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1 Introduction: Data Processing and
Interval Computations

Data processing. In many real-life problems, we are interested in the value y
of a physical quantity which is difficult or impossible to measure directly.

For example, we cannot directly measure the distance to a star, or the
amount of oil in a given area.

To measure this quantity y, we:

e measure some other quantities x1, ..., z, which are related to y by a known
dependence y = f(z1,...,%y), and then

e compute the estimate y for the desired quantity y by applying the algo-
rithm f to the results Z; of measuring the quantities z;: ¥ = f(Z1,...,Tn)-

This two-stage process is called indirect measurement, and computing f is called
data processing.

For example, to estimate the amount of oil in a given area, we may use
geophysical data plus satellite images of this area.



Error estimation of the results of data processing: mathematical
statistics and interval computations. Values Z; come from measurements,
and measurements are never 100% accurate; therefore, Z; # ;. Due to the inac-
curacies Ax; = T; —x; of direct measurements, the result § = f(Z1,...,Z,) is, in
general, different from the desired value y = f(21,...,2n): Ay =7 —y #0. In
practical applications, it is extremely important to know what are the possible
values of the difference Ay.

For example, if our estimate for amount of oil in a given area is ~100
mln. ton, then whether we start exploiting this oil or not depends on the
accuracy of this estimate:

— If the measurement error Ay does not exceed 10 mln. ton, then
the actual value can be anywhere from 90 to 100, and we should
recommend exploitation.

— On the other hand, if the measurement error Ay can be as large as
100 mlin. ton, then this means that the actual value y can actually
be equal to 0 (meaning that there may be no oil at all). In this
case, further, more accurate measurements are needed because we
can make a decision.

To estimate Ay, we must have some information about the errors Ax; of direct
measurements. What type of information can we have?

e The manufacturer of the measuring instrument gives us a guaranteed error
A, i.e., a value for which |Az;| < A;.

Without such a guarantee, a measurement result does not restrict
possible values of x; and thus, it is not a measurement.

e In some cases, in addition to the upper bounds A;, we know probabilities
of different values of Ax;.

If we know probabilities, then we have a typical problem of mathematical statis-
tics: given probability distributions for Ax; = z; — Ax;, find the probability
distribution for y = f(x1,...,2,). To get the probabilities of Az;, we calibrate
the measuring instrument, i.e., we compare its results with the results of a better
(standard) measuring instrument.

An application of statistical methods to environmentally-oriented multi-
spectral satellite image processing is given in [29].

However, there are two important situations when we do not know these prob-
abilities:

e In fundamental physics, we perform measurements on the cutting edge, so
no better instrument is possible at all.



o In manufacturing, calibration of all sensors is potentially possible, but, in
practice, too expensive.

When we do not know the probabilities, we only know that |Z; — z;| < A, i.e.,
the only information about z; is that z; belongs to the interval [Z; — A;, T; + A;].

For example, if the measured value of the current is ¥ = 1 A, and the
manufacturer guarantees the measurement error to be within £0.1 A,
then the actual value of x can be any number from the interval [0.9,1.1].

In this case, the problem of estimating the error of indirect measurement can
be reformulated as follows:

e we know n intervals x; = [Z; — Ay, T; + Ay,

e we know an algorithm f which transforms n real numbers 1, ..., %, into
a real number y, and

e we want to compute the interval
y = f(Xl,...,Xn) = {f($177xn)|xz € Xi}-

This problem is called the basic problem of interval computations.

Linearization is not always possible. If a function f is smooth, and the
errors Az; are small, then we can neglect quadratic terms in f, and get ex-
plicit formulas for y. Due to our approximation, we get approzimate endpoints
of the interval y: the actual values y can be, therefore, slightly outside this
approximate interval.

In many applications, it is OK, but in some real-life situations, the conse-
quences of a possible error are so serious that we need to guarantee that y is
contained in the resulting interval y. An example of this problem is planning a
mission to the Moon. To get guaranteed estimates for this problem, Ramon E.
Moore, then Stanford’s Ph.D. student working on 1959 NASA-oriented project,
designed new techniques called interval computations.

2 Interval Computations in
Aerospace Applications: Why

Let us enumerate the reasons why methods of interval computations are needed
in aerospace applications:

e First, we want to guarantee a mission, we want to guarantee that a space-
ship hits the Moon (or another planet), and interval computations provide
us with the guaranteed computation results.



e Second, according to the new NASA paradigm, we need all the missions
to be faster, better, cheaper. This means, in particular, that we should
preferably use off-shelf components, with no time to individually calibrate
all of them (and thus, no time to find all the probabilities).

e Third, many NASA missions are missions into the unknown. We simply
do not know the exact values of the parameters characterizing the distant
planet’s surface, or the corresponding probabilities; the only thing we
may know for planning a mission are intervals of possible values of these
parameters.

