not OO: When Object-Oriented is Better

time will lead to better, e.g., more accurate compu-
tation results.

Case Study

A typical example of such a problem is the
problem of extracting environmental and geophysi-
cal data from satellite images.

Towards the Mathematical Formulation of a Prob-
lem: Preliminaries

Let us denote by n, the total number of in-
put values, and by z;, the quantity measured in -
th measurement. Let y denote the quantity whose
value we want to estimate as a result of these mea-
surement, and let § = f(&1,...,%,) denote an al-
gorithm that transforms the measured values Z; of
the quantities x; into an estimate § for the desired
quantity y.

For example, for the environmental analysis of
a satellite photo, n is the total number of pixels, z;
is the brightness of i-th pixel, and y is, e.g., the total
pollution index.

When the signals z; are strong, we usually do
not have a problem of determining the desired val-
ues; in such situations, no serious filtering or data
processing is needed. The real need for complicated
data processing appears when we have weak signals
z; &~ 0. When z; ~ 0, we can neglect terms that are
quadratic, cubic, etc., in z; and only consider lin-
ear terms. As a result, the general data processing
algorithm f(Zi,...,%,) can be written as a linear
function: g = fo+ f1-Z1 + ...+ fn - Tn-

Measurements are not 100% accurate; as a re-
sult, the measured values #; may differ from the
actual values z;. Due to these measurement er-
rors Ax; = Z; — x;, the resulting estimate ¢ dif-
fers from the actual value y by the error Ay =

The question is: can we decrease this error by
using pre-conditions?

Towards the Mathematical Formulation of a Prob-
lem: Pre-conditions

In general, pre-conditions can be highly non-
linear. However, since z; are small, we can always
assume that the pre-condition has the linear form
PL X1+ ...+ Pn"Tn =DPo.

Towards the Mathematical Formulation of a Prob-
lem: Statistical Accuracy

In this section, we will assume that the mea-
surement errors are of statistical nature, and that
we know the probabilities of different measurement
errors. Usually, each measurement error is the result

of a simultaneous action of several small factors, and
therefore, by using the central limit theorem (see,
e.g., [6]), we can conclude that each measurement
error is normally distributed.

It is reasonable to assume that for each mea-
surement, the average error is zero: otherwise,
we can re-calibrate this measuring instrument and
make it 0. So, we have a Gaussian distribution with
0 average for each measurement error Az;. It is
known that such distribution is uniquely determined
by the corresponding standard deviation o;.

Without losing mathematical generality, we can
assume that all n measurements have the same ac-
curagcy, i.e., that o1 = ... = 0, = 0; indeed, other-
wise, we could consider new variables =}, = z;-(c/0;)
instead of z;, and correspondingly re-define the co-
efficients f;.

It is also reasonable to assume that errors of dif-
ferent measurements are independent random vari-
ables. In this case, the mean square deviation of Ay
is equal to (f +...+ f2)-o>.

If we take the pre-condition) p; - x; = po into
consideration, then instead of computing y as >, f;-
x;, we can alternatively pick a real number a and
compute y as) (fi + a - p;) - 2; — a - po. For this
new algorithm, the resulting accuracy is equal to

o Y (fi +a-pi)?

o If this expression attains its minimum for a =
0 or a =~ 0, then using the pre-condition does
not decrease the error. In this case, OO is
better.

e If, on the other hand, the minimum is attained
when a # 0, then non-OO restriction does
lead to a substantial error decrease. In this
case, not OO is better.

When is OO Better?

The minimum of the above expression is at-
tained for @ = 0 if and only if the derivative of
this expression with respect to 0 is equal to 0, i.e.,
if > fi-pi = 0. So, if we know the exact values of
fi and p;, then whether we should use OO or not
depends on whether this equality is true.

However, in practice, we often learn the exact
values of f; and p; only at a certain advanced stage
of software development. For such situations, it is
desirable to have a general recommendation that
would depend only on the number of measurements
n.

In vector terms, the expression Y f; - p; de-
scribes a dot (scalar) product of two vectors f =
(f1,---,fn) and = (p1,---,Pn), and the condition

OO Or Not OO: When Object-Oriented is Better

f - p = 0 means that the vectors f and p are orthog-
onal to each other. Since we are assuming that we
only know n, and that we do not know the vectors
f and P, we can assume that the vectors § and f
are randomly distributed in some reasonable sense.
Then, the question is: are two random vectors or-
thogonal to each other?

