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Abstract

One of the basic problems of interval computations is to compute a
range of a given function f(z1,...,2zn) over a given box

[z, T1] X ... X [z, Tn]

(i.e., to compute the maximum and the minimum of the function on the
box). For many classes of functions (e.g., for quadratic functions) this
problem is NP-hard; it is even NP-hard if instead of computing the mini-
mum and maximum ezactly, we want to compute them with a given (abso-
lute) accuracy e > 0. In practical situations, it is more realistic to ask for a
relative accuracy; are the corresponding problems still NP-hard? We show
that under some reasonable conditions, NP-hardness of absolute-accuracy
optimization implies that relative-accuracy optimization is NP-hard as
well.

Data processing: a practical problem which leads to interval compu-
tations. In many real-life situations, we are interested in the value of some
physical quantity y which is difficult (or even impossible) to measure directly.
To estimate y, we measure directly measurable quantities x1, ..., x, which have
a known relationship with g, and then reconstruct y from the results z1,..., %,
of these measurements by using this known relation: y = f(z1,...,T,), where
f is a known algorithm.

Measurements are never 100% accurate; as a result, the actual value z; of
each measured quantity may differ from the measured value z;. If we know

the upper bound A; for the measurement error |Az;| = |Z; — x;|, then after we
get the measurement result Z;, we can conclude that the actual value x; of the
measured quantity belongs to the interval x; = [Z; — A;, T; + A;]. A natural



question is: when z; € x;, what is the resulting interval y = f(x1,...,%x,) =
{f(x1,...,2n)|z; € x;} of possible values of y? The problem of estimating
this range interval is called the problem of interval computations (see, e.g.,
(2, 3,4,5,7]).

Interval computations as a particular case of global optimization. In
optimization terms:

e the lower endpoint y of the range interval y = [y,7] is the infimum of the

function f(z,... ,:{n) on the box x1 X ... X x,,, and

e the upper endpoint 7 of the range interval is the supremum of the function
f(x1,...,x,) over the same box.

Interval computation is NP-hard for many reasonable classes of prob-
lems. It is known that the problem of interval computation is NP-hard for many
reasonable classes of functions (see, e.g., [6]): e.g., it is NP-hard:

e for the class of all polynomials;

e for the class of all quadratic functions f(z1,...,2,) = a0+ >, a; - z; +
Y- a;j - x; - x; (the proof of this particular result is due to Vavasis [10]);

o for several classes of quadratic functions with sparse matrices a;;;
e for all piecewise-linear functions, etc.

(For related problems, see, e.g., [9].)

For many interval computation problems, absolute-accuracy opti-
mization is also NP-hard. Most of the above problems are NP-hard even
if instead of looking for, say, the precise maximum % of a function f, we are
looking for absolute-accuracy optimization, i.e., if we fix a real number € > 0
and we are looking for values y which are (absolutely) e-close to the (unknown)
precise maximum, i.e., for which |g — 7| < e.

Relative-accuracy optimization may be more realistic. From the practi-
cal viewpoint, the desire to have the bounds with an absolute accuracy may be
too strong. If the actual maximum is large, it may be more reasonable to look
for an estimate which is good within a certain relative accuracy, i.e., for which
[y —7| <e-|y| and |y — 7| < e [g], where € > 0 is a given relative accuracy
(such as 1% or 0.01%).

For small values 7 thus defined relative accuracy is too strong: e.g., for
7 = 0, the only way to compute this value with relative accuracy e (in the
sense of the above two inequalities) is to compute it precisely, because the only
value y which satisfies these two inequalities is ¥ = 0 = y. For small values 7,
absolute accuracy makes more practical sense. So, a more realistic approach is
to fix a value £ and to require that the computed value 3 and the actual value



7 are either absolutely e-close or strongly relatively e-close (in the sense of the
above two inequalities). In short, we arrive at the following definition (similar
definitions were used in Ch. 11 of [6]):

Definition 1. Let € > 0.
o We say that two real numbers @ and a are absolutely e-close if |a —a| < e.

e We say that two real numbers a and a are strongly relatively e-close if
@ —a| <e-la] and [a —a| < e -al.

e We say that two real numbers a and a are relatively e-close if they are
either absolutely e-close or strongly relatively e-close.

