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Abstract. Due to measurement uncertainty, after measuring a
value of a physical quantity (or quantities), we do not get its exact
value, we only get a set of possible values of this quantity (quan-
tities). In case of 1-D quantities, we get an interval of possible
values. It is known that the family of all real intervals is closed
under point-wise arithmetic operations (+,−, ·) (i.e., this family
forms an arithmetic). This closeness is efficiently used to estimate
the set of possible values for y = f(x1, . . . , xn) from the known sets
of possible values for xi.

In some practical problems, physical quantities are complex-
valued; it is therefore desirable to find a similar closed family (arith-
metic) of complex sets. We follow K. Nickel’s 1980 paper to show
that, in contrast to 1-D interval case, there is no finite-dimensional
arithmetic.

We prove this result by reformulating it as a geometric problem
of finding a finite-dimensional family of planar sets which is closed
under Minkowski addition, rotation, and dilation.



Data processing: a practical problem which leads to arith-
metic of complex sets. In many real-life situations, we are in-
terested in the value of some physical quantity y which is diffi-
cult (or even impossible) to measure directly. To estimate y, we
measure directly measurable quantities x1, . . . , xn which have a
known relationship with y, and then reconstruct y from the results
x̃1, . . . , x̃n of these measurements by using this known relation:
ỹ = f(x̃1, . . . , x̃n), where f is a known algorithm.

Measurements are never 100% accurate; as a result, the actual
value xi of each measured quantity may differ from the measured
value x̃i. If we know the upper bound ∆i for the measurement error
|∆xi| = |x̃i − xi|, then after we get the measurement result x̃i, we
can conclude that the actual value xi of the measured quantity
belongs to the interval xi = [x̃i −∆i, x̃i +∆i]. A natural question
is: when xi ∈ xi, what is the resulting interval y = f(x1, . . . ,xn) =
{f(x1, . . . , xn) |xi ∈ xi} of possible values of y?

Computing the exact bounds for the range interval is, in gen-
eral, computationally difficult (see e.g., [Kreinovich et al. 1997]).
However, there are efficient methods of computing an enclosure
Y ⊇ y for this range; these methods are called methods of inter-
val computations (see, e.g., [Hammer et al. 1993], [Hansen 1992],
[Kearfott 1996], [Kearfott et al. 1996], [Moore 1979]). For example,
we can use “naive interval computations”: describe the algorithm
f as a sequence of elementary arithmetic operations (+,−, ·, /),
and on each step, replace each operation ⊙ with numbers by the
corresponding operation with intervals:

x⊙ y = {x⊙ y |x ∈ x, y ∈ y}. (1)

For intervals, we have explicit formulas for these arithmetic opera-
tions: e.g., [a, a] + [b, b] = [a+ b, a+ b], etc.

For example, to estimate the range of the function f(x1) =
x1 · (1 − x1), we describe the algorithm f as a sequence of two
arithmetic operations:
• computing the intermediate value r1 := 1− x1, and
• computing the product f := x1 · r1.

So, to estimate the range f([0, 1]), we compute r1 := 1 − [0, 1] =



[0, 1], and then get the final enclosure Y := x1 · r1 = [0, 1] · [0, 1] =
[0, 1] (this is, of course, a superset of the actual range [0,0.25]).

Similar range estimation problems appear when the physi-
cal quantities are described by complex numbers. It is therefore
desirable to find a similar technique for complex numbers. The
methodology of naive interval computations is based on the fact
that the set of all intervals (including degenerate intervals – real
numbers) is closed under point-wise arithmetic operations (1) (ex-
cept, of course, division by an interval y containing 0). In other
words, arithmetic operations are well defined on the family of all
intervals, so we can talk about the arithmetic of intervals. Hence,
it is desirable to look for families of subsets of complex numbers
which are also closed under arithmetic operations, i.e., to look for
an arithmetic of complex sets.

We want these subsets to be representable in a computer,
where we can only store finitely many parameters and therefore,
we want these sets to form a finite-dimensional (finite-parametric)
family.

Also, we want to take into consideration that real numbers are
an important practical case of complex numbers; therefore, real-
line intervals (corresponding to imprecisely known real numbers)
should be a particular case of this more general family of complex
sets.

Reasonable families of complex sets do not form a complex
arithmetic: the empirical fact and the resulting question.
There are several natural complex analogues of real-line intervals:

• boxes, i.e., rectangular parallel to real axis;

• ellipses (including real-line intervals as degenerate ellipses),
etc.

None of these families is closed under point-wise arithmetic op-
erations (1). Moreover, they are not even closed under a limited
set of arithmetic operations which includes addition and multi-
plication by complex numbers. A natural question is: Is there
a finite-dimensional family of complex sets which is closed under
these operations? To answer this question, let us reformulate it in
geometric terms.



Reformulating the question in geometric terms. In geomet-
ric terms, a complex plane is simply a plane, so we are looking for
families of planar sets. The sum (1) of two planar sets is simply
their Minkowski sum.

