Computational Complexity of
Planning Without Sensing,
Planning With Sensing,
and Approximate Planning

Chitta Baral, Vladik Kreinovich, and Raul Trejo

Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968, USA
emails {chitta,vladik,rtrejo}@cs.utep.edu

Abstract

One of the main problems in knowledge representation in to describe
actions and their effects. One of the most successful formalisms for de-
scribing actions is the language A proposed in 1993 by M. Gelfond and
V. Lifschitz. This language describes planning in the situations with
complete information. It is known that the planning problem for such
situations is NP-complete: even checking whether a given objective is
attainable from a given initial state is NP-complete.

In real life, we often have only partial information about the situation.
In this case, it is reasonable to add measurements (“sensing actions”) to
the list of possible actions. Examples have shown that adding sensing
actions increases the computational complexity of the problem. In this
paper, we show that the corresponding planning problem is indeed harder:
it belongs to the next level of complexity hierarchy (in precise terms, it
is YoP-complete). To overcome the complexity of this problem, C. Baral
and T. Son have proposed several approximations. We show that under
certain conditions, one of these approximations — 0-approximation — makes
the problem NP-complete (thus indeed reducing its complexity).

1 Introduction

One of the main problems in knowledge representation in to describe actions
and their effects. One of the most successful formalisms for describing actions
is the language A proposed in 1993 by M. Gelfond and V. Lifschitz [2]. In this

paper, we will be analyzing the complexity of planning based on this language
and on its extensions; let us, therefore, start with a brief description of this
language.

1.1 Language A: brief reminder

In the language A, we start with a finite list of properties (fluents) fi,..., fn
which describe possible properties of a state. A state is then defined as a finite
set of fluents, e.g., {} or {f1, f3}. We are assuming that we have a complete
knowledge about the initial state: e.g., {f1, f3} means that in the initial state,
properties fi; and f3 are true, while all the other properties f, f4, ... are false.
The properties of the initial state are described by formulas of the type

initially F,

where F is a fluent expression (atom), i.e., either a fluent f; or its negation — f;.
To describe possible changes of states, we need a finite set of actions. In the
language A, the effect of each action a can be described by formulas of the type

a causes ' if Fy,..., Fp,

where F, F}, ..., F,, are fluent expressions (atoms). A reasonably straightfor-
ward semantics describes how the state changes after an action:

e if before the action a, atoms F1, ..., F,, were true, and the domain descrip-
tion contains a rule according to which a causes F if Fi,..., F,,, then this
rule is activated, and after the action a, F' becomes true; thus, for some
fluents f;, we will conclude f; and for some other, that —f; holds in the
next state;

e if for some fluent f;, no activated rule enables us to conclude that f; is
true or false, this means that the action a does not change the truth of
this fluent; therefore, f; is true in a new state if and only if it is true in
the old state.

Formally, a domain description D is a finite set of value propositions of the type
initially F' (which describe the initial state), and a finite set of effect propositions
of the type “a causes F if Fy,...,F,” (which describe results of actions). A
state s is a finite set of fluent names. The initial state sq consists of all the fluents
names f; for which the corresponding value proposition initially f; is contained
in the domain description. We say that a fluent f; holds in s is f; € s; otherwise,
we say that —f; holds in s. The transition function Resp(a,s) which describes
the effect of an action a on a state s is defined as follows:

e we say that an effect proposition “a causes F'ifFy,..., F,,” is activated in
a state s if all m fluent expressions Fi, ..., F),; hold in s;

e we define V¥ (a,s) as the set of all fluent names f; for which a rule
“a causes f; if F1,...,F,;,” is activated in s;

o similarly, we define V5 (a, s) as the set of all fluent names f; for which a
rule “a causes —f; if Fy,...,F,,” is activated in s;

e if Vi (a,s) NV} (a,s) # 0, we say that the result of the action a is unde-
fined;

e if the result of the action a is not undefined in a state s (i.e., if V3 (a,s) N
V; (a,s) = 0), we define Resp(a,s) = (sUV7(a,s))\ Vp (a,s).

A plan p is defined as a sequence of actions [ay, ..., an]. The result of applying
a plan p to the initial state sg is defined as

Resp(p, s) = Resp(am,Resp(am_1,---,Resplai,sg))--.))-

The planning problem is: given a domain D and a desired fluent expression F,
to find a plan which leads to the state in which F' is true.

1.2 An extension of language A which describes sensing
actions: brief reminder

The language A describes planning in the situations with complete information,
when we know exactly which fluents hold in the initial state and which don’t.
In real life, we often have only partial information about the initial state: about
some fluents, we know that they are true in the initial state, about some other
fluents, we know that they are false in the initial state; and it is also possible
that about some fluents, we do not know whether they are initially true or false.
In such situations, the required action depends on the state: e.g., if we want the
door closed, the required action depends on whether the door was initially open
(then we close it), or it was already closed (then we do nothing). Therefore,
for these situations, we must include sensing actions — e.g., an action check;
which checks whether the fluent f; holds in a given state — to our list of actions,
and allow conditional plans, i.e., plans in which the next action depends on the
result of the previous sensing action.

Some fluents may be difficult to detect, so we may have sensing actions
only for some fluents; some real-life sensing actions may sense several fluents
at a time. In view of these possibilities, the precise formulation of this lan-
guage is as follows. In the domain description D, in addition to value proposi-
tions and effect propositions, we can also have sensing propositions, of the type
“a determines f;”. A state is defined as pair (s, X), where s is the actual state,
and X is the set of all possible states which are consistent with our current
knowledge. Initially, the set ¥ consists of all the states s for which:

e a fluent f; is true (f; € S) if the domain description D contains the
proposition “initially f;”;

e a fluent f; is false (f; & s) if the domain description D contains the
proposition “initially —f;”.

If neither the proposition “initially f;”, nor the proposition “initially =f;” are in
the domain description, then ¥y contains states with f; true and with f; false.
The actual initial state sp can be any state from the set ¥y. The transition
function is defined as follows:

e for proper (non-sensing) actions, (s, X) changes into
(Resp(a, s), Resp(a, X)), where:

)
— Resp(a, s) is defined as in the case of complete information, and
(

— Resp(a,X) = {Resp(a,s')|s' € £}.

e for a sensing action a which senses fluents fi,..., fr — i.e., for which
sensing propositions “a determines f;” belong to the domain D — the actual
state s remains unchanged while ¥ is down to only those states which have
the same values of f; as s:

(,2) 2 (s, {s' €X|Vi(1<i<k—>(fi€es & fies)})

In the presence of sensing, an action plan is no longer a pre-determined sequence
of actions: if one of these actions is sensing, then the next action may depend
on the result of that sensing. In general, the choice of a next action may depend
on the results of all previous sensing actions. Such an action plan is called
conditional.

