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Abstract
We show that Chu spaces, a new formalism used to describe parallelism and information flow, provide

uniform explanations for different choices of fuzzy methodology, such as choices of fuzzy logical operations,
of membership functions, of defuzzification, etc.

1 What Are Chu Spaces?

1.1 World According to Classical Physics

It is well known that measurements can change the measured object: e.g., most methods of chemical analysis
destroy a part of the analyzed substance; testing a car often means damaging it, etc. However, in classical
(pre-quantum) physics it was assumed that in principle, we can make this adverse influence as small as
possible.

Therefore, ideally, each measurement can be described as a function r(x) from the set of all objects X to
the set K of all measurement results. These measurements lead to a complete knowledge in the sense that
an object x can be uniquely reconstructed from the results r(x) of all such measurements.

1.2 Non-Determinism in Modern Physics: Enter Chu Spaces

In modern physics, starting from quantum mechanics, it was realized that ideal non-influencing measurements
are impossible: the more accurately we measure, the more we change the object of measurement. As a
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result, it is not possible to uniquely reconstruct an object from measurement results. In other words, each
measurement is a function r(x, y) of two variables: an object x and a (not completely known) measuring
device y. Such a function describes a so-called Chu space (see, e.g., [1, 2, 8, 7, 21, 22, 23, 24, 25, 26],Van
Glabbeek 1995).

1.3 Precise Definition of a Chu Space

To be more precise, to define a Chu space, we must fix a set K (of possible values). Then, a K-Chu space
is defined as a triple (X, r, Y ), where X and Y are sets, and r : X × Y → K is a function which maps every
pair (x, y) of elements x ∈ X and y ∈ Y into an element r(x, y) ∈ K.

1.4 Back to Measurements: Enter Automorphisms of Chu Spaces

The fact that x cannot be uniquely reconstructed from such measurements means that the same measurement
results can be explained if we take slightly different objects (f(x) instead of x) and, correspondingly, slightly
different measuring instruments (g(y) instead of y): r(x, y) = r(f(x), g(y)). This formula takes a more
symmetric form if we consider, instead of g(y), an inverse function y = h(z) = g−1(z):

r(x, h(z)) = r(f(x), z). (1)

A pair of functions (f, h) which satisfies the property (1) for all x ∈ X and z ∈ Y is called an automorphism
of a Chu space.

1.5 From Physics to General Problem Solving

A general problem is: given x, find y for which a known (easy to compute) function r(x, y) takes the desired
value d (e.g., 0). A problem r is reduced to a problem r′ if it is possible, for each instance x of the first
problem, to find the corresponding instance f(x) of the second problem, so that from each solution z of the
second problem, we can compute a solution h(z) to the original problem, i.e.,

r(x, h(z)) = r′(f(x), z). (2)

(This notion is central in computational complexity theory, in the definitions of NP-hardness etc., see, e.g.,
[5, 19].) Such a pair (f, h) is called a morphism of Chu spaces.

1.6 Morphism of Chu Spaces: Precise Definition

In general: If we have two Chu spaces A = (X, r, Y ) and B = (X ′, r′, Y ′), then a pair of functions

(f : X → X ′, h : Y ′ → Y )

is called a morphism of Chu spaces if it satisfies the property (2) for all x ∈ X and for all z ∈ Y ′.

1.7 Applications to Parallelism and to Information Flow

The notion of Chu spaces was actively used by V. Pratt (Stanford) for describing parallel problem-solving
algorithms (see, e.g., [8, 7, 21, 22, 23, 24, 25, 26, 27]), and by J. Barwise (Indiana) to describe information
flow in general (see, e.g., [3]).

2 Fuzzy as a Natural Particular Case of Chu Spaces

Before we describe how Chu spaces can be used to justify fuzzy heuristics, let us show that fuzzy methodology
can indeed be reformulated in Chu-space terms.

Indeed, the main idea of fuzzy methodology is as follows: We want to describe the experts’ knowledge
about objects from a certain set O. To describe these objects, experts use different properties; let us denote
the set of such properties by P . For each object o ∈ O and for each property p ∈ P , an expert decides
whether the object o has the property p.
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• In some cases, the expert is absolutely sure that the object o satisfies the property p.

• In some other cases, the expert is absolutely sure that the object o does not satisfy the property p.

• In many other cases, however, the expert is not absolutely sure that the object o satisfies the property p.

To describe this uncertain knowledge, we must therefore describe, for each o ∈ O and for each p ∈ P , a
degree d(o, p) which characterizes the expert’s certainty that the object o satisfies the property p. Usually,
this degree is described by a number from the interval [0, 1], so that 1 means that the expert is absolutely
sure that o satisfies the property p, 0 means that the expert is absolutely sure that o does not satisfy the
property p, and intermediate values represent uncertainty.

