For Interval Computations,
If Absolute-Accuracy Optimization is NP-Hard,
Then So Is Relative-Accuracy Optimization

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
email vladik@cs.utep.edu

Abstract

One of the basic problems of interval computations is to compute a

range of a given function f(z1,...,2zn) over a given box
[, el ] x X [z, 2]

(i.e., to compute the maximum and the minimum of the function on the
box). For many classes of functions (e.g., for quadratic functions) this
problem is NP-hard; it is even NP-hard if instead of computing the mini-
mum and maximum ezactly, we want to compute them with a given (abso-
lute) accuracy e > 0. In practical situations, it is more realistic to ask for a
relative accuracy; are the corresponding problems still NP-hard? We show
that under some reasonable conditions, NP-hardness of absolute-accuracy
optimization implies that relative-accuracy optimization is NP-hard as
well.

Data processing: a practical problem which leads to interval compu-
tations. In many real-life situations, we are interested in the value of some
physical quantity y which is difficult (or even impossible) to measure directly.
To estimate y, we measure directly measurable quantities x1, ..., x, which have
a known relationship with g, and then reconstruct y from the results z1,..., %,
of these measurements by using this known relation: y = f(z1,...,T,), where
f is a known algorithm.

Measurements are never 100% accurate; as a result, the actual value z; of
each measured quantity may differ from the measured value z;. If we know

the upper bound A; for the measurement error |Az;| = |Z; — x;|, then after we
get the measurement result Z;, we can conclude that the actual value x; of the
measured quantity belongs to the interval x; = [Z; — A;, T; + A;]. A natural



question is: when z; € x;, what is the resulting interval y = f(x1,...,%x,) =
{f(x1,...,2n)|z; € x;} of possible values of y? The problem of estimating
this range interval is called the problem of interval computations (see, e.g.,
(3,4, 5, 6, 8]).

Interval computations as a particular case of global optimization. In
optimization terms:

e the lower endpoint y~ of the range interval y = [y, y™] is the infimum of
the function f(z1,...,z,) on the box x1 X ... X x,,, and

e the upper endpoint y™ of the range interval is the supremum of the func-
tion f(z1,...,x,) over the same box.

Computational complexity of interval computations: why it is impor-
tant. Often, an algorithm f(z1,...,,) used in data processing is reasonably
complex and requires a lot of computational steps (and hence, a lot of compu-
tation time). When we take into consideration the inaccuracy of direct mea-
surements, and consider the corresponding interval computation problem, then
we, in essence, move from the problem of computing the value of a function to
an optimization problem of computing the maximum (and the minimum) of a
function.

An optimization problem is usually much more time-consuming than simply
computing the value of an optimized function at a single point; as a result,
the resulting interval computations — i.e., data processing which takes measure-
ment uncertainty into consideration — is much more time-consuming than data
processing which does not take this uncertainty into consideration. As a con-
sequence, a data processing algorithm which is quite feasible when we do not
take measurement uncertainty into consideration may lead to impractically long
computations when this uncertainty is considered (i.e., when we consider the
corresponding interval computations problem).

It is therefore very important to estimate the computational complexity of
different problems of interval computation.

Computational complexity of interval computations: how to define it.
In numerical mathematics and theoretical computer science, there exist several
different definitions of computational complexity.

Traditionally, in numerical mathematics, computational complexity is de-
fined as a number of elementary operations (such as additions, multiplications,
etc.) which form the algorithm. For example, it is usually stated that the
traditional algorithm for matrix multiplication of two n x n matrices requires
O(n?) steps, meaning O(n?®) multiplications and additions of the corresponding
elements. The corresponding definitions are described and used, e.g., in [1]. In
these definitions of computational complexity, we assume that the input consists
of several real numbers, and that each arithmetic operation with real numbers
is counted as a single computational step.