Examples have shown that adding sensing actions increases the computa-
tional complexity of the problem. In this paper, we show that the corresponding
planning problem is indeed harder: it belongs to the next level of complexity
hierarchy (in precise terms, it is ¥oP-complete).

1.3 The notion of a 0-approximation

To overcome the complexity of this problem, C. Baral and T. Son have proposed
several approximations. The first approximation — called 0-approzimation — is
as follows: A k-state s is a finite set of fluent expressions (i.e., fluents and their
negations). The initial state so consists of all the fluent expressions F' for which
the corresponding value proposition “initially F” is contained in the domain
description. We say that:

e afluent f; is truein s is f; € s;
e a fluent f; is false in s is —f; € s;

e a fluent f; is unknown in s is neither f; € s, not —f; € s.

The transition function Resp(a,s) which describes the effect of a proper action
a on a k-state s is defined as follows:

e we say that an effect proposition “a causes F' ifFy,..., F,,” is activated in
a k-state s if all m fluent expressions Fi,..., F,, hold in s;

e we define Vp(a, s) as the set of all fluent expressions F' for which a rule
“a causes F' if Fy,...,F,” is activated in s;

e if Vp(a,s) contains both f; and —f; for some fluent f;, then we say that
the result of the action a is undefined;

e if the result of the action a is not undefined in a state s, we define
Resp(a, s) as follows:

Resp(a,s) ={F|(F € s&-F ¢ Vp(a,s)) VF € Vp(a,s)}.

For sensing actions, the result of applying a to a k-state s simply means adding,
to the k-state, the fluent expressions which turned out to be true as a result of
this sensing action.

2 Results

2.1 What kind of planning problems we are interested in

Informally speaking, we are interested in the following problem:

e given a domain description (i.e., the description of the initial state and of
possible consequences of different actions) and a goal (i.e., a fluent which
we want to be true),

o determine whether it is possible to achieve this goal (i.e., whether there
exists a plan which achieves this goal).

We are interested in analyzing the computational complezity of the planning
problem, i.e., analyzing the computation time which is necessary to solve this
problem.

Ideally, we want to find cases in which the planning problem can be solved by
a feasible algorithm, i.e., by an algorithm U/ whose computational time ¢,(w) on
each input w is bounded by a polynomial p(|w|) of the length |w| of the input w:
ty(z) < p(Jw|) (this length can be measured bit-wise or symbol-wise. Problems
which can be solved by such polynomial-time algorithms are called problems
from the class P (where P stands for polynomial-time). If we cannot find a
polynomial-time algorithm, then at least we would like to have an algorithm
which is as close to the class of feasible algorithms as possible.

In short, we are interested in restricting the time which it takes to check
whether the planning problem is solvable. This interest in justified because in
planning applications we often want the resulting plan to be produced in real
time, and if it is not possible to produce such a plan, we would like to know
about this impossibility as early as possible, so that we will be able to add
new actions (or simply give up). Since we are operating in a time-bounded
environment, we should worry not only about the time for computing the plan,
but we should also worry about the time that it takes to actually implement
the plan. If an action plan consists of a sequence of 22" actions, then this plan
is not feasible. It is therefore reasonable to restrict ourselves to feasible plans,
i.e., by plans u whose length |u| (= number of actions in it) is bounded by a
polynomial p(jw|) of the input w. With this feasibility in mind, we can now
formulate the above planning problem in precise terms:

e given: a polynomial p(n) > n, a domain description D (i.e., the description
of the initial state and of possible consequences of different actions) and
a goal f (i.e., a fluent which we want to be true),

o determine whether it is possible to feasibly achieve this goal, i.e., whether
there exists a feasible plan u (with |u| < p(|D])) which achieves this goal.

We are interested in analyzing the computational complexity of this planning
problem.

2.2 Complexity of the planning problem for situations
with complete information: a brief reminder

For situations with complete information, the above planning problem is NP-
complete:

Theorem 1. For situations with complete information, the planning problem
is NP-complete.

Comments.

e This result is similar to the result of Liberatore [3]. The main difference
is that Liberatore considers arbitrary queries from the language 4, while
we only consider queries about the existence of a feasible action plan.

e For readers’ convenience, all the proofs are placed in the special Proofs
section.

e As we will see from the proof, the problem remains NP-complete even if
we consider the planning problems with a fixed finite number of actions:
even with two actions. If we only allow a single action, then there is no
planning any more: the only possible plan is, in any state, to apply this
only possible action and check whether we have achieved our goal yet; the

corresponding “planning” problem is, of course, solvable in polynomial
time.

2.3 Towards complexity of the planning problem for situa-
tions with incomplete information: a brief description
of the necessary complexity notions

For situations with incomplete information, the planning problem is more com-
plicated — actually, belongs to the next levels of polynomial hierarchy; see the
exact results below. For precise definitions of the polynomial hierarchy, see, e.g.,
[4]. Crudely speaking, a decision problem is a problem of deciding whether a
given input w satisfies a certain property P (i.e., in set-theoretic terms, whether
it belongs to the corresponding set S = {w| P(w)}).

e A decision problem belongs to the class P if there is a feasible (polynomial-
time) algorithm for solving this problem.

e A problem belongs to the class NP if the checked formula w € S (equiva-
lently, P(w)) can be represented as JuP(u,w), where P(u,w) is a feasible
property, and the quantifier runs over words of feasible length (i.e., of
length limited by some given polynomial of the length of the input). The
class NP is also denoted by 31 P to indicate that formulas from this class
can be defined by adding 1 existential quantifier (hence ¥ and 1) to a
polynomial predicate (P).

e A problem belongs to the class coNP if the checked formula w € S (equiv-
alently, P(w)) can be represented as VuP(u,w), where P(u,w) is a feasi-
ble property, and the quantifier runs over words of feasible length (i.e., of
length limited by some given polynomial of the length of the input). The
class coNP is also denoted by II; P to indicate that formulas from this
class can be defined by adding 1 universal quantifier (hence IT and 1) to a
polynomial predicate (hence P).

e For every positive integer k, a problem belongs to the class YiP if
the checked formula w € S (equivalently, P(w)) can be represented as
JuiVus ... P(ui,u,. .., ur, w), where P(ui,...,ur, w) is a feasible prop-
erty, and all k¥ quantifiers run over words of feasible length (i.e., of length
limited by some given polynomial of the length of the input).

