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Abstract

One of the important potential areas of application of intelligent virtual environment is to training
medical doctors. One of the main problems in designing the corresponding intelligent system is the
computational complexity of the corresponding computational problems. This computational complexity
is especially high when the corresponding optimization is a discrete optimization problem, e.g., for pain
relief methodologies such as acupuncture and spinal cord stimulation. In this paper, we show how to
efficiently solve the corresponding discrete optimization problems. As a result, we get, e.g., a theoretical
justification for the heuristic method of “guarded cathode”.

Formulation of the problem. One of the prospective applications of intelligent virtual environments is
to training medical doctors. For this application, it is desirable to design an intelligent system which would:

e simulate a patient, and

e recommend, to a doctor, the optimal way of curing the given patient.

Main difficulty in solving this problem. One of the main difficulties in undertaking this project is that
realistic simulations (and the corresponding optimization) require a large amount of computations, i.e., in
theory-of-computing language, have a large computational complezity.

From the viewpoint of computational complexity, we can divide the corresponding optimization problems
into two classes:



e continuous optimization problems, i.e., problems in which the optimized parameters change continually;
and

e discrete optimization problems, i.e., problems in which the optimized parameters can only take values
from a discrete set.

Continuous optimization problems can require intensive computations, but in general, there are many ef-
ficient techniques for solving such problems. In contrast, discrete optimization problems are, in general,
computationally intractable (see, e.g., [2]). This means that if we face a discrete optimization problem,
we cannot simply apply an efficient general method; instead, we need to find an efficient method for this
particular problem (or at least for a class of problems).

In this paper, we will describe an efficient algorithm for solving a certain class of medicine-related discrete
optimization problems.

Two medical examples of discrete optimization problems. In this paper, we will consider two discrete
optimization problems related to pain relief:

e problems of acupuncture, and

e problems related to spinal cord stimulation.

Acupuncture-related discrete optimization problems: informal description. In acupuncture, the
pain relief (and possible cure) is achieved by applying special needles to certain “active” points on a patient’s
body (for problems related to the design of intelligent systems in acupuncture, see, e.g., [3, 4, 6], and reference
therein). When we activate a point, we thus activate a certain area in the patient’s body. If this area A
exactly coincides with the area P in which the patient feels pain, then this pain is relieved.

The main problem with this activation is that the body area A activated by an acupuncture point is
often larger than the targeted pain area P. As a result, in addition to diminishing pain in the targeted area
(i-e., in the points p € P), we may also have unpleasant undesired effects in other points p € A\ P. To
alleviate these effects, we need to “de-activate” these points. In principle, such a “de-activation” is possible
because usually, to each body area, there correspond two acupuncture points:

e 3 point on a so-called Yan meridian, and
e 3 point on a so-called Ying meridian.

The activations of these two acupuncture points lead to opposite effect. Thus, to compensate for the
unnecessary effect caused by one acupuncture point, we can activate an opposite-effect acupuncture point
corresponding to a close body area. The importance of combining several acupuncture points is well-known
in Oriental medicine (see, e.g., [5]).

The problem is: how to choose the optimal combination of acupuncture points, i.e., a combination which
would target the desired point, and at the same time, affect as few un-desired points as possible.

Discrete optimization problems related to spinal cord stimulation: informal description. Similar
discrete optimization problems occur in spinal cord stimulation SCS (for problems related to the design of
intelligent systems in SCS, see, e.g., [1] and reference therein). In this technique, electrodes are surgically
inserted into the vicinity of different points on the patient’s spine, and then pain is alleviated by applying
electric current to these electrodes.

Similarly to acupuncture, applying current to each point affects a certain area in the patient’s body. If
this area A exactly coincides with the area P in which the patient feels pain, then this pain is relieved. In
reality, however, the body area A affected by a single electrode is often larger than the targeted pain area
P. As a result, in addition to diminishing pain in the targeted area (i.e., in the points p € P), we may also
have unpleasant undesired effects in other points p € A\ P. To alleviate these effects, we need to “de-affect”
these points. In principle, such a “de-affectation” is possible because the application of currents of opposite
polarity (+ and —) leads to opposite effects. Thus, to compensate for the unnecessary effects caused by
activating one electrode, we may apply the current of opposite polarity to other electrodes which correspond
to close body areas. The importance of simultaneously activating several electrodes is well-known in spinal
cord stimulation.