Thus, we get a Chu space, in which X is the set of all objects, Y is the set of all properties, and r(x, y)
is the degree to which the object x satisfies the property y.

From this viewpoint, to describe a property p, we need to describe, for each object o, the number from
the interval [0, 1] which characterizes our certainty that this object has a given property. In other words, a
property can be described as a function from the set of all objects O to the interval [0, 1]. Such a function is
called a fuzzy set. Thus, properties are described by fuzzy sets. For this description, the value r(x, y) is the
result of applying the function y to the object x.

It is natural to consider, for each set of objects O, the set of all possible properties [0, 1]O. For the
corresponding Chu space (O, r, [0, 1]O), the function r takes the form r(x, y) = y(x). This Chu space is
denoted by FUZZ(O).

3 Chu Spaces as a Uniform Justification for Fuzzy Techniques

3.1 Fuzzy is a Particular Case of Chu Spaces

We have already mentioned that fuzzy knowledge can be naturally described as a Chu space (X, r, Y ), where
X is the set of all objects, Y is the set of all linguistic properties, and r(x, y) is a degree to which x has a
property y (see, e.g., [20]).

This relation was originally done in two steps:

• fuzzy logic can be interpreted as a particular case of so-called linear logic (see, e.g., [6, 12, 14, 20]), and

• linear logic is naturally interpreted in terms of Chu spaces.

3.2 What We Are Planning to Do

We show that Chu description leads to a uniform justification of numerous choices of fuzzy membership
functions, fuzzy logic operations, defuzzification procedures, etc. This justification is in line with a general
group-theoretic approach described in our 1997 Kluwer book [15] (see also [4, 11, 13, 16, 17, 18]).

4 The Main Technical Idea Behind Using Chu Spaces as a Foun-
dation for Fuzzy Theory: A Simplified (Non-Fuzzy) Illustration

4.1 Example: A Simple Physical Problem

To better present our main technical idea, we will first illustrate it on a simplified (crisp) example. Let us
analyze how the period t of a pendulum depends on its length l.

From the purely mathematical viewpoint, this dependency can be described by a function of one variable
t = F (l), i.e., as a function from real numbers to real numbers. However, from the physical viewpoint, such
a mathematical description is somewhat unnatural, for the following reason:

• we really want a dependence between physical quantities t and l;
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• in order to describe this dependence as a dependence between real numbers, we must fix some units
for measuring both length l and time t; thus, the resulting function depends on the specific choice of
these units;

• however, the choice of the units is a matter of convention (e.g., to describe length, we can use meters
or feet without changing any physical meaning).

It is therefore desirable to have a mathematical description of the dependency of t on l which would reflect
the physical dependency without adding any arbitrariness.

4.2 A More Adequate Mathematical Description of the Physical Problem

Such a description can be obtained if we explicitly add the two measuring units ul (for length) and ut (for
time) to the description of this function, i.e., if we consider the function of the type t = F (l, ul, ut), where
l is a numerical value of the pendulum’s length, t is a numerical value of its period, and ul and ut are the
measuring units used to describe the corresponding numerical values (described in terms of some standard
measuring units).

If we know the dependence t0 = F (l0) in standard units, then we can easily describe the new function:
Indeed, if we use the length ul as a unit of length, then in these units, the numerical value l of length means
l0 = l·ul in the original units, so in the standard units, the pendulum’s period is equal to t0 = F (l0) = F (l·ul).
Hence, if we use the unit ut for measuring time intervals, then in this unit, the numerical value of the time
period is equal to t = t0/ut = F (l · ul)/ut. In other words, we get F (l, ul, ut) = F (l · ul)/ut.

4.3 Mathematical Model Naturally Reformulated as a Chu Space

The above physically appropriate dependence can be naturally described as a Chu space, with X being the
set of all possible units of length, Y the set of all possible time units, K the set of all possible functions of
one real variable, and the function r(ul, ut) defined as (r(ul, ut))(l) = F (l, ul, ut). From the mathematical
viewpoint, the sets X and Y coincide with the set R+ of all positive real numbers.

4.4 Unit-Invariance Formulated in Precise Terms

Let us now formalize the requirement that this dependence be independent on the choice of the units for
measuring length l and time t. If we simply change a measuring unit for length or a measuring unit for
time, then we get a different numerical dependence. However, for every change of the length unit, there is
an appropriate change of a time unit after which the resulting numerical dependence stays the same. This
requirement can be formulated as follows.