¢ Similarly, for every positive integer k, a problem belongs to the class II; P
if the checked formula w € S (equivalently, P(w)) can be represented as
YuiJus ... P(uy,us,...,uk,w), where P(uy,...,ur,w) is a feasible prop-
erty, and all k quantifiers run over words of feasible length (i.e., of length
limited by some given polynomial of the length of the input).

o All these classes X, P and II;P are subclasses of a larger class PSPACE
formed by problems which can be solved by a polynomial-space algorithm.
It is known (see, e.g., [4]) that this class can be equivalently reformulated
as a class of problems for which the checked formula w € S (equivalently,
P(w)) can be represented as VuiJus ... P(uy,us,...,ur,w), where the
number of quantifiers k£ is bounded by a polynomial of the length of the
input, P(u1,...,uk,w) is a feasible property, and all k¥ quantifiers run over
words of feasible length (i.e., of length limited by some given polynomial
of the length of the input).

A problem is called complete in a certain class if, crudely speaking, this is
the toughest problem in this class (so that any other general problem from this
class can be reduced to it by a feasible-time reduction). It is still not known
(1998) whether we can solve any problem from the class NP in polynomial time
(i-e., in precise terms, whether NP=P). However, it is widely believed that we
cannot, i.e., that NP#P. It is also believed that:

e to solve a NP-complete or a coNP-complete problem, we need exponen-
tial time = 2™;

e to solve a complete problem from one of the second-level classes Y3 P or
I1,P, we need doubly exponential time ~ 22";

e to solve a complete problem from the class PSPACE, we need time which
grows faster than any iteration of exponential functions.

2.4 Complexity of the planning problem for situations
with incomplete information: situations with no sens-
ing actions

Let us start our analysis with the case of no sensing.

Theorem 2. For situations with incomplete information and without sensing,
the planning problem is XoP-complete.

As we will see from the proof, the problem remains YoP-complete even if we
consider the planning problems with a fixed finite number of actions: even with
two actions.

Theorem 3. For situations with incomplete information and without sensing,
the 0-approximation to the planning problem is NP-complete.

In other words, the use of 0-approximation cuts off one level from the complexity,
i.e., crudely speaking, replaces doubly exponential worst-case time complexity
with exponential time complexity. So, for this problem, O-approximation is
indeed computationally very efficient.

This reduction from a doubly exponential to simply exponential is in
good accordance with our intuitive understanding of this problem and its 0-
approximation:

e In the case of complete information, to represent a state, we must know
which fluents are true and which are false. Therefore, a state can be
uniquely described by a subset of the set of all the fluents — namely, the
subset consisting of those fluents which are true in this state. The total
number of states is therefore equal to the total number of such subsets,
i.e., to 2F (where F is the total number of fluents).

e In the case of incomplete information, we, in general, do not know which
states the system is. So, a state of our knowledge (called a k-state in
[5, 6]) can be represented by a set of possible complete-information states.
Therefore, the set number of all possible k-states is equal to the number
of Fa.ll possible subsets of the set of all complete-information states, i.e., to
22",

e In O-approximation, a k-state is represented by stating which fluents are
true, which are false, and which are unknown. For each of F' fluents, there
are three different possibilities, so totally, in this approximation, we have
3% possible states.

So, going from a full problem to its 0-approximation decreases the number of
possible states from doubly exponential 22" to singly exponential 3. Since
planning involves analyzing different possible states, it is no wonder that for
0-approximation, the computation time should also be exponentially smaller.
Again, this argument is not a proof of Theorem 3 (the proof is given in the last
section), but this argument makes the result of Theorem 3 intuitively reasonable.

2.5 Complexity of the planning problem for situations
with incomplete information: situations with sensing

Let us now consider what will happen if we allow sensing actions. If we allow
unlimited sensing, then the situation changes radically: the planning problem
becomes so much more complicated that 0-approximation is not helping any-
more:

Theorem 4. For situations with incomplete information and with sensing, the
planning problem is PSPACE-complete.

Theorem 5. For situations with incomplete information and with sensing, the
0-approzimation to the planning problem is PSPACE-complete.

As we will see from the proof, both the planning problem itself and its 0-
approximation remain PSPACE-complete even if we consider the planning
problems with a fixed finite number of actions: even with two proper actions

and a single sensing action which reveals the truth value of only one fluent —
but we are allowed to repeat this sensing action at different moments of time.

In many real life control and planning situations, it is desirable to monitor
the environment continuously, and to make sensing actions all the time. How-
ever, this necessity is caused by the fact that in many real-life situations, the
consequences of each action are only statistically known, so we need to con-
stantly monitor the situation to find out the actual state. In this paper, we
consider the situations in which the result of each action is uniquely determined
by this action and by the initial state. In such idealized situations, there is no
much need for a constant monitoring. It therefore makes sense to allow only
a limited repetition of sensing actions in an action plan. With such a limita-
tion, the complexity of planning drops back, and 0-approximation starts helping
again:

Definition 1. Let k be a positive integer.

o We say that a sensing action is k-limited if it reveals the values of no more
than k fluents.

o We say that an action plan is k-bounded if it has no more than k sensing
actions.

Theorem 6. Let k be a positive integer. For situations with incomplete infor-
mation and with k-limited sensing actions, the problem of checking the existence
of a k-bounded action plan is XsP-complete.

Theorem 7. Let k be a positive integer. For situations with incomplete infor-
mation and with k-limited sensing actions, the problem of checking the existence
of a k-bounded 0-approzimation action plan is NP-complete.

Comments.

¢ As we can see from the proof, the same result holds if instead of assuming
that k is a constant, we allow k to grow as y/log(|D]) (i-e., as a square
root of the logarithm of the length of the input).

o A difficulty with the general situation with incomplete information comes
from the fact that we do not know the ezact states, i.e., we do not know
the values of all the fluents. It is therefore to analyze the situations with
full sensing, i.e., situations in which, for every fluent f;, we have a sensing
action check; which reveals the value of this fluent. Full sensing does
make the planning problem simpler, although not that simpler so that
0-approximation will help:

Theorem 8. For situations with incomplete information and with full sensing,
the planning problem is II;P-complete.

10

Theorem 9. For situations with incomplete information and with full sensing,
the 0-approximation to the planning problem is IIaP-complete.