The problem is: how to choose the optimal combination of stimulated electrodes so as to target the
desired point, and at the same time, affect as few un-desired points as possible.

Towards the formulation of the pain relief optimization problem in precise mathematical terms:
general case. In both cases, our goal is to relieve the pain in a given area P. It is sufficient to learn how to
relieve the pain in a single point p; then, if we have pain in several points, we can combine the activations
which relieve the pain in each of these points, and thus alleviate all the pain.

In both techniques, we have a finite set of possible activation points ay, ..., ay,:

e in acupuncture, we have acupuncture points;
e in SCS, we have electrodes.

Each activation point a; corresponds to a certain body area (set) A; C R3. For each body area A4;, we can
also achieve the opposite effect:

e in acupuncture, by activating the acupuncture point which is dual (opposite-reaction) to a;, and
e in spinal cord stimulation, by applying the current of opposite polarity to the same electrode a;.

In both cases, we will say that we de-activate the activation point a;.

Each treatment consists of activating some activation points and de-activating some other points. In
other words, to describe a treatment, we must describe two subsets of the set {ai,...,a,} of activation
points:

o the set AT of all points which are activated, and
e the set A~ of all points which are de-activated.

We want to choose a treatment which covers the desired body point p, and at the same time, which covers
as few un-desired body points as possible.

Every activation or de-activation can cause side effects. Therefore, if several possible treatments cover
the exact same body area, we would like to choose the treatment that activates and de-activates the smallest
possible set of activation points.

How can we describe the set of all body points affected by a given treatment (A+, A=)?

o If we only activate a single activation point a;, then we affect the body area A;.
o If we activate several activation points, then we affect the union of the body areas affected by each of
these points:
U 4
a; cA+
e Similarly:

— if we de-activate a single activation point a;, then we affect a body area A;;

— if we de-activate several activation points, then we affect the union of the body areas affected by
each of these points:
U 4.

a;EA—

e Finally, if we both activate several activation points (which form the set AT), and de-activate several
other activation points (which form the set A7), then we can describe the set of all affected body points
as the set of all body points which are activated (by activation points a; € AT) but not de-activated
(by activation points a; € A7), i.e., as a set

U 4\ U 4. 1)

a; €At a;EA



We are now ready for precise definitions:
Definition 1.

e Let a set B be fixed. This set will be called a body.

e By a pain relief technique, we mean a pair consisting of a finite sequence a1, ..., a,, and a sequence of
(pairwise different) sets Ay,..., A, C B, A; # A;.

e Let a pain relief technique be fixed. By a treatment, we mean a pair t = (A", A™), where AT A~ C
{al, e ,an}.
e By a body area B(t) corresponding to the treatment t = (AT, A~), we mean a set (1).
o We say that a treatment t is better than a treatment t # t (and denote it by t > t) if one of the
following two conditions is satisfied:
— either the treatment t covers fewer points than t, i.e., B(t) C B(t) and B(t) # B(t),
— or the treatments t = (A%, A~) and T = (A*, A~) cover the same body area (i.e., B(t) = B(})),
but t uses the smaller set of activation points, i.e., AT C AT and A~ C A~.
e By a body point, we mean a point p € B.
e We say that a body point is covered by a treatment t if p € B(t).
e We say that for a body point, the treatment t is optimal if the following two conditions hold:

— the point p is covered by the treatment t; and

— no other treatment covering p is better than t.

From this definition, we can make the following conclusion:

Proposition 1. For every body point p, every treatment t = (AT, A=) which is optimal for this body point,
activates exactly one point.

Comments.

e In precise terms, for every body point p and for every treatment ¢ = (A%, A~) which is optimal for
this body point, the set AT consists of exactly one element: |A*|=1.

e For readers’ convenience, all the proofs are placed at the end of the paper.

