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Abstract

In this paper, we show that fuzzy theory can explain heuristic methods in inverse problems and
numerical computations. As an example of application of these results, we analyze the problem of
detecting business cycles from fuzzy data.

1 Inverse Problems

Inverse problems: brief reminder. One of the main problems of data processing is the inverse problem:
we observe the signal y after it has passed through some medium, and we want to reconstruct the original
signal z (i.e., we want to reconstruct the original image x from the results y of astronomical measurements).

When the original signal is strong enough, i.e., when the signal-to-noise ratio is high, the signal arrives
practically un-changed (y &~ ), so reconstruction is rather easy (we can even take the observed signal y as
a reasonably good approximation to original signal x).

The inverse problem becomes complex when the original signal x is weak, i.e., when the signal-to-noise
ratio is small. In this case, we can expand the dependence of y on = into a Taylor series and neglect quadratic
and higher order terms in this expansion. Thus, we have a linear dependence y = Az + b (for some matrix
A and vector b), and we get a linear equation that we have to solve in order to reconstruct x:

Axr = ¢,

where ¢ = y — b, y is measured, A and b are known, and = has to be determined. For example, when we
reconstruct how a single x depends on time x = z(t), we get a linear integral equation

/A(t, t) - x(t')dt = c(t),
where ¢(t) = y(t) — b(t), y(t) is a measured signal, and b(t) is a known correction. If we want to reconstruct

an image x, i.e., the dependence of brightness x on two spatial coordinates z; and zo (z(z1,22)), then we
must solve a 2D integral equation

/ Ay, w9, 2, 2) - 2y, ) dardas = efar, a),



where c(x1,x9) = y(x1,22) — b(x1, 22), y(z1,z2) is a measured (distorted) image, and b(z1, z2) is a known
correction.
Inverse problems are often ill-defined. In principle, it is well know how to solve linear equations.
However, linear equations which appear in inverse problems are often difficult to solve because they are
ill-defined: a small change in ¢ can lead to a drastic change in the solution = (see, e.g., [6]). The reason for
this is that often, the distortions in signal transmission smoothen the signal. As a result, e.g., the value y(t)
of the measured signal at a moment ¢ depends not only on the value xz(t) of the original signal at the same
moment of time, but also on the values in the nearby moments of time (similar, the image gets blurred). In
the simplest case, when .

vy =g [ alt=s)ds
one can easily explain how smoothing leads to ill-definedness: if we add a high-frequency component Az(t) =
¢-sin(w - t) to the original signal z(t), then the measured signal y(t) gets changed by Ay(t) = ¢/w, i.e., for
large w, by a really small value. Thus, adding this very small value Ay to y may lead to a drastic change
Az = ¢ in z(t), which is exactly what we mean by saying that the inverse problem is ill-defined.

A typical practical example of an ill-defined problem is an interpolation problem: we know the values
x(t1), xz(ta), ..., z(t,) of some quantity = at different moments t1,...,x,, and we want to find the
values z(t) for all moments of time ¢. One possible extrapolation method is to find a polynomial which
passes through all these points. Such a polynomial (called Lagrange polynomial) always exists, but it
is well known that a small change in the values z(¢;) can lead to a huge change in z(t) for t # t;.

In mathematical terms, “ill-defined” means that the matrix A is almost degenerate, some of its eigenvalues
are very small, and as a result, the inverse matrix A~! (for which # = A~'c) has some very large eigenvalues.

From the practical viewpoint, solving ill-defined problems is difficult, because all measurements (including
measurements of y) are imprecise, and small measurement inaccuracy in y can lead to a huge inaccuracy in
the reconstructed signal x.

Regularization: a brief reminder. One of the main methods of solving ill-defined problems is to regularize
these problems, i.e., e.g., to replace the original equation

Az =b (1)

by a regularized equation
Az +a-z=b (2)

for some small real number o > 0 (see, e.g., [6]).
This replacement indeed makes the problem less ill-defined:

e As we have just mentioned, in matrix terms, ill-defined means that the eigenvalues of the inverse matrix
A~1! can be arbitrarily large, because the eigenvalues of the matrix A can be very close to 0.

e On the other hand, e.g., when a matrix A is non-negatively defined, i.e., when all its eigenvalues are
non-negative, then the eigenvalues of the new matrix A’ = A+ « are all greater than or equal to o > 0
(i.e., cannot be too close to 0), and so all the eigenvalues of the inverse matrix (4’)~! are bounded
from above by a~! (and cannot, therefore, be arbitrarily large).

How to choose a regularization parameter? The larger o, the smaller the effect of ill-definedness, i.e.,
the smaller the effect of the errors in y on the reconstructed value x. Hence, from the viewpoint of reducing
ill-definedness, we should take « as large as possible.