¢ Finally, one of the main goals of NASA missions is to produce solid sci-
entific results, and “solid” means guaranteed.

3 Aerospace Applications of
Interval Computations: Examples

Robot navigation. A mobile robot has to navigate in an unknown environ-
ment by using imprecise sensors. Traditionally, statistical approach was used to
describe the sensor’s uncertainty, but this approach has two main drawbacks:
it is very costly to calibrate, and it cannot be applied in an unknown environ-
ment, when we have no time to calibrate first. To avoid these problems, we
used interval uncertainty in a UTEP robot. This robot won 1st place in the
international competition at AAAT’97: it was more efficient, less error-prone,
and at the same time rather simple to program. This technique can be used in
future planetary missions.

Telemanipulation [42]. The idea of telemanipulation, when a robotic arm re-
peats the movements of the operator’s arm, works perfectly well in the movies,
but not so perfectly well in the real space exploration. The reasons for this im-
perfection are simple: both sensors (which measure the operator’s movements)
and the actuators (which copy them) are inaccurate. The more complicated
the robotic arm, the more actuators it uses, and the more inaccuracy accumu-
lates. It turns out that if we take interval inaccuracy into consideration, we
can greatly improve the performance of the telemanipulator — namely, of the
state-of-the-art MIT /Utah robotic arm.

Multi-spectral satellite imaging [30.58]. The existing Earth-imaging satel-
lites of Landsat series, whose ability is restricted to 7 channels only, already
send Gigabytes of difficult-to-process information. For some imaging problems,
7 channels are not sufficient, so new satellites will be able to scan 500 channels.
With 100 times more data, we need at least 100 times more time to process it;
even now, processing all the satellite data is a problem, and with the expected
two orders of magnitude increase, this processing seems to be getting close to
impossible. Solution: take interval uncertainty into consideration. It turns out



that with this uncertainty in mind, we can use linear models where previously
only complex models were used; computations become faster and thus, quite
feasible.

Non-destructive testing of aerospace constructions [22,63]. Failure of
an aerospace apparatus can be disastrous, and therefore, all mechanical parts
must be thoroughly tested. Exhaustive testing, however, is extremely expensive.
Here also intervals help. It turns out that:

e when the tested surface is smooth (no faults, no cracks, etc.), the depen-
dence of the measured signal on the test ultrasound signal is also smooth,
and since the test signals are small, we can approximate it by a linear
dependence;

e on the other hand, if there are non-smoothnesses (faults, cracks, etc.),
then non-linear terms are no longer negligible.

Checking whether the actual data is consistent with the linear dependence
(within interval uncertainty), we can thus test whether there is a non-
smoothness. Experiments confirmed that this is a viable and expense-saving
testing method.

We also analyzed the problem of choosing the best sensor locations for
aerospace testing [26,55,56].

Geophysical tomography [4]. Interval computations help in reconstructing
the geophysical structure from observations.

Energy from space: a possible future application of interval compu-
tations. Solar energy is a very prospective renewable energy resource, but
on-Earth Solar stations are not perfect: they occupy large pieces of land, they
do not work in bad weather, etc. An ideal solution would be to use orbital
solar power stations, which would generate electricity and then transmit it to
Earth as a microwave beam. The problem with this solution is that a high-
energy microwave beam may damage whatever it accidentally hits. So, the
better solution is to have several orbital stations and several receivers, so that
the resulting beams do not reach the dangerous level. Again, interval methods
provide a solution to this problem.

4 Related Research: Feasible Algorithms and
Impossibility Results

First specific problem: space is unreliable [2]. When designing algo-
rithms for space applications, we face a specific problem: space is unreliable; a
computer may stop before finishing computations. It is therefore desirable to
have algorithms which produce some (approximate) results when interrupted.
It turns out that for guaranteed (interval) algorithms, it is theoretically possible



to transform each algorithm into an interruptible one without greatly increasing
its computation time. This is still a rather theoretical result, with few practical
examples.

Second specific problem: reusing software [36]. A huge portion of a space
mission’s cost consists in designing software. A natural way of saving this costs
is to reuse the software which was already produced for other missions (or for
similar computational problems). Therefore, it seems natural to design new
software in such a way that this software be used not only for this particular
mission, but for similar future missions as well. The necessity to take the future
use into consideration adds cost to writing new software. Hence, if we promote
reuse:

e on one hand, we save costs on reusing software components, but

e on the other hand, we add costs to make new software components
reusable.

It is, therefore, not clear whether a reuse policy will actually save costs or not.
In [36], we show how the use of interval uncertainty can help in answering this
question.

General research in interval computations. Due to the importance of
interval computations in aerospace applications, we have researched the possi-
bility of designing feasible algorithms for solving various interval computation
problems.

e The general analysis is given in [1] (for linear systems).
e Feasible algorithms are produced:

— in [23,49] for error estimation for linearized indirect measurements;
— in [7,8] for function approximation;
— in [13,37] for optimization.