Pain relief optimization problem as a linear problem. In both of our medical problems (acupuncture
and spinal cord stimulation), the activation points are located in one or several vertical lines. Each point
corresponds to a certain body area. Normally, higher activation points correspond to higher body areas, and
lower activation points correspond to lower body areas. This remark enables us to simplify the corresponding
optimization problem:

e In general, a body is a 3D set, and we need three coordinates to specify a body point: a vertical
coordinate z and two horizontal coordinates z and y.

¢ However, due to the above remark, to check whether a body point is covered by a activation point, we
do not need to know x and y, it is sufficient to know the vertical coordinate z.

Thus, in a reasonable first approximation, we can neglect the two horizontal coordinates and only consider
the vertical coordinates of different points. In other words, in this approximation, each body point can
be characterized by the value of a single coordinate z. In this representation, a body B is a (closed) 1D
interval. Correspondingly, for each activation point a;, the corresponding set A; is also a (closed) interval
A; =la;,a}] C B.

Since activation points are located on a line, we can assume (without losing generality) that they are
ordered from the lowest to the highest. Correspondingly, the affected body areas Ay, ..., A, will also become



“ordered” from the lowest to the highest in the sense that both their lower bounds and their upper bounds
are increasing with i: a] < ay <...<a, and af <aj <...<a}.

Definition 2. By a linear pain relief technique, we mean a pain relief technique in which the body B

is a closed interval, the body areas A; = [a‘,af] are closed intervals, and both sequences a; are strictly

increasing: a7 < a; <...<a, andai <ai <...<al.
Optimal choice of activation points. In the previous text, we assumed that the activation points (and
the corresponding body areas) are given. This is true in acupuncture, but in spinal cord stimulation, we can
choose these points.

The more activation points we choose, the more complicated the corresponding surgical procedure. There-
fore, it is desirable to use as few activation points as possible, as long as they cover the entire body B. Let
us formulate this problem in precise terms.

Definition 3. Let a body B be fixed. We say that a pain relief technique {{ay,...,a,},{41,...,An}) is
optimal if the following two conditions are satisfied:

e every body point is covered by one of the areas A;, i.e., B C UA;; and

o if we delete one of the activation points (i.e., one of the sets A;), then the remaining body areas A; no
longer cover the entire body, i.e., for every i, there exists a point p € B for which

rég|JA4;
J#i
For linear pain relief techniques, we can explicitly describe when a technique is optimal:
Definition 4. Let A; be a pain relief technique;
e we say that body areas A; and A; are neighboring if |i — j| = 1.

e we say that body areas A; and A; intersect if A; N A; # 0.

Proposition 2. If a linear pain relief technique is optimal, then the following two conditions hold:
o all neighboring body areas intersect, and

e all non-neighboring body areas do not intersect.

Comments.

e Thus, for spinal cord stimulation, if we choose the optimal linear pain techniques, then we can be sure
that the two conditions from Proposition 2 are satisfied.

e For acupuncture, we do not have the choice of activation points, so we cannot make a similar claim;
however, it turns out that in most cases, these two conditions are satisfied for acupuncture as well. A
probable explanation may be that the choice of biologically active acupuncture points was also restricted
by the requirements of optimality: redundant resources such as un-necessary activation points, can be
redirected into some other biological functions.

e For optimal linear pain relief techniques, optimal treatments can be explicitly described:

Proposition 3. Let B be a body, let p € B be a body point, and let {{ai,...,an},{41,...,4p}) be an
optimal linear pain relief technique. Then, every treatment t = (A%, A~) which is optimal for p has one of
the following forms:

t={{ai}, {air1}), t=({ai},{ai1}), t={ai},{ai-1,ai11}),
t={({a1},0), and t={({an},0).



Comments.
e In the linear case, we can describe each treatment as a sequence of n 0’s, +’s and —’s, where:

+ on i-th place means that a; € AT (i.e., that the activation point a; is activated);

— on i-th place means that a; € A~ (i.e., that the activation point a; is de-activated); and

0 on i-th place means that a; ¢ A' and a; ¢ A~ (i.e., that the activation point a; is neither
activated nor de-activated).