This model of real number computations is, of course, an idealized descrip-
tion of the actual data processing: in reality, we do not know the real numbers
which are the actual values of the physical quantities, we only deal with the mea-
surement results which are approximations to these actual values. To perform
data processing, we need to input these measurement results into a computer,
and in most existing computers, we cannot represent arbitrary real numbers,
only rational ones. In most computers, a “real number” means a finite binary
expressions of the type 0.00110,. (We can also implement arithmetic of rational
numbers by representing each rational number m/n as a pair of integers (m,n).)

When we are interested in the computational complexity of the original data
processing algorithm — without taking measurement uncertainty into consider-
ation — it is thus reasonable to ignore the difference between the original real
number and its rational approximate value (with which the actual computations
are performed). In this case, it makes perfect sense to use traditional numerical-
mathematics models of real number computations (e.g., models from [1]).

For interval computations, however, the situation is different. We cannot
any longer ignore the difference between the actual and the measured values
of the input quantities, because the entire complexity of interval computations
comes from this difference.

Let us give one more argument why this difference must be taken into con-
sideration. Our main motivation for studying the computational complexity of
interval computation is to estimate the computation time of different algorithms.
This computation time depends not only on what operations we perform, but
also on how accurate the measurements are. Less accurate measurements gener-
ate fewer digits of the measured values and therefore, fewer bits in the computer
representation of the input data; the more accurate the measurements, the more
extra digits they generate and therefore, the longer it takes to process all these
digits.

Even for the simplest arithmetic operations, such as addition or multiplica-
tion of two numbers, the actual computation time depends on the number of
digits in these numbers: the more bits in these numbers, the more bit operations
addition (or multiplication) takes and therefore, the more computation time this
arithmetic operation requires. Since we are interested in analyzing, e.g., how
the computation time depends on the measurement accuracy, we cannot any
longer consider an arithmetic operation such as addition or multiplication as
a single step: we must take into consideration the number of bit operations of
which each such arithmetic operation consists.

Therefore, for interval computations, we must use a different computation
model, in which the input data are rational numbers, and the computational
complexity is defined as the total number of bit operations. This model is mainly
used in theoretical computer science to describe computational complexity of
different discrete-data algorithms; it is often called a Turing machine model of
computations. In the general computer science context, this model is described,
e.g., in [2, 9]; in the context of interval computations, it is described in [7]. In



this paper, we will use this bit-wise (Turing machine) model of computation.

Interval computation is NP-hard for many reasonable classes of prob-
lems. We can apply the above analysis to explain the exact meaning of compu-
tational complexity of interval computation problems. In accordance with the
above analysis, each input interval x; = [z ,x x;] is given as a pair of two ratio-
nal numbers z; and xz ; all the coefficients in an algorithm f(z1,...,z,) are
also rational. For example, a polynomial algorithm f(z1,...,z,) would mean
that we consider expressions of the type

flxe, ... zy) ao—i—Zaz xl—i—Za” T; xj—&—Za”k T T T+

where the coefficients ag, a;, aij, aijk, ..., are rational numbers. This expression
(or, to be more precise, the binary computer representation of this expression)
serves as a (computer) code of the corresponding function. For polynomials, one
can easily write a feasible (polynomial-time) program which, given a code for
a polynomial function f(x1,...,x,) and the (rational) values of the variables
Z1,...,Ty, returns the value of the corresponding polynomial on given inputs.
In general, we have a class F of functions, i.e., a class of codes (program
sequences) and a feasible (polynomial-time) algorithm which takes a function
code and the rational values of the variables, and returns the rational value of
the function. For interval computations, the input consists of a function f (i.e.,
a code from a given class F), and 2n rational numbers z; , j‘, 1<i<n.
This description takes care of the input. An additional subtlety is how to rep-
resent the desired output. In some cases (e.g., for linear functions f(z1,...,z,)),
if the endpoints z; and ] are rational, and all the coefficients of the algorithm
f(x1,...,x,) are rational, then the infimum y~ and supremum y* of the func-
tion f(x1,...,z,) on the box x; X ... X X, are themselves rational numbers.
However, in many other cases, the values y~ and y™ are not rational; so, in the
existing computer languages, we cannot represent these numbers exactly. The
only thing we can do is to fix a representation accuracy, i.e., a rational number
e > 0, and generate e- approxnnatlons to the desired Values y~ and yT, ie.,

numbers y and y+ for which |y

- -y ‘<eand ‘y+—y ‘<5

In other words, instead of looking for, say, the precise maximum y* of a
function f, we are looking for absolute-accuracy optimization, i.e., we fix a
rational number € > 0 and we are looking for a value yAJ; which is (absolutely)
e-close to the (unknown) precise maximum, i.e., for which ’g}: —yT| <e.