However, we cannot take « to be too large, because then, the coefficients (A and A + «) in the equations
(1) and (2) become drastically different and therefore, the solution of the equation (2) becomes drastically
different from the desired solution of the equation (1). So:

e we cannot choose a very small «, because then the problem will still be ill defined, and

e we cannot choose a very large «, because then the solution of the regularized problem will be too much
distorted in comparison with the original signal.



In short, a choice of the parameter « can seriously affect the quality of the reconstructed signal and therefore,
the problem of choosing the optimal value of « is one of the main problems of regularization.

We want to find « for which the reconstruction is the most adequate, i.e., for which the reconstruction
error, i.e., the difference Az = T — x between the reconstructed signal T and the actual signal x is the
smallest possible. Therefore, to find such optimal «, let us estimate the error Azx.

Estimating the reconstruction error. Let us first consider the simplified situation, in which we know
the original signal x. Then, we should get y = Az + b; however, in reality, we get due to measurement
errors Ay, we get a slightly different value y = Az 4+ b+ Ay. Therefore, the right-hand side ¢ = iy — b of the
equations (1) and (2) takes the form ¢ = Az + Ay. Substituting this right-hand side into the equation (2),
we get

T=(A+a) Az + Ay).

Thus, the difference £ — x between the reconstructed and the actual signal x can be represented as a sum:

Az = Ay + Ay, (3)
where
Ay = (A+ o) H(Ax) — (4)
and
Ay = (A+a) tAy. (5)

In reality, we do not know x, but usually, we can assume that the reconstructed signal x is a good approx-
imation to the actual signal x. Therefore, we can replace z by Z in the formulas (4) and get a reasonable
estimate

Ay =(A+a) H (A7) - 7. (4a)
The resulting expression (3), (4a), (5) means that the reconstruction error Az consists of two components:

e the first component A; is caused by the fact that, since o # 0, the equation (2) which we are solving is
somewhat different from the original equation (1); the larger «, the larger this difference, and therefore,
the larger this error component Aq;

e the second component A, is caused by the measurement error Ay; when a = 0, this error can be huge;
the larger «, the smaller this error component.

Fuzzy approach to choosing a. We want the resulting error to be as small as possible. Therefore, we
want the first error component A; to be small and the second error component As to be small.

For the first component, by “small” we mean that some reasonable norm d; = ||Aq| of the vector A;
should be small: e.g., the largest possible component of the vector A;, or the means square (i.e., [2-norm)
of this vector.

The second component As depends on the random error Ay, so its norm ||Ag|| will also depend on this
(unknown) error. For this component, when we say “small”, we mean that, e.g., a mathematical expectation
d2 = E[||Az]|] of this norm should be small.

The smaller both components, the better. However, we cannot simply claim that we want §; to be the
smallest possible and that we want d2 to be the smallest possible, because d; is the smallest (equal to 0)
when o = 0, but the second component is the smallest when o = oco. So, we cannot directly formulate
the problem of choosing the best « as a crisp optimization problem. Instead, let us formulate it as a fuzzy
problem (for basic notions of fuzzy logic, see, e.g., [1, 5]).

We want to find the value « for which the property “d; is small and Jo is small” is satisfied to the largest
extent, i.e., for which the degree of satisfying (of truth, of membership) for this property is the largest
possible. This degree can be obtained from the degrees of truth that d; is small and that Jo is small by using
a t-norm (a fuzzy analogue of “and”). Let us use the simplest possible t-norm a&b = min(a,b). Then, we
are looking for the value « for which

min(ﬂsmall(al)a ,Ufsmall((;Q)) — HEIL (6)



where figman(z) is a membership function which describes the fuzzy term “small”. Clearly, psman(0) = 1,
and the function pisman(z) monotonely (and continuously) decreases as z increases.

Since the equation (6) uses the membership function for “small”, it may seem, at first glance, that the
resulting choice of a should be different for different membership functions, so we would have to select a
specific membership function to make a selection of a.. Interestingly, it turns out that the optimal value of
« does not depend on the choice of the membership function at all:

Proposition 1. For the optimization problem (6), the optimal value of « is the value for which 61 () = da(a).

Comment. In other words, the optimal choice of « is when the error components are equal to each other.
This choice has been earlier proposed as a successful heuristic (see, e.g., [7]). Our Proposition shows that
fuzzy logic can provide a justification for this heuristic.

The very fact that fuzzy logic can provide a justification for a crisp heuristic should not be surprising:
other examples of this type (and even examples related to inverse problems) are given in [2, 3, 4]).