These results can be represented by the following table:

exact 0-approximation

planning
complete information NP-complete NP-complete
partial information, YoP-complete NP-complete
no sensing
limited number YoP-complete NP-complete
of sensing actions
unlimited number PSPACE-complete | PSPACE-complete
of sensing actions
partial information II,P-complete I, P-complete
full sensing

unlimited number
of sensing actions
PSPACE-complete

4 hY
full sensing limited sensing
II,P-complete Yo P-complete
e

0-approximation or
complete information
NP-complete

2.6 Auxiliary result: 1-approximation is coNP-complete

In addition to 0-approximation, the authors of [5, 6] considered other types of
approximations, including the so-called 1-approzimation. In l-approximation,
partial states are defined in the same manner as for 0-approximation: i.e., as
lists of fluents and their negations. However, the result of a (proper) action a on
a state s is defined differently: in this new approximation, a fluent expression
F (fluent or its negation) is true after applying a to s if and only if F' is true in
all possible complete states complementing s. Then, as a new state Resp(a, s),
we take the set of all fluent expressions which are true after applying a.

In this section, we will show that this new definition increases the compu-
tational complexity of an approximation. Namely, while for 0-approximation,

11

computing the next state Resp(a,s) was a olynomial-time procedure, for 1-
approximation, computing the next state is already a coNP-complete problem:

Theorem 10. (1-approximation) The problem of checking, for a given state s,
for a given action a, and for a given fluent f, whether f is true in Resp(a,s),
is coNP-complete.

Comments.

e An w-approximation is defined in a similar manner, except that in an w-
approximation, the result Resp(a,s) is defined not after a single action
a, but after a sequence of proper actions between two sensing actions. In
the particular case when there is exactly one proper action between the
two sensing actions, w-approximation reduces to 1-approximation. There-
fore, w-approximation is also at least as complicated as coNP-complete
problems.

e These results show that if we want an approximation to decrease the
computational complexity of the planning problem, then (at least from
the viewpoint of the worst-case complexity) 0-approximation is preferable
to l-approximation and w-approximation.

3 Proofs

Proof of Theorem 1. First, let us show that for situations with complete
information, the planning problem belongs to the class NP. Indeed, for a given
situation w, checking whether a successful plan exists or not means checking
the validity of the formula Ju P(u,w), where P(u,w) stands for “the plan u
succeeds for a situation w”. To prove that the planning problem belongs to the
class NP, it is therefore sufficient to prove the following two statements:

e that the quantifier runs only over words u of feasible length, and
e that the property P(u,w) can be checked in polynomial time.

The first statement immediately follows from the fact that in this paper, we are
considering only plans of polynomial (feasible) length, i.e., plans u whose length
|u| is bounded by a polynomial of the length |w| of the input w: |u| < p(|w|),
where p(n) is a given polynomial. So, the quantifier runs over words of feasible
length.

Let us now prove the second statement. Once we have a plan u of feasible
length, we can check its successfulness in a situation w as follows:

e we know the initial state sg;

12

o take the first action from the action plan u and apply it to the state sg;
as a result, we get the state s1;

¢ take the second action from the action plan v and apply it to the state s;;
as a result, we get the state s2; etc.

At the end, we check whether in the final state, the desired fluent is indeed true.
On each step of this construction, the application of an action to a state requires
linear time; in total, there are polynomially many steps in this construction.
Therefore, this checking indeed requires polynomial time.

So, the planning problem indeed belongs to the class NP. Let us show that it
is NP-complete. To show it, we will prove that the known NP-complete prob-
lem — the propositional satisfiability problem — can be reduced to this problem.
In the propositional satisfiability problem, the input is a propositional formula
F, ie., any expression which can be obtained from Boolean (“true”’—“false”)
variables x1, ..., z, by using propositional operations & (“and”), V (“or”), and
= (“not”). The problem is to check whether the given formula F is satisfiable,
i.e., whether there exist values zy, . .., z,, which make the formula F' true. Let us
show how, for each propositional formula F', we can design a planning problem
whose solvability is equivalent to satisfiability of the original formula F'.

To simplify the desired reduction to a planning problem, let us first re-
formulate the propositional formula F in a more constructive (action-like) way.
Namely, when the values z1,...,z, are chosen, then for these values, checking
the validity of the formula F' is straightforward: a computer can check this
validity in polynomial (even linear) time. Let us describe, step by step, how the
computer will do this checking. In other words, let us parse the formula F'. Let
us denote the intermediate results of this computation by Z,4+1,%nt2,... For
example, if F is the formula (21 V 22)&(x1 V —22), the a possible parsing of this
formula is as follows:

o we start with the values x; and xs;

e then, we compute the first disjunction x3 := 1 V 2;

then, we compute the negation x4 := —xy;

after that, we are ready to compute the second disjunction x5 := x1 V z4;

finally, we compute the truth value of the resulting formula as the con-
junction of the two disjunctions: zg := z3&xs.

In general, we start with the variables z1,...,z,, and then, for k =n + 1,
n+ 2,..., we compute the value of zj, in one of the three possible ways:

e either as xy := xp() &, () for some values f(k) < k and s(k) < k;

® Or as T = Tf(p) V Ty(r) for some values f(k) < k and s(k) < k;

13

e or as Ty := T () for some value f(k) < k.

Based on this parsing representation of the original propositional formula, we
can construct the desired planning situation. Let xzx denote the last value in
the parsing construction. In our planning situation, we will have two actions: a

and a—, and 2N + 1 fluents z1,...,ZN, S0, 51, --,SN-
The intended meaning of these fluents and actions is as follows: In our de-
signed plan, in the first n actions, we select the values of the variables z1,. .., z,,

and then, in the remaining N — n actions, we simulate the computation of the
formula F. The meaning of the fluent s; is “we are at moment 5”.

Initially, sg is true, and all other fluents are false. The goal of the plan is to
make z true.

Two groups of rules describe the effects of actions. Rules from the first group
describe the selection of the truth values; it also reflects the fact that each action
increases time by one:

a causes x; if s;_1;

a causes s; if s;_1;
a causes —s;_1 if 8;_1;
a~ causes —x; if s;_1;
a~ causes s; if s;_1;
a~ causes —s;_1 if 8;_1.

Here, i takes values from 1 to n.