It is known that for every € > 0, the corresponding absolute-accuracy opti-
mization problem is NP-hard for many reasonable classes of functions (see, e.g.,
[7]): e.g., it is NP-hard:

e for the class of all polynomials;

e for the class of all quadratic functions f(z1,...,2,) = ao + > a; - x; +
> a;j - x; - x; (the proof of this particular result is due to Vavasis [11]);



o for several classes of quadratic functions with sparse matrices a;;;
e for all feasible piecewise-linear functions, etc.

(For related problems, see, e.g., [10].)

In these results, the required accuracy is fixed, and for this fixed required
accuracy ¢, the corresponding absolute-accuracy approximation problem is NP-
hard. (As a corollary, we can conclude that the following weaker result is also
true: if we consider the required accuracy ¢ part of the data of the problem,
then the resulting problem is NP-hard as well.)

Relative-accuracy optimization may be more realistic. From the prac-
tical viewpoint, the requirement to have the bounds with an absolute accuracy
may be too strong. If the actual maximum is large, it may be more reasonable
to look for an estimate which is good within a certain relative accuracy, i.e.,
y*—y*’ <e-|yt| and |yt —yT
relative accuracy (such as 1% or 0.01%).
For small values yT thus defined relative accuracy is too strong: e.g., for
yT = 0, the only way to compute this value with relative accuracy & (in the
sense of the above two inequalities) is to compute it precisely, because the only

for which <e-|y*|, where ¢ > 0 is a given

value yT which satisfies these two inequalities is y+ = 0 = y*. For small values
yT, absolute accuracy makes more practical sense. So, a more  realistic approach
is to fix a value € and to require that the computed value y* and the actual
value y* are either absolutely e-close or strongly relatively e-close (in the sense
of the above two inequalities). In short, we arrive at the following definition
(similar definitions were used in Ch. 11 of [7]):

Definition 1. Let € > 0.
o We say that two real numbers @ and a are absolutely e-close if |a —a| < e.

o We say that two real numbers a and a are strongly relatively e-close if
@ —a| <e-la] and [a —a| < - al.

e We say that two real numbers a and a are relatively e-close if they are
either absolutely e-close or strongly relatively e-close.

Is the corresponding optimization problem still NP-hard? The above
notion of relative e-closeness is weaker than the notion of absolute e-closeness; so,
in general, it may be possible that the absolute-accuracy optimization problem
is NP-hard, while the weaker relative-accurate optimization problem is easier to
solve.

We will show, however, that for many important classes, the new problem
is still NP-hard.

Definition 2. We say that a set B of (finite) binary sequences is feasible
decidable if there exists a feasible (polynomial-time) algorithm which, given a
binary sequence b, checks whether this sequence b belongs to the set B or not.



Definition 3. By a class F of computable functions we mean a triple (F, ar, val),
where:

e [ is a feasibly decidable set of binary sequences; elements of the set F
will be called function codes, or simply codes;

e ar is a feasible mapping from F' to the set of non-negative integers; the
value ar(f) is called the arity of a function f;

e val is a feasible mapping which takes, as input, a tuple (f,xz1,...,2y),
where f € F, n = ar(f), and x; are rational numbers, and returns a new
rational number; this new rational number will be called a value of the
function f on the values x1,...,x, and denoted by f(x1,...,x,).