Is the corresponding optimization problem still NP-hard? The above
notion of relative e-closeness is weaker than the notion of absolute e-closeness; so,
in general, it may be possible that the absolute-accuracy optimization problem
is NP-hard, while the weaker relative-accurate optimization problem is easier to
solve. We will show, however, that for many important classes, the new problem
is still NP-hard.

Definition 2. We say that a class F of computable functions (from tuples of
real numbers into real numbers) is shift-invariant if for every function f € F
and for every rational number c, the class F also contains the function f + c.

Comment. All above classes are shift-invariant.

Definition 3. We say that class F of functions is feasibly boundable if there
exists a polynomial-time (feasible) algorithm which, given a function f € F and
a given box (with rational coordinates), produces a lower and an upper bound
for the range of this function on this box.

Definition 4. We say that for a class of functions F, absolute-accuracy opti-
mization is NP-hard if for every € > 0, the problem of computing a maximum M
of a given function f € F on a given box with an absolute accuracy ¢ (i.e., the

problem of computing a value M which is absolutely e-close to M) is NP-hard.

Comment. All above classes are feasibly boundable, and for all above classes,
absolute-accurate optimization is NP-hard.

Definition 5. We say that for a class of functions F, relative-accuracy opti-
mization is NP-hard if for every € > 0, the problem of computing a maximum
M of a given function f € F on a given box with a relative accuracy € (i.e., the

problem of computing a value M which is relatively e-close to M in the sense
of Definition 1) is NP-hard.

Proposition. If for some shift-invariant feasibly boundable class F, absolute-
accuracy optimization problem is NP-hard, then for this class, relative-accuracy
optimization problem is also NP-hard.



Comments.

e The condition that the class should be feasibly boundable is not really re-
strictive: indeed, if we are able to solve the relative-accuracy optimization
problem in feasible time, then we get feasible bounds as well; therefore,
if the class is not feasible boundable, then no feasible algorithm can solve
the corresponding relative-accuracy optimization problem.

e As a corollary, we conclude that for quadratic polynomials (and for
quadratic functions with a sparse matrix a;;), the relative-accuracy op-
timization problem is NP-hard.

Proof. To prove the theorem, we will show that for shift-invariant feasibly
boundable classes, the absolute-accuracy optimization problem can be polyno-
mially Turing-reduced to the relative-accuracy optimization problem for this
same class (i.e., that we can solve the absolute-accuracy optimization problem
in polynomial time if we use the solver of the relative-invariant optimization
problem as an oracle; for precise definitions, see, e.g., [1, 8]). Since the absolute-
accuracy optimization problem is known to be NP-hard, we can thus conclude
that the relative-accuracy optimization problem is NP-hard as well.

Let us show the desired reduction. Assume that we want to solve the
absolute-accuracy optimization problem with an accuracy § > 0. This means
that, given a function f(z1,...,z,) (from the class F) and a box, we must find
values which are absolutely d-close to the minimum and to the maximum of
the given function on a given box. Let us show how we can use the relative-
accuracy oracle to solve this problem. Without losing generality, we will show
how to compute the maximum with the accuracy ¢ (for minimum, the compu-
tation is similar).

First, since the function f(x1,...,z,) is feasibly boundable, we can apply
the polynomial-time bounding algorithm and find a lower bound B; and an
upper bound B,, for the range of the function f on a given box. Then, for every
x = (x1,...,2,) from the given box, the value f(x) belongs to the interval
[By, B,). In particular, the actual maximum M of the function is somewhere in
this interval. Let us denote the width B, — B; of this interval by A.