Rules from the second group describe the computation process. For every k
from n + 1 to N, depending on which operation computes zj in terms of z)
and x,(r), we get the following set of rules:

o if z} := zp(p)&T 41y, then we add the following rules:
a causes Ty, if sg_1,Tf(k), To(k);
a causes ~xy if Sp_1,7Tf(k);
a causes —xy, if Sk—1, Ts(k);
a causes s, if sg_1;
a causes —sp_1 if Sp_1.
o if mp 1= Tp) V T4, then we add the following rules:
a causes Ty, if Sg_1,Tf1);
a causes Ty, if sg_1,T,(k);
a causes ~Ty, if Sk_1, T f(k), "Ts(k);
a causes sy, if sp_1;

a causes —8p_1 if Sp_1.

14

e finally, if zy := —xf(;), then we add the following rules:
a causes Ty, if Sp_1, T f(r);

a causes Ty, if sg_1,Tfp);
a causes sy if sp_1;

a causes —8p_1 if Sp_1.

At the beginning, s¢ is true, and all other “temporal” variables s; are false. One
can easily check that if we apply any action (a or a~) to a state in which s; is
true and all other “temporal” variables s;, j # ¢, are false, then in the resulting
state, s;+1 is true, and all other temporal variables are false. So, by induction,
we can prove that all accessible states are like that. If we are in a state in which
s; is true and s; are false for all j # ¢, we will say that we are at moment of
time i. In these terms any action increases the time by one. Thus, a possible
plan can include no more than IV actions; hence, the length of any possible plan
does not exceed the length of the input data.

Actions performed at moments of time 1 through n select the truth values
of the propositional variables zy,...,x,. One can easily see that on each step
k > n, the only action we can apply is the action a, and, as a result of this
action, we compute the truth value of the auxiliary variable x;, and increase the
time by one.

The variable zy is originally false. The only rules which can make it true
require than we have sy_; true; if we apply any action in a state in which sy_1
is true, we get a state in which sy is true. So, the only way for zn to be true
is for sy to be true as well.

Since each action increases time by one, no matter what sequence of actions
we choose, if we have reached sy this means that we have also computed the
truth value zny of the original formula F. Thus, the only way for zy to be
true is for the original formula F' to be true under the chosen Boolean values
Z1,...,ZTy. S0, if the above planning problem is solvable, then the propositional
formula F' is satisfiable. Vice versa, if the formula F' is satisfiable, i.e., is true
for some propositional values z1,...,Z,, then we can choose these values in our
first n actions, and hence, get the solution to our planning problem.

Thus, the solvability of our planning problem is indeed equivalent to the
satisfiability of the original formula F. The reduction is proven, and therefore,
the planning problem is NP-complete.

Proof of Theorem 2. First of all, let us show that for situations with in-
complete information and no sensing actions, the planning problem belongs to
the class ¥5P. Indeed, incomplete information means that the initial values
of some fluents are unknown. For such problems, the existence of a successful
action plan means the existence of an action plan w, for which, for every set of

15

values us of the unknown fluents, the plan leads to a success. In mathemati-
cal terms, the existence of a successful plan can be thus written as a formula
Juq Yus P(ui, us,w), where the predicate P(u1, us,w) describes the fact that for
the planning problem w and for the values us of initially unknown fluents, the
plan u; leads to a success. Now, to prove that this problem belongs to the class
3, P, we must show that the quantifiers run over variables of feasible length,
and that the predicate P(uy,us,w) is feasible.

The quantifier u; runs over plans and is, therefore, feasible; the quantifier
uy runs over sets of values of fluents; each set of values is feasible (its length
is equal to the number of unknown fluents), so this quantifier is also feasible.
Finally, if we know the values uq of all the initially unknown fluents, and if we
know the sequence of actions u;, then we can easily check, step-by-step, whether
for these values of fluents, the given sequence of action leads to a success (this
can be done exactly as in the proof of Theorem 1). Therefore, the predicate
P(uq,us,w) is feasible. So, the planning problem indeed belongs to the class
3.P.

To prove that the planning problem is ¥sP-complete, we will show that we
can reduce, to the planning problem, a problem known to be ¥XsP-complete:
namely, the problem of checking, for a given propositional formula F' with the
variables %1, ..., Tm, Tmt1, - - - » Tn, Whether

Jz1 ...z VT4 .. . Vo, F.

The reduction will be similar to the one from Theorem 1, with two exceptions:

e In the planning problem constructed in the proof of Theorem 1, we as-
sumed that initially, all the variables x; were initially false. In the new

reduction, we assume that only the variables x1, ..., x,, are initially false,
and that the values of the remaining variables Z,41,...,%, are initially
unknown.

e Correspondingly, rules from the first group (which generate the values ;)
are only constructed for the values i < m; for ¢ from m + 1 to n, we have,
instead, “dummy” rules which simply increase time by one:

a causes s; if s;_1;
a causes —s;_1 if s;_1.

Similarly to the proof of Theorem 1, the only way to make zy true is to go
through a sequence of N actions, in first m of which we choose the truth values
of the propositional variables z1,..., %y, and in the last N — n of which we
compute the truth value of the original formula F' using the selected values
of z1,...,%m, and the original (unknown) values of the propositional variables
Tm41, - - -, Tn. Lherefore, the existence of a successful action plan is equivalent to
the possibility of choosing the values z1, . . ., z,, for which, for all possible values

16

of Xpmt1,. .., Ty, the formula F is true. In other words, the existence of an action
plan is equivalent to the validity of the formula 3z, ... 3z, V2 py1 .. . Vo, F. The
reduction is proven, and so the planning problem in indeed ¥5P-complete.

Proof of Theorem 3. In 0-approximation, the existence of a successful action
plan is equivalent to JuP(u,w). In this approximation, at any given moment of
time, the state is described by a finite set of fluents and their negations, and, if
we know the previous state and the action, then we can find the next state in
linear time. Therefore, in 0-approximation, similarly to the proof of Theorem 1,
we can check the successfulness of a given action plan u for a given initial state
w in polynomial time. Since the predicate P(u,w) can be checked in polynomial
time, and the quantifier Ju runs over words of polynomial length, the planning
problem belongs to the class NP.

The fact that it is NP-complete follows from the fact that for the partic-
ular case of complete information, 0-approximation coincides with the original
planning problem, and for complete information, as we have shown in the proof
of Theorem 1, the planning problem is indeed NP-complete. The theorem is
proven.