Definition 4. We say that a class F = (F,ar,val) of computable functions is
feasibly shift-invariant if there exists a feasible mapping S : F' X Q — F which
maps every pair (f,c), in which f is a function code and c is a rational number,
into a new function code S(f,c) such that for every f and for every ¢, we have:

e ar(S(f,c)) = ar(f), and

e for every tuple z1,...,x,, where n = ar(f), we have
S(f,e)(@1,...,xn) = f(z1,...,x0) +c.

This function S(f,c) will be denoted by f + c.

Comments.

e Informally, a class F is shift-invariant if for every function f € F and for
every rational number ¢, the class F also contains the function f + ¢, and
there is a feasible way to construct a code for f + ¢ from the codes for f
and c.

e One can easily see that all above classes — the class of all polynomials,
the class of all quadratic functions, the class of all feasible piecewise-linear
functions — are feasibly shift-invariant.

Definition 5. We say that class F of computable functions is feasibly boundable
if there exists a polynomial-time (feasible) algorithm which, given a function f €
F and a given box (with rational coordinates), produces two rational numbers:
a lower bound B~ and an upper bound B™T for the range of this function on
this box.

Comments.
e To avoid confusion, we want to emphasize that in this definition, we require

that a feasible algorithm computes lower and upper bounds, not for the
eract infima and suprema.



e All above classes — the class of all polynomials, the class of all quadratic
functions, etc. — are feasibly boundable. Indeed, to compute the lower
and upper bounds for a polynomial on a given box, we can use, e.g., so-
called naive interval computations, when we describe the computation of
a polynomial as a sequence of elementary arithmetic operations (addition,
multiplication, subtraction, etc.), and then replace each operation with
real (rational) numbers in this description by the corresponding operation
of interval arithmetic:

[a,at]+ b7, 0" =[a” +b ,at +bT];
[a,at]—[b",b" ] =[a” —b",a" —b7];
[a,a®]-[b7,bT] = [min(a™ - b ,a” -b",a" -b7,at - bT),
max(a” -b",a” -bT,at b7 ,aT - b")];

(for details, see, e.g., [3, 4, 5, 6, 8]). As a result, we get lower and upper
bounds which do not necessarily coincide with the infimum and supremum.
For example, for f(z1) = x1 — 2} on the 1D box (interval) x; = [0, 1], the
computation of this polynomial consists of first computing r1 = 1 -1 and
then computing f = x1—r1; the corresponding naive interval computations
lead to the intervals ry =x; -x; =[0,1] and f =x; —r; =[0,1] — [0, 1] =
[-1,1]. So, we conclude that the lower bound B~ for the function f is
B~ = —1, and the upper bound is B = 1. These bounds differ from the
infimum y~ = 0 and supremum y* = 0.25 of the function f(z1) = z; —?
on the interval [0, 1].

Definition 6. We say that for a class of computable functions F, absolute-
accuracy optimization is NP-hard if for every € > 0, the problem of computing
a maximum M of a given function f € F on a given box with an absolute
accuracy € (i.e., the problem of computing a value M which is absolutely e-
close to M ) is NP-hard.

Comments.

e In this definition, we pick an arbitrary rational number ¢ > 0, and for-
mulate the formulate the following general problem: given a code f € F
and a tuple of rational intervals [z],z]],..., [v;, 2], generate a rational
number M which is e-close to the actual supremum M of f on the corre-
sponding box [r], 2] x ... x [z, z}]. As a result, we have a family of
problems corresponding to different values of £. We require that all the
problems from this family are NP-hard.

e For all above classes — the class of all polynomials, the class of all quadratic
functions, the class of all feasible piecewise-linear functions — absolute-
accurate optimization is NP-hard (see, e.g., [7, 11]).



Definition 7. We say that for a class of functions F, relative-accuracy opti-
mization is NP-hard if for every € > 0, the problem of computing a maximum
M of a given function f € F on a given box with a relative accuracy ¢ (i.e., the

problem of computing a value M which is relatively e-close to M in the sense
of Definition 1) is NP-hard.