Let us fix a real number € > 0 and an integer m (their values will be specified
later). We can define, for every integer ¢ from 0 to m, the values ¢; = B;j+i-A/m.
These values cover the entire interval [Bj, B,] so that every value from this
interval (including the unknown actual maximum M) is at most (absolutely)
A/(2m)-close to one of these points. Since the class F is shift-invariant, for
every integer ¢ from 0 to m, the function f; = f —¢; also belongs to the class F;
the actual maximum of this function is M; = M — ¢;. Let us apply the oracle
to the functions fy,..., fm, and compute the e-relative approximations M; to
these maxima.

For the value j for which |M — ¢;| < A/(2m), we have |M;| = |M —¢;| <



A/(2m). Therefore, since ]\A/E should be relatively e-close to M}, we can conclude
that:

e cither

]\Ajj—Mj‘ < ¢, in which case
0L, < 10451+ |2 M’<A+
4 , M < = 4
i| = 1M j IWS9, T

® Or

]\Ajj —Mj‘ < e-|Mj|, in which case
~ ~ A A
‘Mj’ < [Mj] + ‘Mj _Mj’ < |Mjl+e- [M;| = om T e
In both cases,

~ A A
‘Mj’ < %+max (5,5~2m>.

Since for every a,b > 0, we have max(a,b) < a + b, we can conclude that
|M;| < K, where

A A A
K= — C— = — (1 . 1
2m+5+€ 2m 8+2m ( +E) <)

So, there always exists a k for which ’]T/fk‘ < K. If we find such k, then, since

My, is relatively e-close to Mk, we can conclude that:

e cither

M, — Mk‘ < g, in which case,

| M| < ’Mk‘ + ‘Mk —Mk‘ <K +e¢,

Mk—Mk‘§€~‘Mk

e or , in which case,

| M| < ‘Mk‘+‘Mk—J\7k‘ < ‘Mk’+e-‘ﬁk‘ <K+e K.

In both cases, | M| < K +max(e, K -¢), and therefore (due to max(a,b) < a+b),
|My| < B, where

B=K+e+e - K=+ K- -(1+¢). (2)

Since My, = M — ¢k, we can thus conclude that |M — ¢| < B, and therefore,
the actual value of M belongs to the interval [¢;, — B, ¢ + B] of width A’ = 2B.

Substituting the expression (2) for B into the formula for A’, and then
substituting the formula (1) for K, we can get the following expression for A’:

A-(1+¢)?

A" = 4e +2¢% + (3)



If we choose m for which (1 +¢)?/m < 1/2, e.g., if we choose m = [2(1 + ¢)?],
then we can conclude that

A
A’§4s+252+5. (4)
Subtracting twice the e-term from both sides of this inequality, we conclude

that A 2)
— (8 +4¢
== = (5)

So, if originally, we had A > (8¢ + 4¢2), then the difference between A and the
e-term gets halved.

We can repeat the same construction, starting with the new maximum-
containing interval [c;, — B, ¢ + B] of width A’ (instead of the original interval
[B;, B,] of width A), etc., etc., until we reach (in polynomially many steps, i.e.,
in = log,(A/e) steps) a maximum-containing interval for which the difference
between its width Agpa and the e-expression 8¢ + 4e2 is < . For this interval,
Agpa < 9e + 4e?. So:

A — (8 4 4£%) <

e cither after the first step we already had a maximum-containing interval
of width A < 8¢ + 42 < 9¢ + 4¢2,

e or, in polynomial number of steps, we get a maximum-containing interval
of width Agpa < 9e + 4£2.

In both cases, if we choose e for which 9¢ + 4e? = § (such a value ¢ always
exists and is easy to find), we will find an interval of width < ¢ which contains
the desired maximum M. Each endpoint of this interval is, therefore, the de-
sired absolute d-approximation to M. The reduction is proven, and so is the
proposition.
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