Proof of Theorem 4. First of all, let us show that if we allow sensing, then
for situations with incomplete information, the planning problem belongs to the
class PSPACE. Indeed, the existence of an action plan of a (feasible) length L
can be reformulated as follows: there exists a first action uq, such that for every
possible sensing result us of this first action (if it is a sensing action), there
exists a second action ug, such that for every possible result u4 of this second
action (if it is a sensing action), there exists a third action us, etc., such that
at the end, we get the desired value of the goal fluent (for all possible values of
still un-sensed fluents). In mathematical terms, the existence of a plan can be
thus re-written as

JuiVusJusVuy - . . VurP(ug, - - -, ug, w),

where ug,...,ur_1 represent actions and results of sensing actions, and uy runs
over all possible values of un-sensed (unknown) fluents.

In this construction, we have two quantifiers per action in an action plan +
one extra quantifier at the end. Therefore, we totally have k = 2L+1 quantifiers;
since L is feasible (i.e., bounded by a polynomial of the length of the input),
the total number k& = 2L + 1 of quantifiers is feasible too.

Therefore, to prove that this problem belongs to the class PSPACE, it is

sufficient to show that the predicate P(uy,...,u,w) is feasible, i.e., that if we
know wuy,...,ux, and w, then we can check, in polynomial time, whether this
predicate is true. Once we know w1, ..., u,w, it means that we know the initial

situation, and we know the values of all the fluents, both sensed (from wus,u4,
etc.), and un-sensed (from uy), and that we know the actual sequence of actions
(the first action is uq, the second is us, etc.). Since we know the values of all the

17

fluents, and we know the action plan, we can check, in feasible time, whether
this particular action plan leads to success in this particular initial complete-
information state. Thus, the predicate P(uq,...,us,w) is indeed polynomial-
time, and the planning problem indeed belongs to the class PSPACE.

To prove that the planning problem is PSPACE-complete, we will show
that we can reduce, to the planning problem, a problem known to be PSPACE-
complete: namely, the problem of checking, for a given propositional formula F'
with the variables z1,...,Zm, Tm+1,--.,Zn, the validity of the formula

3$1V[L’23.’L‘3V.’L’4 ...F.

This reduction will be a modification of the reduction which we used in our proof
of Theorem 1. Similarly to that proof, we will start with parsing the formula
F; let xy denote the last value in the parsing construction.

e In addition to two proper actions a and a7, i.e., actions which actually
change the state, we have a third action: a sensing action d which senses
the value of the fluent z;.

e In addition to 2N +1 fluents x4, ..., TN, So, S1,- - - , SN, We have additional
fluents s1.5,83.5,---.,Si.5,. .. for all odd integers ¢ between 1 and n.

The new fluents represent “intermediate” moments of time:
e the moment 1.5 is intermediate between moments 1 and 2;
e the moment 3.5 is intermediate between moments 3 and 4; etc.

so that
1<15<2<3<3h<4<bH<...<n.

Similarly to the proof of Theorem 1, the goal of the plan is to make zy true.
Initially:

e s is true;

e all other fluents s; are false;

e all fluents x4, ...,z, are unknown; and

e all fluents z,,41,...,2N are false.

Similarly to the proof of Theorem 1, two groups of rules describe the effects of
actions. Rules from the first group describe the selection of the truth values
Z1,...,T,; they also reflects the fact that each action moves us to the next
moment of time. Rules corresponding to odd-numbered variables xs;41, ¢ =
0,1,... (i.e., variables z1,x3,...) are similar to the ones used in the proof of
Theorem 1:

a causes Ta;41 if Sa;;

18

a causes Sg;y1 if 825
a causes —sg; if 8243
a” causes —Ta;y1 If Sai;
a” causes Sg;y1 if Sa;;
a~ causes —sy; if 5o;.

Here, i takes all integer values from 0 to [n/2] (i.e., all integer values 4 for which
1<2i+1<n).

Rules corresponding to each even-numbered variable x2;,7 = 1,2, .. ., include
three steps whose goal is to detect (“sense”) the value of this variable by using
the sensing action d:

o first, we swap the variable z5; with the variable z;, thus enabling d to
measure the value of what is now z; (and what was originally x;);

e then, we actually sense the value of 1 (which we will be able to later use
in selecting further action); and

e finally, we swap back the values z1 and x»;.
The rules corresponding to the first swap are as follows:
a causes x1 if xo;, S2;_1;

a causes —xy if 7Zo;, S9i 1;
a causes xo; if T1,82;_1;
a causes —xo; if —x1, 82i-1;
a causes Sg;_1.5 if S2;_1;
a causes —8o;_1 If $9;_1.

The rule corresponding to sensing is simple:
d determines x;.
Finally, the rules corresponding to swap back are as follows:
a causes x1 if X2, 82i_1.5;

a causes I if X245y 82i—1.5;
a causes ITro; if r1,82i-1.55
a causes —To; if L1,82i—1.53

a causes So; if 89;_1.5;

19

a causes —8o;_1.5 If S9i_1.5.

Rules from the second group describe the computation process; these rules are
the same as in the proof of Theorem 1.

Let us show that in this situation, the existence of a successful plan is equiv-
alent to the validity of the original propositional formula with quantifiers.

Indeed, if the original propositional formula with quantifiers is true, this
means that there exists x; such that for every x5, there exists x3, etc., for which
the formula F is true (i.e., for which zy is “true”). Here, x; is a constant
(“true” or “false”), x3 may depend on 2, x5 may depend on x5 and x4, etc. In
other words, there exists:

e a value x7;
e a value z3(x2) which depends on the previous value z»;

e a value x5(x2,24) which may depend on the previous values z and x4,
etc.

for which, for all possible values of 3,4, - .., the formula P(z,zs,...) is true
(this reformulation is called a skolemization of the original formula with quan-
tifiers). Therefore, we can use the following action plan to succeed:

o first, at moment 0, we select a or a~ depending on whether the “existing”
value of z; is “true” or “false”;

e then, we use the swap sequence to exchange x, and x;, measure the truth
value of z1, and swap back; as a result, we know the truth value of the
variable z;

e depending on the sensed value of x5, we select a or a~ depending on
whether z3(z2) is true or false;

e then, we apply two swaps and sensing to sense the value of the variable
T4, ete.

¢ after the moment s,,, we apply the same action (action a) N —n times to
compute the truth value zy =“true” of the formula F'.