Suppose that we use a different standard unit for measuring length. Let λ > 0 be the value of the old
standard unit in terms of the new one; then, 1 old standard unit = λ new standard units, so ul old standard
units = ul · λ new standard units, i.e., the measuring unit for length whose value was ul in old standard
units has a new value u′

l = λ ·ul in new standard units. Similarly, the choice of a new standard unit for time
means that we replace the original value ut by a new value u′

t = g(ut), where g(y) = µ · y and µ is the value
of the old standard unit in terms of the new standard unit for time.

In these terms, the above requirement means that for every function f : X → X of the type f(ul) = λ ·ul,
there exists a function g(y) of the type g(ut) = µ · ut for which, for every x ∈ X and y ∈ Y , we have
r(x, y) = r(f(x), g(y)).

4.5 Unit-Invariance Reformulated in Terms of Chu Spaces

We have already mentioned that this equality describes an automorphism of the Chu space. Thus, the above
requirement means that for every function f : X → X from a certain transformation class can be extended
to an automorphism (f, h) of the corresponding Chu space.
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4.6 The Chu-Space Requirement Describes the desired function

One can show that this condition is satisfied only by functions of the type t = A · lα, with A and α arbitrary
constants; the actual pendulum corresponds to α = −0.5.

Thus, the Chu space requirement leads to a description of a very narrow class of functions which contain
the desired one.

5 Application of Our Main Idea to Fuzzy Techniques: Illustration
and Other Results

5.1 General Idea

There exist several methods of eliciting fuzzy values from experts, and, in general, different elicitation
methods lead to different results. In other words, different methods may result in values corresponding to
different scales of uncertainty, just like measuring the length in feet or in meters leads to different scales in
which the order is preserved but numerical values are different. Similarly to the above illustrative example,
it is therefore reasonable to require that the operations with fuzzy values be independent on this choice of a
scale.

5.2 Re-scaling in fuzzy theory: an example

One of the most natural methods to ascribe the degree of truth d(A) to a statement A is polling: we take
several (N) experts, and ask each of them whether she believes that A is true. If N(A) of them answer
“yes”, we take d(A) = N(A)/N . Knowledge engineers want the system to include the knowledge of the
entire scientific community, so they ask as many experts as possible. But asking too many experts leads to
the following negative phenomenon: when the opinion of the most respected professors, Nobel-prize winners,
etc., is known, some less self-confident experts will not be brave enough to express their own opinions, so
they will either say nothing or follow the opinion of the majority.

How does their presence influence the resulting uncertainty value? After we add M experts who do not
answer anything when asked about A, the number of experts who believe in A is still N(A), but the total
number of experts is bigger (M +N). So the new value of d(A) is d′(A) = N(A)/(N +M) = c · d(A), where
we denoted c = N/(M+N). From mathematical viewpoint, this transformation is exactly the same as when
we use a different measuring unit in physical measurements.

5.3 Selecting a Hedge: An Example of Using Chu Spaces

How can we describe a hedge, i.e., an operation which transforms a degree of truth in a statement A into
a degree of truth for a statement “very A” or “slightly A”? From the purely mathematical viewpoint, we
can describe this transformation as a function which transforms a numerical value d of the original degree
into the numerical value of the hedged degree d′ = H(d). However, the exact numerical type of this function
would depend on the scales used to represent both degrees. It is therefore desirable to get a representation
which is independent on the choice of these scales.

Similarly to the above illustrative example, we can achieve this representation independence if we describe
the hedge function as a mapping r(x, y), where x is a parameter which describes the scale of original degrees,
y is a parameter which described the scale of the hedged degrees, and r(x, y) is the description of a hedge
function in the scales x and y.

Similarly to the above example, the requirement that the hedge transformation be independent on the
choice of scales means that every function f : X → X from the appropriate transformation class (of linear
transformations) can be extended to an automorphism of the corresponding Chu space. As a result, we
deduce that all such functions have the form d′ = A ·dα for some real numbers A and α. Indeed, the original
Zadeh’s hedges use α = 2 for “very” and α = 0.5 for “slightly”. Thus, the Chu space requirement leads to a
description of a very narrow class of functions which contain the desired one.
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5.4 General Results

In general, we can also have non-linear re-scalings (see, e.g., [4, 11, 15]). It turns out that the use of these
re-scalings enables us to justify all major choices of fuzzy techniques: the existing choices of membership
functions, of “and” and “or” operations, of defuzzification, etc.

The mathematics is, in essence, already here: in [4, 11, 15], we have shown that these choices can
be explained by the natural symmetry requirements, and similar to the above examples, these symmetry
requirements can be naturally reformulated in terms of Chu spaces.