In most of these cases, we produced the optimal algorithms based on the
general group-theoretic approach (borrowed from physics [62]).

e In some cases, we showed that the corresponding interval problem cannot,
in the general case, be feasibly solved; these results cover, in particular:
— solving systems of interval linear equations [6];
— optimal function approximation [7,8], and

— signal processing [9].



In some cases, it is clear whether an algorithm is feasible or not, but in some
borderline cases, checking feasibility requires a complicated theoretical analysis
[18,20].

All major results have been summarized in our monograph [10]; aerospace
applications are surveyed in [47].

Comment. Some of these results also have non-aerospace applications, e.g., to
medicine [22,31,60,63].

5 From Interval Computations to
Soft Computing

Why soft computing. As we have mentioned, some interval computation
problems are not feasible; this means that if we do not have any additional
information, we cannot, in general, solve these problems efficiently. We can
rephrase this negative result in a positive form: to solve these problems, we must
add some ezpert knowledge. The methodologies which use expert knowledge
to solve problems are known as soft computing; so, we can reformulate our
conclusion as saying that many aerospace problems require soft computing.

We have shown that the use of soft computing methods can indeed make
these problems feasibly solvable [34].

Two main problems of satellite data processing. One of the main objec-
tives of PACES is processing satellite data with the purpose of extracting useful
geophysical, environmental, and other earth-related information. For this data
processing to be successful, we need to solve two major problems:

e First, satellite imaging provides us with an unusually enormous amount of
data; traditional methods of data processing, which work well for smaller
amounts of data, often require too long a time when applied to satellite
images; thus, new methods are needed.

e Second, many traditional data and image processing techniques depend on
experts to do many routine subtasks such as mosaicking images, identifying
different vegetation or cloud patterns, etc. With a huge amount of data
coming from the satellites, it is no longer possible to use experts to process
all this data, these subtasks need to be automated.

In solving both problems, soft computing techniques such as fuzzy, neural, etc.,
naturally emerge.
Soft computing helps in solving the first problem of satellite data

processing.

e Traditional methods of data processing are based on thorough statistical
analysis of the problems.



e Due to the continuing progress in satellite imaging techniques and to
the continuing discovery of new applications, there is no time to follow
a (rather slow) traditional statistical analysis approach. Therefore, new
heuristic methods are needed, methods which use, in addition to statistics,
also informal expert ideas.

Fuzzy, neural, and other soft computing techniques allow us:
e to formalize these expert ideas, and

e which is very important, to formalize these ideas in a scientifically justified
consistent fashion, thus increasing the reliability of the results of data
processing.

Examples of such formalizations are given in [16,28,32,39,40]. An important
heuristic idea is the idea of choosing the simplest explanation. In computer
science, there are natural measures of complexity and simplicity, such as the
length and the time of the program, but with respect to all these formal mea-
sures, finding the simplest explanation becomes a computationally un-feasible
task; soft computing enables us to explain the existing feasible modifications of
this idea and to come up with alternative feasible modifications [11,21,24,33,44].

These explanations help not only in heuristic image processing and data
processing, but also:

e in education [43],
e in decision making [61],

e in humanities [25], etc.

Soft computing helps in solving the first problem of satellite data
processing.

e Experts have trouble describing how exactly they mosaic or how exactly
they identify features.

e Experts can, at best, formulate their rules in terms of words of natural
language (like “a little bit”). To us these informal rules, we must use
a special techniques for transforming such rules into automated control:
fuzzy logic.

e If even rules are not available, then the only way to automate is to observe
the experts’ behavior in several cases and extrapolate. One of the best
extrapolation techniques, which is the most appropriate for our purposes
because it simulates the way humans do extrapolation, is neural networks.

Applications of soft computing methodology include image processing (including
processing satellite images and clustering) [27,45,46], as well as related problems
such as:



¢ optimization [15];
e control [14,51,53]; and
e modeling [12].

A general survey of soft computing methodology is given in [52].

In many real-life situations, the existing soft computing techniques are still
too computationally intensive [50]; in the attempts to solve this problem, the
following direction were pursued:

e thorough analysis of the modifications of soft computing methodologies
which have already been proposed but which have not yet been practically
used, with the hope that some of these modifications will help to make
our problems computationally feasible [17];

e designing new (e.g., multi-D or hierarchical) modifications of soft com-
puting methodologies [19,41,48,52,57,59], with the hope that these new
methodologies will lead to feasible solutions to the problems;

e combining soft computing methods with alternative computationally fea-
sible techniques for processing uncertainty, such as logic programming
[16,54];

e analyzing the possibility of using new physical and engineering ideas in
computer design [38].
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