In geometric terms, if we multiply a complex number t by
another complex number z = ρ · exp(iφ), this mean that we first
rotate t by an angle φ around the origin O = (0, 0) of the coordi-
nate system, and then dilate the rotated point ρ times. Thus, the
pointwise product z · T of a complex number z and a set T means
that we first rotate the set T , and then dilate the result of this
rotation.

Hence, we arrive at the following definition:

Definition. Let R2 be a plane. By an arithmetic of complex sets,
we mean a family F of planar sets which satisfies the following
three properties:

• F contains all sub-intervals of the x-axis R× {0};
• F is closed under Minkowski addition, and

• F is closed under rotations and dilations around O = (0, 0).

A finite-dimensional family can be defined in a standard topolog-
ical way: if we restrict ourselves to bounded and closed (hence,
compact) sets, we can use Hausdorff distance between sets to de-
fine a topology; once the family is a topological space, we can use
standard topological definitions to define its dimension.

The question is: does there exist a finite-dimensional arith-
metic of complex sets?

Nickel’s answer, and why it is not final. In his paper [Nickel
1980], K. Nickel proves that “finite-dimensional” arithmetics of
complex sets do not exist. However, in his formulation, he only
considers sets with piece-wise smooth boundaries, and he uses a
non-standard (and non-topological) definition of dimension.

To be more precise, he calls a family “at least m-dimensional”
if this family contains at least one set with m “corner” (non-
smooth) points, and he proves that every arithmetic of complex sets
is “infinite-dimensional” in this sense by proving that it contains a
m-cornered set Bm for each m. From the topological viewpoint, all



these sets Bm form a family of dimension 0, and therefore, Nickel’s
proof does not answer our question.

Final answer. We will show that a minor modification of Nickel’s
construction does lead to the final answer:

Proposition. There exists no finite-dimensional arithmetic of
complex sets.

Proof. We will show that every arithmetic of complex sets F
contains, for every n, an n-dimensional subfamily. Indeed, by def-
inition of an arithmetic of complex sets, the family F contains a
horizontal (real-line) interval I0 = [0, 1]× {0}, and also the results
I1, . . . , In of its rotation by angles φ0, 2φ0, . . . , n ·φ0 = π/2, where
φ0 = π/(2n). Since F is closed under dilations, for every n+1 pos-
itive real numbers ρ0, . . . , ρn, this family contains the dilated sets
Ji = ρi · Ii, 0 ≤ i ≤ n. Since F is closed under Minkowski addi-
tion, the family F also contains their Minkowski sum J0+ . . .+Jn.
One can easily see that this Minkowski sum is a polygon, and if
we count its sides starting from the horizontal side, we get sides of
lengths ρ0, . . . , ρn which make angles of 0, φ0, 2φ0, . . . , n ·φ0 = π/2
with the horizontal axes. Thus, different values of n+1 parameters
ρi lead to different sets from F . Hence, the family F contains a
(n+ 1)-dimensional subfamily. The proposition is proven.

Open problem. This result prompts the following open problem:
what if, in our Definition, we do not require that a family F contain
real-line intervals? What finite-dimensional families we will then
have? For one, we will have a 1-D family of all circles with a center
in O = (0, 0), a 3-D family of all circles. We will also have several
other families of rotation-invariant sets (e.g., circles + circles with
a narrow circular gap + circles with a concentric circular holes in
them, etc.) Is there any finite-dimensional rotation- and dilation-
invariant family of compact sets which is closed under Minkowski
addition and whose sets are not rotation-invariant?

Acknowledgments. This work was supported in part by NASA
under cooperative agreement NCC5-209, by NSF grants No. DUE-
9750858 and CDA-9522207, by United Space Alliance, grant No.



NAS 9-20000 (PWO C0C67713A6), by the Future Aerospace Sci-
ence and Technology Program (FAST) Center for Structural In-
tegrity of Aerospace Systems, effort sponsored by the Air Force
Office of Scientific Research, Air Force Materiel Command, USAF,
under grant number F49620-95-1-0518, and by the National Secu-
rity Agency under Grant No. MDA904-98-1-0564.

Reference

R. Hammer, M. Hocks, U. Kulisch, D. Ratz, Numerical tool-
box for verified computing. I. Basic numerical problems, Springer
Verlag, Heidelberg, N.Y., 1993.

E. R. Hansen, Global optimization using interval analysis,
Marcel Dekker, N.Y., 1992.

R. B. Kearfott, Rigorous global search: continuous problems,
Kluwer, Dordrecht, 1996.

R. B. Kearfott and V. Kreinovich (eds.), Applications of In-
terval Computations, Kluwer, Dordrecht, 1996.

V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Compu-
tational complexity and feasibility of data processing and interval
computations, Kluwer, Dordrecht, 1997.

R. Moore, Methods and Applications of Interval Analysis,
SIAM, Philadelphia, 1979.

K. Nickel, “Arithmetic of complex sets”, Computing, 1980,
Vol. 24, pp. 97–105.