5.5 Two applications to the Web

First application is to web search. We can describe web search in terms of Chu morphisms (similar to
problem solving): we ask a query x and we want an answer y which is related in a given way to x, i.e., for
which r(x, y) = d for some known function r. To answer this query, we translate it from a natural language
query x into a formal-language query f(x). We then run an appropriate search engine and get a formal
answer z (e.g., a set of lists generated by different search tools) which is in a proper way connected to f(x),
s(f(x), z) = d. Finally, we must translate z into the desired answer y = g(z). For this answer to be correct,
we must guarantee that s(f(x), z) = r(x, g(z)), i.e., that the pair (f, g) is indeed a Chu morphism. Here,
ideas similar to the ones described above lead to symmetries, and symmetries, in their turn, lead to the
optimal way of merging lists (i.e., we get an optimal function g(z); for details, see [28]).

Another application is an optimal prediction of web growth. In general, this growth can be described by
a differential equation dL/dt = g(L) for some function g(L). Chu-induced symmetry requirements lead to
the explanation of the empirical growth formula g(L) = C1 ·L+C2 ·L · ln(L) [9], and to a more general class
of models aimed at a more accurate growth description [15].

5.6 Related future work: stability of fuzzy control

We hope that the fact that Chu spaces provide a new uniform justification for various aspects of fuzzy
methodology will help in solving important problems related to this methodology.

For example, the problem of control stability can be naturally reformulated in Chu terms: if we have a
control y for which, for the initial situation x, we get the desired asymptotic behavior r(x, y) = d, then, for
every perturbation f(x) of the initial condition, we must be able to appropriately modify control (replace y
by g(y)) and achieve the same asymptotic behavior: r(f(x), g(y)) = r(x, y).

6 Chu Spaces Can Also Describe the General Dependence Be-
tween Different Quantities

6.1 Formulation of the Problem

In the previous section, we have mentioned that the Chu space approach helps to justify the existing heuristic
techniques of fuzzy methodology. These techniques include the description of possible values of different
physical quantities, and the if-then rules describing the relation between these quantities.

The relation between different quantities is not always described by if-then rules; we may have more
complicated constraints relating the values of different quantities. In this section, we will show that Chu
spaces can describe not only the if-then rules, but also the most general relations between different quantities.
In our description, we will use ideas first presented in [10].

6.2 Crisp Case: The General Description of Possible Dependence Between Two
Quantities

Let us start with the crisp case, in which, for each value of each physical quantity, we know for sure whether
this value is possible or not. In this case, for each quantity, we have a (crisp) set of possible values. So, if
we have two physical quantities a and b, then we have two sets A and B of possible values.
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In order to describe possible dependencies between two physical quantities a and b, let us first describe
what it means for a and b to be independent. Intuitively, it means that the set of possible values of the
quantity a should not depend on the value of the other quantity b, and, vice versa, the set of possible values
of the quantity b should not depend on the value of the quantity a. Therefore, the pair (a, b) is possible if
and only if a is possible and b is possible. As a result, the set S of all possible pairs (a, b) coincides with the
Cartesian product A×B of the sets A and B.

In general, if a pair (a, b) is possible (i.e., if (a, b) ∈ S), then, of course, both a and b are possible, i.e.,
a ∈ A and b ∈ B. Thus, in general, S ⊆ A×B. Since independence corresponds to the case when S = A×B,
dependence corresponds to the situation when S is a proper subset of the Cartesian product A × B. In
this case, this set S describes the dependence: e.g., if a is a function of b, then the set S is a graph of this
function. etc.

6.3 Crisp Case: The General Description of Dependence Can Be Naturally
Reformulated in Chu-Space Terms

One way to describe the set S is to describe, for each possible value a ∈ A of the first quantity, the
corresponding set of all possible values of the second quantity {b | (a, b) ∈ S}. We will denote this set by
f(a).

Alternatively, we can describe the same set S by describing, for each possible value b ∈ B of the second
quantity, the corresponding set of all possible values of the first quantity {a | (a, b) ∈ S}. We will denote this
set by h(b).

What is the relation between these two alternative descriptions of the same set S (i.e., of the same
dependence between the quantities a and b)? To describe the set S, we must describe, for each pair (a, b) ∈
A×B, whether this pair belongs to the set S or not.

• If we use the first description, then the condition (a, b) ∈ S can be described as b ∈ f(a).

• If we use the second description, then the same condition (a, b) ∈ S can be described as a ∈ h(b).