Comment. In both definitions 6 and 7, the required accuracy is fixed, and for
this fixed required accuracy ¢, the corresponding approximation problem is NP-
hard. So, each of these definitions does not simply state that a single problem
is NP-hard; it actually states that for a whole family of problems (characterized
by a parameter ), every problem from this family is NP-hard.

Proposition. If for some shift-invariant feasibly boundable class F, absolute-
accuracy optimization is NP-hard, then for this class, relative-accuracy opti-
mization is also NP-hard.

Comments.

e The condition that the class should be feasibly boundable is not really re-
strictive: indeed, if we are able to solve the relative-accuracy optimization
problem in feasible time, then we get feasible bounds as well; therefore,
if the class is not feasible boundable, then no feasible algorithm can solve
the corresponding relative-accuracy optimization problem.

e As a corollary, we conclude that for quadratic polynomials (and for
quadratic functions with a sparse matrix a;;), the relative-accuracy op-
timization problem is NP-hard.

Proof. We want to prove that for every € > 0, the corresponding relative-
accuracy optimization problem is NP-hard. Let us therefore fix an arbitrary
rational number € > 0 and prove that the corresponding relative-accuracy opti-
mization problem is NP-hard.

To prove this NP-hardness, we will show that for feasibly shift-invariant
feasibly boundable classes F, the appropriate absolute-accuracy optimization
problem (for some § depending on £) can be polynomially Turing-reduced to the
relative-accuracy optimization problem with accuracy e for this same class. In
other words, we will show that we can solve the appropriate absolute-accuracy
optimization problem in polynomial time if we use the solver of the relative-
accuracy optimization problem with accuracy e as an oracle (for precise def-
initions, see, e.g., [2, 9]). Since for every § > 0, the absolute-accuracy op-
timization problem is known to be NP-hard, we can thus conclude that the
relative-accuracy optimization problem with accuracy e is NP-hard as well.

Let us show the desired reduction. Assume that we want to solve the
absolute-accuracy optimization problem with some accuracy 6 > 0 (the value &
will be specified later). This means that, given a function f(z1,...,z,) (from
the class F) and a box, we must find a values which is absolutely d-close to the



maximum of the given function on a given box. Let us show how we can use
the relative-accuracy oracle to solve this problem.

Since the function f(x1,...,x,) is feasibly boundable, we can apply the
polynomial-time bounding algorithm and find a lower bound B~ and an upper
bound BT for the range of the function f on a given box. Then, for every
x = (x1,...,2,) from the given box, the value f(x) belongs to the interval
[B~, BT]. In particular, the actual maximum M of the function is somewhere
in this interval. Let us denote the width BT — B~ of this interval by A.

Let us fix an integer m (its value will also be specified later). We can define,
for every integer ¢ from 0 to m, the values ¢; = B~ 4+ 4 - A/m. The intervals
[ci—A/(2m),c;+A/(2m)] = [B;+(i—1/2)-(A/m), B;+ (i+1/2)-(A/m)], cover
the entire interval [B~, BT| = [B~, B~ + A]; so, every value v from the interval
[B~, BT] is covered by at least one of these intervals [c; — A/(2m), ¢; + A /(2m)].
For the corresponding i, we have v € [¢; — A/(2m),¢; + A/(2m)] and hence,
|[v—¢;| < A/(2m). In particular, since the actual maximum M of the function
f(z) belongs to the interval [B~, B*], we can take v = M and conclude that
there exists an integer j for which 0 < j <m and |[M —¢;| < A/(2m).

One of the conditions of the proposition is that the class of functions F is
feasibly shift-invariant. By definition, this means that for every function f € F
and for every rational number ¢, the class F also contains the function f+c¢. In
particular, for for every integer i from 0 to m, we can take the rational number
¢ = —c¢; and conclude that the function f; = f — ¢; also belongs to the class F.
The actual maximum M; of each function f; is equal to M; = M — ¢;. Let us
apply the relative-accuracy oracle to the functions fo,..., fi, and compute the
e-relative approximations M; to these maxima.