In these notations, every optimal treatment has one of the following five forms:

e (...0+-0...0,

e (...0—-+40...0,

e (0...0-4+-0...0,
e +0...0, and

e (...0+.

e In spinal cord stimulation, it has been empirically noticed that these (and similar) treatments (called
“guarded cathode”) are indeed optimal. Thus, our Proposition 3 justifies this empirical fact.

e The reader should be warned that there is a minor difference in notations between our paper and
literature on spinal cord stimulation:

— we denote the activation of an activation point by +, because it is activation and not de-activation
(de-activation is, correspondingly, denoted by —);

— however, since this activation is done by sending a negative current, it is often denoted by — (and
de-activation, correspondingly, by a +).

e According to Proposition 2, the values a; and a] are ordered as follows: a; < a; <af <a; <af <
..a; <af <a;, <...<a!_; <af. Depending on where the point p is, different treatments are

optimal:
— when p € [a] ,a; ], then the optimal treatment is + —0...0;
— when p € [a5,a;], then the optimal treatment is either +0...0, or 0+ —0...0;
— when p € [a], a5 ], then the optimal treatment is — + —0...0;
— when p € [ag,af], then the optimal treatment is either —+0...0, or 00 + —0...0;
—
— when p € [a; ,a] ], then the optimal treatment is either 0...0 — +0...0or 0...0+ —0...0;

— when p € [a; |, a;,,], then the optimal treatment is 0...0 — + —10...0;

— when p € [a;;,a ,], then the optimal treatment is 0...0+;

— finally, when p € [a;_,,atn], then the optimal treatment is 0...0 — +.

The corresponding optimal treatments can be ordered into the following sequence:

+ — 0 0 0
+ 0 0 0 0
0 + — 0 0
-+ - 0 0
-+ 0 0 0
0 0 + - 0
0 - + - 0
0 — + 0 0



For every ¢ # 1,n, there are three optimal treatments in which this particular activation point a; is
activated; these treatments cover three sub-intervals of the interval 4; = [a; ,a] ]:

— the treatment 0...00 + —0...0 corresponds to the lowest sub-interval [a; ,a} ,];

— the treatment 0...0 — 4+ — 0...0 corresponds to the middle sub-interval [a] ,, a;,,]; and

— the treatment 0...0 — +0...0 corresponds to the highest sub-interval [a;,,a]].

These three treatments are similar to three tones corresponding to a single note n: the lower tone n’,

the normal tone n, and the higher tone nf.
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Proof of Proposition 1. First, if no points are activated, i.e., if AT =0, then B(t) = 0, and so, we cannot
have p covered by the treatment t. So, the set AT must contain at least one activation point.

Let us prove, by reduction to a contradiction, that we cannot have more than one activation point in a
set AT from an optimal treatment t = (AT, A~). Indeed, let us assume that we have several elements in
A*. From p € B(t) and the definition of B(t) (formula (1)), we can conclude that p ¢ A; for all a; € A™,

and that
a; cA+

i.e., that p belongs to one of the sets A;, with a; € AT. Then, one can easily check that a new treatment
t = ({a;}, A™) is better than ¢: indeed, it has fewer points activated and the same (or smaller) set of body
points covered. So, ¢ >t and thus, contrary to our assumption, ¢ is not optimal. This contradiction proves
that an optimal treatment can only activate one activation point. The proposition is proven.



Proof of Proposition 2. Let us first prove that neighboring areas must intersect. Indeed, suppose they do
not intersect, i.e., A; N Aj41 = [aj_, aj] n [aj_+1, a;rﬂ] = () for some j. In general, the fact that two intervals
have an empty intersection means that one of them is located “to the left” of the other, i.e., in our case,
. + - + j—

that either aj; <aj, oraj <aj,.

The first case is impossible because in this case, due to monotonicity of sequences a; and aj, we have
a; < a;,q, and hence, aj+1 < a1, which is impossible. Thus, a;r < ajyq- Therefore, any point p from
the open interval (aj, aj,,) is neither covered by A; (because all points from A; are too small) nor by A;1
(because all points from A;, are too large). Due to monotonicity, we can conclude that this point p cannot
be covered by any of the body areas at all; indeed:

e if 4 < j, then A; is even smaller than Aj;, and thus, all points from A; are smaller than p;
o if 4 > j 41, then A; is even larger than A;;,, and thus, all points from A; are larger than p.