Proof of Proposition 1. The proof of this Proposition is based on the following Lemma:

Lemma 1. Let f(a) = min(g1(«), g2()), where:
e gi1(a) >0 is a continuous strictly increasing function for which g1(0) =0, and
e go(a) >0 is a continuous strictly decreasing function for which ga(a) = 0 as @ — 00.

Then, the function f(«) attains its mazimum at a single point in which g1(a) = ga().
Proof of Lemma 1. Since both functions g1 («) and g»(«) are continuous, their difference d(a) = g1 (o) —
g2(a) is also continuous.

e When a = 0, we have g1(a) = 0 and g2(0) > 0 (since g5 is strictly decreasing and tends to 0 at 0o), so
d(0) = g1(0) — g2(0) <0.

e When oo — 0o, we have g1 (o) > 0 and increasing and g2(a) — 0, so d(«) > 0 for sufficiently large .

The continuous function d(«) passes from a negative to a positive value, and therefore, it has to attain the 0
value somewhere; hence, there exists a value ag for which d(ag) = g1() — g2(p) = 0 and g1 (ag) = g2 (o).

Let us show that the function f(«) attains its maximum for o = ag, and that this is the only maximum
point of f(a). In other words, we need to show that if @ # «g, then f(a) < f(ap). We will prove this
inequality by considering two possible cases: a < o and a > «p.

e If a < a, then, due to monotonicity of the functions g;, we have

g1(a) < g1(ao) and ga2(ap) < g2(e).
By the choice of «g, we have
g1(a) < g1(an) = ga(an) < ga(a).
Therefore,
f(a) =min(gi(a), g2(a)) = g1(a) < g1(ao) = f(ao).
In other words, if o < a, then f(a) < f(ao).

e If a > «p, then, due to monotonicity of the functions g;, we have

91(@) > g1(ao) and g2(ag) > ga(e).
By the choice of ag, we have
gi(a) > gi(ao) = g2(0) > ga(a).
Therefore,
f(a) = min(g1(a), g2(a)) = g2(a) < g2(a0) = f().
In other words, if a > ap, then f(a) < f(ao).
In both cases, we have the desired inequality, and thus, the lemma is proven.

The proposition follows from the Lemma because of the assumed monotonicity and continuity of the
membership function pigman(z) and the assumed monotonicity of the errors §; and ds.



2 Numerical Computations

Many numerical methods are iterative; often, these methods have a proven convergence. However, the
convergence proofs are based on the idealized situation when all the real numbers are represented in the
computer precisely, and all required elementary operations with real numbers are performed ezactly. In this
idealized situation, the more iterations we perform, the more accurate the results.

In reality, however, computers have finite accuracy: numbers are represented with only finitely many
digits, and operations are also only approximate. As a result, rounding errors accumulate. So, with each
iteration:

e on one hand, we decrease the error (due to the computational (process), but
e on the other hand, we increase the error due to roundings.

As we go from iteration to iteration, the first error decreases (and tends to 0), while the rounding error
accumulates and thus increases. As a result, after sufficiently many iterations, the rounding error becomes
the main error component, and the solution worsens. To get a good solution, it is, therefore, important to
know when to stop the iterations.

This situation is similar to the previous one; namely, on each iteration n, the total error consists of two
components:

e the component d;(n) which describes the ideal difference between the current approximation and the
desired solution, and

e the rounding error component dz(n).

As n increases, the first component decreases, while the second one increases (because rounding errors
accumulate). We want both components to be small. In other words, we want to find n for which the degree
to which both components are small is the largest possible:

min(ﬂsmaH(al (n))v Msmall<62 (n))) — ngn . (7)

This problem is similar to the problem (6), with the only exception that the optimized parameter n is now a
discrete parameter. Its solution is also similar, except that in the continuous case, the optimal value o was
when errors were exactly equal (d1(a)) = d2()), while in the discrete case, since the parameter n is discrete,
we may no longer have the exact equality d1(n) = d2(n); it turns out, however, that the solution is attained
when these values are as close as possible:

Proposition 2. For the optimization problem (7), there exists a unique value ng for which 61(ng) < da(no)
and 81 (ng + 1) > d2(ng + 1); the optimal value of n is either ng or ng + 1.

Comment. In other words, the optimal choice of n is when the error components are “almost” equal to each
other. This choice has been earlier proposed as a successful heuristic: stop iterations when the rounding
error becomes of the same order as the solution error. Our Proposition shows that fuzzy logic can provide a
justification for this heuristic.

Proof of Proposition 2. The proof of this Proposition is based on the following Lemmas:

Lemma 2. Let f(n) = min(g1(n), g2(n)), where:
e g1(n) >0 is a strictly increasing sequence for which g1(0) =0, and
e go(a) > 0 is a strictly decreasing sequence for which ga(n) — 0 as n — oo.