The fact that the two descriptions describes the same set S means that for every a ∈ A and for every b ∈ B,
the conditions b ∈ f(a) and a ∈ h(b) must have the same truth value. If we denote, by t∈(b, B), the truth
value of the statement b ∈ B, then the above equivalence can be reformulated as the following equality:

t∈(a, h(b)) = t∈(b, f(a)).

One can easily see that this condition is a particular case of the formula (2) which describes a morphism
between two Chu spaces: Namely, here the first Chu space (X, r, Y ) is as follows:

• X is the set of all possible values of the first quantity a, i.e., X = A.

• Y is the set of all possible values of h(b); since h(b) is defined as a set of possible values of a, we can
conclude that h(b) is a subset of the set A. Therefore, Y is the set of all subsets of A, i.e., Y = 2A.

• The set K of possible values coincides with the binary set {0, 1} (={false,true}).

• Finally, the mapping r : X × Y → K results in r(x, y) = 1 or r(x, y) = 0 depending on whether x ∈ y
or not (i.e., r(x, y) is the truth value of the statement x ∈ y).

Similarly, the second Chu space (X ′, r′, Y ′) has the form (2B , r′, B), where K is the same, and r′(x′, y′) = 1
or r′(x′, y′) = 0 depending on whether y′ ∈ x′ or not.

6.4 The Chu-Space General Description of Dependence Can Be Naturally Ex-
tended to the Fuzzy Case

In the previous section, we have analyzed the case of a crisp dependence between two physical quantities a
and b, i.e., the dependence in which for each pair (a, b), we know for sure whether this pair is possible or
not.
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In real life, at least for some pairs (a, b), we are often not 100% sure whether this pair (a, b) is possible
or not. To describe such an uncertain knowledge about the dependence between a and b, we must describe,
for each a ∈ A and b ∈ B, the expert’s degree of certainty d(a, b) ∈ [0, 1] that the pair (a, b) is a possible
pair of values of the two given physical quantities. In mathematical terms, this uncertainty is therefore
characterized by a function d : A×B → [0, 1], i.e., by a fuzzy subset d of the Cartesian product A×B.

We can easily generalize the above Chu-space reformulation so that it applies to such fuzzy sets.
One way to describe the fuzzy set d is to describe, for each possible value a ∈ A of the first quantity,

the corresponding fuzzy set f(a) ∈ B of all possible values of the second quantity. By definition, a fuzzy
subset f(a) ⊆ B of a crisp set B is a function from this crisp set B to the interval [0, 1]. For each a and b,
the degree to which the pair (a, b) is possible is equal to d(a, b); therefore, the function f(a) can be defined
by the following formula: for every b, the result (f(a))(b) of applying this function f(a) to the element b is
equal to d(a, b).

Alternatively, we can describe the same fuzzy set d by describing, for each possible value b ∈ B of the
second quantity, the corresponding fuzzy set h(b) of all possible values of the first quantity; here, (h(b))(a) =
d(a, b).

These two descriptions of the same fuzzy set d are related by the fact that for each pair (a, b), both
descriptions must lead to the same degree d(a, b) of belief that (a, b) is a possible pair. Therefore, the
following equality must hold for every pair (a, b):

(h(b))(a) = (f(a))(b).

This condition is also a particular case of the formula (2) which describes a morphism between two Chu
spaces: Namely, here the first Chu space (X, r, Y ) is as follows:

• X is the set of all possible values of the first quantity a, i.e., X = A.

• Y is the set of all possible values of h(b); since h(b) is defined as a fuzzy set of possible values of a, we
can conclude that h(b) is a fuzzy subset of the set A. Therefore, Y is the set of all fuzzy subsets of A,
i.e., all functions from A to [0, 1]: Y = [0, 1]A.

• The set K of possible values coincides with the interval [0, 1].

• Finally, the mapping r : X × Y → K results, for each x and y, in the degree with which an element x
belongs to the fuzzy set y; this degree is equal to y(x).

This is a standard Chu-space description FUZZ(A) of all fuzzy subsets of crisp set A.
Similarly, the second Chu space (X ′, r′, Y ′) has the form ([0, 1]B , r′, B), where K = [0, 1] is the same,

and r′(x′, y′) = x′(y′). This Chu space differs from the standard fuzzy-logic Chu space FUZZ(B) only in
that X ′ and Y ′ are swapped; such a Chu space is called a dual of the original Chu space FUZZ(B) and it
is usually denoted by FUZZ(B)◦.

So, we can say that a general (fuzzy) dependence of the two physical quantities a and b can be natu-
rally described in Chu-space terms: namely, as a Chu morphism between two Chu spaces FUZZ(A) and
FUZZ(B)◦.
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