We know that there is a value j for which |M — ¢;| < A/(2m). For this
value j, we therefore have |M;| = |M —¢;| < A/(2m). By our definition of an
oracle, ]\Ajj is relatively e-close to M;. According to Definition 1, this means the
following:

e cither ‘]\Ajj fMj‘ < g, in which case
— ~ A
‘Mj’ < |Mj|+‘Mj —Mj’ < %+€,
e or ‘]\’Zj —Mj‘ < e -|Mj|, in which case
—~ ~ A A
‘Mj’ < |Mj|+‘Mj _Mj’ < [Mj|+e-[M;| = o T o

In both cases,

—~ A A
o< — — .
‘Mj‘ ) + max (5,5 2m>



Since for every a,b > 0, we have max(a,b) < a + b, we can conclude that
‘]\A/fj‘ < K, where by K, we denoted

A A A
= — C— = — (1 . 1
K 2m+€+€ 2m €+2m ( +€) ()

So, there always exists an index k for which ‘Mk‘ < K. Vice versa, if we find

such k, then, since My, is relatively e-close to M}, we can conclude that:

e cither |Mj — Mk‘ < &, in which case,

| M| < ’Mk‘ + ‘Mk _Mk‘ <K+e,

Mk—Mk‘§€-‘Mk

e or , in which case,

| M| < ‘Mk‘-F‘Mk—Mk‘ < ‘Mk’-F&‘Mk‘ <K-+e K

In both cases, | M| < K +max(e, K -¢), and therefore (due to max(a,b) < a+b),
|My| < B, where by B, we denoted:

B=K+e+e- K=e+K-(1+¢). (2)

We know that for every k, the maximum Mj; of the auxiliary function f, = f—c
is related to the maximum M of the original function f(z) by the formula M}, =
M — ¢. So, from the inequality |M}| < B, we can conclude that |M — ¢;| < B,
and therefore, that the actual value of M belongs to the interval [c¢;, — B, ¢, + B]
of width A’ = 2B.

Substituting the expression (2) for B into the formula for A’, and then
substituting the formula (1) for K, we can get the following expression for A’:

A-(1+¢)?

A" = 4e +2¢% + (3)

If we choose m for which (1 +¢)?/m < 1/2, e.g., if we choose
m = [2(1+¢)], (4)
then we can conclude that

A
N§%+M+5. (5)

Subtracting 2 - (4e + 2¢2) from both sides of this inequality, we conclude that

A — (8 +4e?)

A" — (8e +4£?) < 5

(6)

10



So, if originally, we had A > (8¢ + 4¢2), then the difference between A and the
e-expression 8¢ + 4¢? gets halved.

We can repeat the same construction, starting with the new maximum-
containing interval [c;, — B, ¢ + B] of width A’ (instead of the original interval
[B~, BT] of width A), etc., etc., until we reach (in polynomially many iterations,
ie., in = logy(A/e) iterations) a maximum-containing interval for which the
difference between its width Agna and the e-expression 8¢ +4e2 is < €. For this
interval, Agnal < 9¢ + 4€2. So:

e cither after the first step we already had a maximum-containing interval
of width A < 8¢ + 42 < 9¢ + 4e2?,

e or, in polynomial number of steps, we get a maximum-containing interval
of width Agpa < 9¢ + 4€2.

In both cases, if we choose § = 9¢ + 4e2, we will find an interval of width
< § which contains the desired maximum M. Each endpoint of this interval is,
therefore, the desired absolute §-approximation to M.

So, if we can use the solution of the relative-accuracy optimization prob-
lem (corresponding to the given €) as an oracle, then, for this §, the following
algorithm solves the corresponding absolute-accuracy optimization problem.

First, we compute the integer value m by using the formula (4). Now that
m is fixed, we can described the desired algorithm.

This algorithm takes, as input, a function f and a box x; X ... X x,. Based
on this input, we do the following:

1. First, we apply the (polynomial-time) bounding algorithm to the given
function f on a given box, and compute the bounds B~ and B™.