Then, there exists a value ng for which g1(ng) < ga(ng) and g1(no + 1) > ga(no + 1), and the function f(n)
attains its maximum at one of the points ng or ng + 1.

Proof of Lemma 2. Similarly to the proof of Lemma 1, let us consider the difference d(n) = g1(n) — g2(n).

e When n = 0, we have g1(0) = 0 and g2(0) > 0 (since g5 is strictly decreasing and tends to 0 at 0o), so
d(0) = g1(0) — g2(0) < 0.



e When n — oo, we have g;(n) > 0 and increasing and gz2(n) — 0, so d(n) > 0 for sufficiently large n.

Let us show that there exists an ng for which d(ng) < 0 and d(ng+ 1) > 0. We will prove it by reduction to
a contradiction. Suppose that such an ng does not exist. This means that for every ng, if d(ng) < 0, then
d(ng + 1) cannot be non-negative, i.e., we must have d(ng + 1) < 0. Since d(0) < 0, we can thus conclude
that d(0+1) =d(1) <0, d(1+1) =d(2) <0, and by induction, that d(n) < 0 for all n, which contradicts to
the fact that d(n) > 0 for some n. This contradiction shows that our initial assumption was wrong, and the
desired ng exists. In other words, there exist an ng for which g1 (ng) < g2(ng) and g1(ng + 1) > ga2(ng + 1).

Let us now show that the function f(n) attains its maximum either for n = ng or for n = ng + 1. In
other words, we will show that if n # ng and n # ng + 1, then f(n) < f(no) or f(n) < f(no+1) (and in
both cases, f(n) < max(f(nog), f(no+1))). We will prove this inequality by considering two possible cases:
n<ngandn >ng+ 1.

e If n < ng, then, due to monotonicity of the functions g;, we have

g1(n) < g1(no) and ga(no) < g2(n).

By the choice of ng, we have
g1(n) < gi1(no) < ga(no) < ga(n).
Therefore,
f(n) = min(g1(n), g2(n)) = g1(n) < g1(no) = f(no).
In other words, if n < ng, then f(n) < f(no).

e If n > ng+ 1, then, due to monotonicity of the functions g;, we have
g1(n) > g1(no + 1) and ga(ng + 1) < ga(n).
By the choice of ng, we have
g1(n) > g1(no +1) = g2(no +1) > g2(n).

Therefore,
f(n) =min(g1(n), g2(n)) = g2(n) < ga(no +1) = f(no +1).
In other words, if n > ng + 1, then f(n) < f(no +1).

In both cases, we have the desired inequality, and thus, the lemma is proven.

The proposition follows from the Lemma because of the assumed monotonicity and continuity of the
membership function pgman(z) and the assumed monotonicity of the errors d;(n) and d2(n). Q.E.D.

Comment. A similar result can be applied to discrete regularization techniques: e.g., in interpolation problem,
instead of considering a polynomial which fits all the data points, we may want to consider a polynomial of
a fixed order n. The optimal choice of n can then be obtained by using Proposition 2.

3 Application to Detection of Business Cycles

Economy is changing in cycles: a growth period is followed by recession, and recession changes back to growth.
It is extremely important to be able to predict the future economic behavior, and for this prediction, we
must collect the statistics of the previous cycles. However, transitions are gradual, and it is therefore very
difficult to find out when exactly growth changes into recession and vice versa. Both terms are not precisely
defined, they express the expert’s opinion and can be, therefore, best described by fuzzy sets.

Let us assume that we are analyzing a transition between growth and recession. We start with a year
(let us denote it by 0) of clear growth; we know that at some following year T', we have a clear recession.
We want to find the year when the change occured, i.e., a year ¢ which was a growth year, while the next
year was a recession.

For each year n from 0 to T, we have a degree of belief g(n) that year n was a growth year, and a degree
of belief r(n) that year n was a recession year. Typically, the transition is rather monotonic, so we can



assume that the values r(n) strictly increase from 0 to 1, while the values of g(n) strictly decrease from 1
to 0. We are interested in finding a change point, i.e., a year n which was a growth year, while the next one
was a recession year. The degree of belief that n is a change point is equal to min(g(n),7(n + 1)). Thus, we
arrive at the following problem:
i 1) — in . 8
min(g(n)),r(n+1)) » min__ (8)
This problem is similar to the problem (7), with the only exception that n only goes from 0 to 7' — 1. Tts
solution is also similar (with a similar proof):

Proposition 3. For the optimization problem (8), there exists a unique value ng for which g(ng) > r(ng+1)
and g(no + 1) < r(ng + 1); the optimal value of n is either ng or ng + 1.

Comment. The application to Taiwan business cycle was given in [9] (see also [8]).
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