To answer this question, we must describe what
“random” means. Orthogonality does not depend
on the length of the vectors, only on their directions,
so, without losing generality, we can assume that
both f and p are independent unit vectors. In this
case, the scalar product is simply equal to the cosine
of the angle between these vectors. A unit vector is
uniquely described by the corresponding point on a
unit sphere; it is natural to require that the prob-
ability be invariant relative to arbitrary rotations;
this property uniquely determines the probability
as proportional to the (n — 1)-dimensional area of
the surface of the sphere.

When f and P are both unit vectors, their scalar
product f - P can take any value between —1 and 1.
The average value of this scalar product is 0 (be-
cause, e.g., we can replace f by — f, the probabilities
will remain the same, but the average will change
the sign). To compute the standard deviation of
f - P, we can take into consideration the fact that
if we rotate both vectors, then the scalar product
remains unchanged. We can thus rotate the first
vector so that it goes into € = (1,0,...,0); then
the rotated second one remains a random vector.
Hence, the scalar product of two random vectors is
equal to the scalar product €- f = f; for a random
vector unit f = (f1,. .., f). The mean square value
of this scalar product is equal to the mathematical
expectation E[fZ], and from fZ +...+ f2 =1, we
conclude that E[fZ] = 1/n. Thus, the standard
deviation of the scalar product is equal to 1/y/n.
Using three sigma rule from statistics, we conclude
that this scalar product cannot exceed 3/4/n. Thus:

e When 3/4/n < 1, i.e., when n > 9, random
vectors are orthogonal and OO is better (this
is the case with satellite images, where n is
indeed huge).

e On the other hand, for small n, non-OO may
be better (and it can indeed be better; see,
e.g., robotic application in [1]).

In many practical cases, we do not know the
probabilities of measurement errors; we only know
the upper bounds A; on the errors (see, e.g., [2, 3]).
In this case, similarly to the statistical case, we can
assume, without losing generality, that Ay = ... =

A,, = A. Under this assumption, the largest possi-
ble error Ay is equal to (3 |fi]) - A

If we take the pre-condition into consideration,
then we get (3_ |fi +a-pi|) - A instead. Here, OO is
also better when this expression has a 0 derivative
for @ =0, i.e.,, when Y sign(f;) - p; = 0.

One can show that for random vectors f and
P this expression has a similar standard deviation
as in the statistical case, and therefore, OO is also
better for large n (> 9).

ACKNOWLEDGMENTS

This work was supported in part by NASA un-
der cooperative agreement NCCW-0089, by NSF
grants No. DUE-9750858 and No. EEC-9322370,
and by Future Aerospace Science and Technol-
ogy Program (FAST) Center for Structural In-
tegrity of Aerospace Systems, effort sponsored by
the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant number
F49620-95-1-0518.

The authors are thankful to Misha Koshelev
and to Luc Longpré for valuable discussions, to
George Corliss for editorial help, and to the anony-
mous referees for valuable advices.

REFERENCES

[1] Fuentes, O.L.; et al.; Telemanipulation: the
virtual tool approach and its interval-based
justification, These Proceedings.

[2] Kearfott, R.B.; Rigorous global search: con-
tinuwous problems, Kluwer, Dordrecht, 1996.

[3] Kearfott, R.B.; Kreinovich, V.(eds.); Applica-
tions of Interval Computations, Kluwer, Dor-
drecht, 1996.

[4] Longpré, L.; Selman, A.L.; Hard promise
problems and nonuniform complezity, Theo-
retical Computer Science, 1993, Vol. 115, No.
2, pp. 277-290.

[5] Papadimitriou, C.H.; Computational Com-
plezity, Addison Wesley, San Diego, 1994.

[6] Wadsworth, H.M. (editor); Handbook of Sta-
tistical Methods for Engineers and Scientists,
McGraw-Hill Publishing Co., N.Y., 1990.

OO Or Not OO: When Object-Oriented is Better

References

[1] L. O. Fuentes et al., “Telemanipulation: the vir-
tual tool approach and its interval-based justifi-
cation”, These Proceedings.

[2] R. B. Kearfott, Rigorous global search: continu-
ous problems, Kluwer, Dordrecht, 1996.

[3] R. B. Kearfott and V. Kreinovich (eds.), Appli-
cations of Interval Computations, Kluwer, Dor-
drecht, 1996.

[4] L. Longpré and A. L. Selman, “Hard promise
problems and nonuniform complexity”, Theoret-
ical Computer Science, 1993, Vol. 115, No. 2, pp.
277-290.

[5] C. H. Papadimitriou, Computational Complez-
ity, Addison Wesley, San Diego, 1994.

[6] H. M. Wadsworth, (editor), Handbook of Sta-
tistical Methods for Engineers and Scientists,
McGraw-Hill Publishing Co., N.Y., 1990.