Vice versa, let us assume that for our planning domain, there exists a suc-
cessful action plan, i.e. an action plan which makes the desired fluent z always
true. Similarly to the proof of Theorem 1, the only way to make z true is to go
through a sequence of all moments of time, sg, $1,81.5,82,---,8n; Snt1,-- -, SN,
and the only way to go through this sequence of moments of time is to perform
the corresponding actions. In particular, for z1, ..., z,, we must perform all the
selecting actions and all the swaps. Of course, there is no necessity to perform
the sensing actions, but since performing a sensing action does not change the
actual state, we can always add these sensing actions to the action plan without

20

changing the successfulness of this plan. So, without losing generality, we can
assume that in the successful action plan, we are sensing the values of all the
variables Z3, x4, ... In short, this action plan does the following;:

e In the first action, we perform either the action a which leads to z;, or
the action a~ which leads to —z;. In other words, in the first action, we
select a truth value of the variable z;.

e Then, we measure z2, and we select a truth value of the variable z3. In
this selection, we can use our knowledge about xs; so, the selected value
is, in general, a function of z3: z3(z2). (If we do not use x2, this simply
means that we are using a constant function which does not depend on x5
at all.)

o After that, we measure x4 and select z5. In this selection, we can use our
knowledge about the values z2 and z4, so, in general, the selected value
x5 is a function of 22 and x4: x5 = z5(22, T4).

e After we have selected and sensed the values zi,...,z,, the resulting
actions simply simulate the process of computing the truth value (zx) of
the propositional formula F(xy,...,%,).

The success of the action plan means that for all possible values x5, x4, .. ., the
formula
F(.Z'l,1'2,.’13'3(1'2),.’L‘4,.’L‘5(.Z'2,.’E4),$6, ..)

is true. This means exactly that there exists x; such that for every xs, there
exists an z3, for which, for all x4, etc., the formula F(z1,z2,3,...) is true. In
other words, the existence of a successful action plan means that the original
propositional formula with quantifiers is true.

Since we have already proven the implication in the other direction, we can
thus conclude that the existence of a successful action plan is equivalent to the
truth of the original propositional formula. The reduction is proven, and so the
planning problem in indeed PSPACE-complete.

Proof of Theorem 5. This result can be proven similarly to the proof of
Theorem 4:

e Similarly to that proof, we can show that the 0-approximation to the
planning problem belongs to the class PSPACE.

e The fact that it is PSPACE-complete follows from the observation that
in the planning situation described (for reduction purposes) in the proof of
Theorem 4, at any given moment of time, our knowledge consists exactly in
knowing the values of some fluents, while other fluents can take arbitrary

21

values. In other words, for this situation, every action plan is also 0-
approximate, so the existence of a successful action plan for this problem
is equivalent to the existence of a successful 0-approzimate action plan.

The theorem is proven.

Proof of Theorem 6. Let us first show that the planning problem belongs
to the class X5P. Indeed, the existence of a successful plan can be written as
Ju1Vus P(u1,us2, w), where u; is an action plan, and us is the set of initial values
of all initially unknown fluents. Here, similarly to the proof of Theorem 4, us
runs over words of feasible length and P(uq,us,w) is a feasible predicate. The
only difference is with wuq:

e previously (in the proof of Theorem 4), the action plan was simply a
sequence of actions, while

e now, an action plan can have some sensing actions inside, and the results
of these sensing actions determine the following action.

Each sensing action senses no more than k different fluents. Each fluent can
have two different values, so after sensing, we have < 2* different sensing results.
So:

o If we have a single sensing action in an action plan, the conditional action
plan branches itself into < 2* possible branches (unconditional plans).

o If we have two sensing actions, then each of < 2* branches formed after the
first sensing action can, by itself, branch into < 2* sub-branches, making
it a total of < 2% - 2%k = 22k branches.

e We are allowing a total of < k seglsing actions in each action plan, so we
have < 2% 2% (k times) = 2¥" possible branches.

To describe a conditional action plan, we describe all actions sequences which
correspond to different branches. The length of each branch is polynomial (i.e.,
it is bounded by a polynomial of the length |w| of the input), and the number
of branches is limited by a constant (2¥”) which does not depend on the length
of the input at all. Therefore, the total length |ui| of this description w; is
bounded by a polynomial of |w|. So, the first quantifier also runs over words of
feasible length. Therefore, the problem indeed belongs to the class Y,P.

We have already proven (in Theorem 4) that for the particular case of no
sensing, the planning problem is ¥sP-complete. Therefore, this more general
problem is Y.oP-complete as well. The theorem is proven.

Proof of Theorem 7. This proof is related to the proof of Theorem 5 in the
same way as the proof of Theorem 6 was related to the proof of Theorem 4:
first, we prove that the 0-approximate planning problem belongs to the class
NP - by using the same coding u; of the conditional plans as in the proof of

22

Theorem 6, and then we observe that since a particular case (no-sensing) of this
problem is NP-complete, this general problem is NP-complete as well.

Proof of Theorem 8. First of all, let us show that for full sensing, the
planning problem belongs to the class II;P. Indeed, since sensing actions do not
change the state of a system, there is no harm in applying them first, and thus,
determining the values of all the fluents. For each revealed initial state, we have
an unconditional action plan. Thus, the existence of a successful conditional
action plan for situations with full sensing means that for every initial state
u1, there is an (unconditional) action plan wy which leads to a success. In
mathematical terms, the existence of a successful plan can be thus written as
a formula Vu;3us P(uy,us2, w), where the predicate P(uj,us2,w) describes the
fact that for the planning problem w and for the values u; of initially unknown
fluents, the plan us leads to a success. Similarly to the proof of Theorem 2, we
can prove that the quantifiers run over variables of feasible length, and that the
predicate P(uy,us,w) is feasible. Thus, for the case of full sensing, the planning
problem indeed belongs to the class IIxP.

To prove that the planning problem is IIsP-complete, we will show that we
can reduce, to the planning problem, a problem known to be IIsP-complete:
namely, the problem of checking, for a given propositional formula F' with the
variables %1, ..., Tm, Tmt1, - - - » Tn, Whether

V... Veu3xmyr ... 3z, F.

The reduction will be similar to the one from Theorem 1, with three exceptions:

e In addition to two proper actions, we also have m sensing actions check;,
1 <4 < m, which sense the values of the variables x1,...,Zm,.

e In the planning problem constructed in the proof of Theorem 1, we as-
sumed that initially, all the variables x; were initially false. In the new
reduction, we assume that only the variables x,,t1,...,%, are initially
false, and that the values of the remaining variables z1,...,Z,, are ini-
tially unknown.

e Correspondingly, rules from the first group (which generate the values z;)
are only constructed for the values ¢ > m; for ¢ from 1 to m, we have,
instead, “dummy” rules which simply increase time by one:

a causes s; if s;_1;

a causes —s;_1 if s;_1,

and the “sensing” rules

check; determines x;.