Hence, the point p is not covered by any of the body areas A;, which contradicts to the definition of the
optimal technique. This contradiction shows that our assumption was wrong, and that the optimal body
areas do intersect.

Let us now show that non-neighboring body areas do not intersect. We will prove this statement also
by reduction to a contradiction. Indeed, let us assume that A; N A, = [aj_,aj] Nla;,af] # 0 for some
non-neighboring and different j and k. Without losing generality, we can assume that j < k; in this case,
“non-neighboring” means that k£ > j + 1. Let us show that in this case, the optimality condition is violated
for i = j + 1, i.e., that if we delete A;, we will still be able to cover all body points. To be more precise, we
will show that every point p € A; = [a; ,a; ] can be covered either by A;, or by A.

Indeed, let p € A; = [ai_,aj], ie,leta; <p< a;r. Due to monotonicity, we have a

; <a; <a and

aj < aj < a;g. From p > a; and a; > aj, we can conclude that p > a;. Similarly, from p < a;" and

J )
a;r < a , we can conclude that p < az. We will consider two possible cases:

e p<af,and
e p>aj.
In the first case, we have p > a; and p < aj, i.e., we have p € [a} al]l=A;.
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Let us now analyze the second case. From the fact that the intervals A; = [a7,a]] and Ay, = [a}, a]]

V]
have a common point (let us denote it by ), we can conclude that a;, <z < aj, and therefore, that a;; < aj.
Thus, from p > aj, we conclude that p > a; . We also know that p < a;g. Thus, p € [a} , az] = A;.

Thus, every point p € A; is indeed covered by either A; or Ay, so the body area A; is unnecessary,
contrary to our assumption that the pain relief technique was optimal. This contradiction shows that our
assumption was wrong, and non-neighboring body areas cannot intersect. The proposition is proven.

Proof of Proposition 3. Due to Proposition 1, the optimal treatment includes only one activated point
a;, for which p € A;. So, to prove Proposition 3, we must show that the only de-activated points are the
activation points neighboring to a;.

Indeed, if a point a; is not neighboring for a;, then, according to Proposition 2, the corresponding body
areas A; and A; have no common points. Therefore, if the activation point a; belongs to the set A~ of de-
activated points, we can delete it from this set A~ without changing B(t). After this change, we get a new
treatment ¢ = ({a;}, A~ \ {a;}), which covers the same body area (B(t) = B(%)), but activates the smaller
set of activation points. In other words, we have a new treatment ¢ which still covers the same body point
p, and which is better than the original treatment ¢. This conclusion contradicts to the assumption that the
treatment ¢ is optimal. Thus, the optimal treatment can only de-activate points which are neighboring to
a;.

Depending on how many neighboring points are de-activated, we get four possibilities: A~ = {a;—1},
A™ ={ai1}, A~ ={ai—1,ai+1}, and A~ = . To complete the proof, it is sufficient to show that the last
case is only possible when ¢ = 1 or ¢ = n.

Indeed, let 1 <i < n, p € A;, and let t = ({a;},0) be an optimal treatment for the body point p. Since
the body areas A;_; and A;+1 are not neighboring, they have no common points. Thus, the body point p
cannot belong to both of these areas, so either we have p € A; 1, or p & A; 1.



e In the first case, a new treatment t = ({ai},{ai—1}) still covers p, and covers a smaller body area
B(t) = A;\ A;—1 C A; = B(t). This area B(t) is smaller because, due to Proposition 2, 4;NA;_1 # 0,

and all points from this intersection belong to B(t) but not to B(t). Thus, we get a better treatment
t > t, which contradicts to our assumption that ¢ is the optimal treatment.

e In the second case, we can similarly prove that ¢ = ({a;}, {a;+1}) is a better treatment, so the second
case is also impossible.

Since in both cases we get a contradiction, the treatment ¢ = ({a;},?) can be optimal only for i = 1 or i = n.
The proposition is proven.