2. Second, we compute the difference A = BT —B~. If A < §, then the value
BT is already the desired absolute d-approximation to the maximum M,
so we stop; otherwise, we continue.

3. If we continue, then we compute the value K by using the formula (1),
the value B by using the formula (2), and m+1 values ¢; = B~ +i-A/m,
0 <% < m. For a given ¢, the integer m is fixed, so computing all these
values requires a time which is bounded by a polynomial of the bit length
of the values B~ and B™' and thus, by a polynomial in terms of the bit
length the input data.

4. Then, we apply the shifting algorithm to compute the codes for the func-
tions f; = f—¢; = f+ (—¢;), 0 < i < m. Since the class F is feasibly
shift-invariant, the shifting algorithm requires polynomial time.

5. Next, we apply the oracle (which solves the relative-accuracy approxima-
tion problem) to find e-approximations My, My,..., M, ... (k < m) to

11



the suprema of the functions fo, f1,... After we get each value ]T/fk, we
check whether |M| < K; when we find a value k for which this inequality
is true, we stop. (We have shown, in the previous part of the proof, that
such a value k always exists.) The number of calls to an oracle in this
step is bounded by a constant (m + 1), and the input to all these calls is
feasible bounded (by a polynomial of the length of the input).

6. For the value k from Step 3, we then take B~ := ¢, — B and Bt := ¢, + B,
and go to Step 2.

Each iteration of this algorithm requires polynomial time (with a uniform poly-
nomial bound), and we have shown that the total number of required iterations
is bounded by a polynomial of the length of the input. Therefore, the total com-
putation time of this oracle-using algorithm is also bounded by a polynomial.
Thus, the above reduction is indeed polynomial-time.

The polynomial-time reduction is proven, and so is the proposition.

Acknowledgments. This work was supported in part by NASA under
cooperative agreement NCC5-209, by NSF grants No. DUE-9750858 and
CDA-9522207, by United Space Alliance, grant No. NAS 9-20000 (PWO
C0C67713A6), by the Future Aerospace Science and Technology Program
(FAST) Center for Structural Integrity of Aerospace Systems, effort sponsored
by the Air Force Office of Scientific Research, Air Force Materiel Command,
USAF, under grant number F49620-95-1-0518, and by the National Security
Agency under Grants No. MDA904-98-1-0561 and MDA904-98-1-0564.

The author is thankful to all the participants of the Conference on Ap-
proximation and Complexity in Numerical Optimization: Continuous and Dis-
crete Problems (Gainesville, Florida, February 28-March 2, 1999), especially
to P. Pardalos and S. Vavasis, for valuable discussions, and to the anonymous
referees for valuable suggestions.

References

[1] L. Blum, F. Cucker, M. Shub, and S. Smale, Complezity and real computa-
tion, Springer Verlag, N.Y., 1997.

[2] M. E. Garey and D. S. Johnson, Computers and intractability: a guide to
the theory of NP-completeness, Freeman, San Francisco, 1979.

[3] R. Hammer, M. Hocks, U. Kulisch, D. Ratz, Numerical toolbox for verified
computing. I. Basic numerical problems, Springer Verlag, Heidelberg, N.Y.,
1993.

[4] E. R. Hansen, Global optimization using interval analysis, Marcel Dekker,
N.Y., 1992.

12



[5] R. B. Kearfott, Rigorous global search: continuous problems, Kluwer, Dor-
drecht, 1996.

[6] R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Computa-
tions, Kluwer, Dordrecht, 1996.

[7] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complexity
and feasibility of data processing and interval computations, Kluwer, Dor-
drecht, 1997.

[8] R. Moore, Methods and Applications of Interval Analysis, STAM, Philadel-
phia, 1979.

[9] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

[10] P. M. Pardalos, Complezity in Numerical Optimization, World Scientific,
Singapore, 1993.

[11] S. A. Vavasis, Nonlinear optimization: complexity issues, Oxford University
Press, N.Y., 1991.

13