23

Similarly to the proof of Theorem 1, the only way to make zy true is to go
through a sequence of N actions:

e in the first m of these actions, we sense the truth values of the variables
L1yeensLmy

e in the next n —m of these actions, we choose the truth values of the propo-
sitional variables Z;;,41,...,Zy; in this choice, we can use the “measured”
values of z1,...,Zm;

e finally, in the last N —n actions, we compute the truth value of the original
formula F using the “sensed” truth values of the propositional variables
T1,...,Tm, and the selected truth values of the propositional variables
Tm41y---3Ln-

Therefore, the existence of a successful action plan is equivalent to the pos-
sibility that for every possible combination of the values z1,...,T,, we can
choose the values z;41,...,2, for which the formula F' is true. In other
words, the existence of an action plan is equivalent to the validity of the for-
mula Vz; ... V2, 3241 - . . Jz, F. The reduction is proven, and so the planning
problem in indeed IIsP-complete.

Proof of Theorem 9. We already know, from Theorem &, that for full sensing,
the planning problem is IIsP-complete. To prove that the the existence of a
0-approximate plan is Il P-complete, it is therefore sufficient to show that for
situations with full sensing, the existence of a successful action plan is equivalent
to the existence of a 0-approximate action plan.

In one direction this implication is trivial: it is known [5, 6] that a successful
0-approximate action plan is a particular case of a successful plan. Thus, if there
exists a successful 0-approximate plan, this means that there exists a successful
plan.

Vice versa, let us assume that there exists a successful (conditional) action
plan. Since we have a situation with full sensing, we can, in principle, do the
following:

o first, we sense all the fluents, thus determining completely the initial state;

e then, we follow the sequence of actions which is recommended by the
original conditional plan for this particular initial state.

For complete states, every plan is a O-approximate plan. Therefore, what we
described is a successful 0-approximate plan.

Th equivalence between the existence of a successful plan and the exis-
tence of a successful 0-approximate plan is thus proven, and therefore, the
0-approximation to the planning problem is indeed II,P-complete.

Proof of Theorem 10. First, let us show that this problem belongs to the
class coNP. Indeed, the fact that f is true is Resp(a, s) can be reformulated as

24

VuP(u,w), where u runs over all possible states complementing s, and P(u,w)
means that the predicate f is true in the result of applying a to the complete
state u. Here, the quantifier runs over complete states — i.e., words of feasible
length, and the predicate P(u,w) can also be easily checked in polynomial time.
Thus, this problem indeed belongs to the class coNP.

To prove that this problem is coNP-complete, let us reduce, to this prob-
lem, a problem known to be coNP-complete: namely, the problem of check-
ing whether a given propositional formula F with n propositional variables
Z1,---,Ty IS a tautology, i.e., whether it is true for all possible values of its
variables zq,...,z,. It is known that this problem is coNNP-complete even
if we restrict ourselves to propositional formulas of the special type: namely,
to 3-CNF formulas, i.e., formulas of the type C; & C2 & ... & C), where each
“clause” C; is of the type pV ¢V r, with p, ¢, and r being literals (i.e., proposi-
tional variables z; or their negations).

Let us now show how we can reduce an instance of a CNF-tautology problem
to checking whether f holds in Resp(a, s). Let Cy & C2 & ... & Cj, be a checked
formula F' with propositional variables z1,...,z,. Then, we define a planning
situation with n 4+ 1 fluents f,zx1,...,2,. In the initial state s, f is true, and
fluents z1,...,z, are unknown. We have k rules which describe the result of
the action a — one rule for each clause C;. Namely, for each clause pV gV r, we
have a rule

a causes —f if—p, g, —r.

Let us show that f is true in Resp(a, s) if and only if the original formula F'is a
tautology. Indeed, initially f was true; the only reason for it to stop being true
if for some state u complementing s, we get —f, i.e., if for some values of the
variables x1, . .., &p, for one of the clauses C; = pV gV r, we have =p & —q & —r.
But this conjunction is exactly the negation of the clause, so, in other words, f
is not true in Resp(a, s) if and only if for some values of the variables 1, ..., z,,
one of the clauses is false.

Therefore, f is true in Resp(a,s) if and only if for every choice of the
variables z1, ..., z,, all clauses C; are true — which is equivalent to saying that
the original formula Cy & ... & C}, is true. So, f is true in Resp(a,s) if and
only if the original formula is a tautology. The reduction is proven, and so our
problem is indeed coNP-complete.

Acknowledgments. This work was supported in part by NASA under cooper-
ative agreement NCC5-209, by NSF grant No. DUE-9750858, by United Space
Alliance, grant No. NAS 9-20000 (PWO C0C67713A6), by Future Aerospace
Science and Technology Program (FAST) Center for Structural Integrity of
Aerospace Systems, effort sponsored by the Air Force Office of Scientific Re-
search, Air Force Materiel Command, USAF, under grant number F49620-95-
1-0518, and by the National Security Agency under Grant No. MDA904-98-1-
0564.

25

References

[1]

K. Erol, D. S. Nau, and V. S. Subrahmanian, “Complexity, decidability and
undecidability results for domain-independent planning”, Artificial Intelli-
gence, 1995, Vol. 76, pp. 75-88 (detailed proofs are given in the University
of Maryland Technical Report CS-TR-2797 (also listed as UMIACS-TR-
91-154 and SRC-91-96).

M. Gelfond and V. Lifschitz, “Representing actions and change by logic
programs”, J. of Logic Programming, 1993, Vol. 17, pp. 301-322.

P. Liberatore, “The complexity of the language A”, Electronic
Transactions on Artificial Intelligence, 1997, Vol. 1, pp. 13-28
(http://www.ep.liu.se/ej/etai/1997/02).

C. H. Papadimitriou, Computational Complezxity, Addison-Wesley, Read-
ing, MA, 1994.

T. Son, and C. Baral, “Approximate reasoning about actions in presence
of sensing and incomplete information”, In: Proc. of International Logic
Programming Symposium (ILPS’97), 1997, pp. 387-401.

T. Son, and C. Baral, Formalizing sensing actions — a transition function
based approach, University of Texas at El Paso, Department of Computer
Science, Technical Report, 1998 (http://cs.utep.edu/chitta/chitta.html).

26

