Automatic Concurrency in Sequencel

Daniel E. Cooke?

8 Department of Computer Science
Texas Tech University
Lubbock, TX 79409, U.S.A.
email dcooke@coe.ttu.edu

Vladik Kreinovich?

b Department of Computer Science
University of Texas at Fl Paso
El Paso, TX 79968, U.S.A.
email vladik@cs.utep.edu

Abstract

This paper presents a programming language which we believe to be most appro-
priate for the automation of parallel data processing, especially data processing of
concern to the oil industry and to the U.S. Federal Agencies involved in the analysis
of Satellite Telemetry Data. Focus is placed upon major language issues facing the
development of the information power grid. The paper presents an example of the
type of parallelism desired in the Grid. To implement this parallelism in such a lan-
guage as Java we need to specify parallelism explicitly. We show that if we rewrite
the same solution in the high level language SequenceL, then parallelism becomes
implicit. Sequencel, seems therefore to be a good candidate for a Grid Oriented
Language, because its abstraction relieves the problem solver of much of the burden
normally required in development of parallel problem solutions.

Key words: Automatic concurrency, Sequencel,, term-rewriting systems

1 The Need for New Language Abstractions

Hardware improvements and the general spread of computing and computer
applications have created opportunities for scientists and engineers to solve
ever more complicated problems. However, there are concerns about whether
scientists and engineers possess the software tools necessary to solve these
problems and what computer scientists can do to help the situation.

Preprint submitted to Elsevier Preprint 10 July 2001

The fundamental software tool for problem solving is the programming lan-
guage. A programming language provides the abstraction employed in solv-
ing problems. In order to keep pace with hardware improvements, computer
scientists should continually address the problem of language abstraction im-
provement. When advances in hardware make problems technically feasible to
solve, there should be corresponding language abstraction improvements to
make problems humanly feasible to solve.

In the recent past, most language studies have resulted in the addition of new
features to existing language abstractions. The most significant changes have
resulted in additions to language facilities for the definition of program and
data structures. These changes have primarily taken place to accommodate the
needs for concurrent execution and software reuse. Although it is important
to add to the existing abstractions to satisfy immediate technical problems,
research also needs to be undertaken to simplify and minimize existing ab-
stractions.

There are application domains where the need for simpler language abstrac-
tions is of vital importance. There are estimates that less than 1% of the
available satellite data has been analyzed. There exists the ability to acquire
and store the data, but weakness in the ability to determine its information
content. Soon NASA will have satellites in place that, in sum, will produce
a Terabyte of data per day. A major problem associated with the analysis of
the data sets is the time needed to write the medium-to-small programs to
explore the data for segments containing information pertinent to particular
earth science problems. Software productivity gains in developing exploratory
programs are needed in order to enhance the abilities of earth scientists in
their efforts to grapple with the complexity and enormity of satellite and seis-
mic data sets. Software productivity gains can be accrued through languages
developed out of foundational research focusing on language design.

The need for computer language abstraction improvement is even more pro-
nounced given the desire to develop distributed approaches to data analysis.
Currently, industry and government agencies are paying a lot of attention to
approaches involving complicated data parallel solutions. Data parallelisms
embody the idea of scatter/gather approaches to problem solving, where data
is scattered among several different processors which process the corresponding
pieces of the original data set, and then the results of this processing are assem-
bled (gathered) together to produce the final result. Most such parallelizations
use Single-Instruction-Multiple-Data (SIMD-) type architecture where a sin-
gle program executes on multiple, networked processors. This “scatter/gather”
approach to computing has been very successful, e.g., in the analysis of seismic
data sets.

Prior to the SIMD approach, the oil industry would analyze entire seismic
data sets on a single “super computer.” The SIMD approach was adopted by
many companies in the early 1990’s and has since resulted in cheaper and
faster processing of seismic data sets. These data sets are used to determine
which sites companies should lease for their offshore drilling activities. The
seismic data sets (upon which scatter/gather approaches have proven to be
successful) have quite a bit in common with the satellite telemetry data sets
that NASA and other federal agencies acquire and store. There is a major
effort to generalize the SIMD architecture by developing a super system that
could employ idle resources on the World Wide Web. The effort is generally
called the Information Power Grid, or the Grid for short.

The Information Power Grid is a major effort funded by a number of U.S.
federal agencies including NASA and the NSF. The goal of this effort is to
establish a computing infrastructure on the world wide web, providing pow-
erful supercomputing level resources to any user connected to the web. “The
grid will connect multiple regional and national computational grids to create
a universal source of computing power. The word ‘grid’ is chosen by analogy
to the electric power grid, which provides pervasive access to power...” [4].

One way to envision the goal of this effort is to imagine a web browser but-
ton that would allow the user to submit programs for execution. In an ideal
case, the program would be analyzed to determine the parallelisms it con-
tains. Then, a suitable distributed, parallel architecture would be configured
by seizing idle processors connected to the Internet — the envisioned system
would provide to all entities connected to the web, access to teraflop comput-
ing capabilities. Clearly there are a number of technical challenges that face
those who are developing the grid. The focus here is on the computer language
issues.

“Powerful new strategies for supporting the development of high-performance
distributed applications will be needed... The application developer should be
able to concentrate on problem analysis and decomposition at a fairly high
level of abstraction... To do this, [the programming support system| will need
to find every possible type of parallelism within the application, including
data parallelism and task or object parallelism... From the user’s perspective,
the most appealing approach to program decomposition is automatic paral-
lelism.” [5]

In this paper, we will focus on language solutions to the programming support
system referred to in the preceding passage. We will first show a simple data
parallel problem solution using Java’s multithreading features. We will then
describe a very high level language, Sequencel, and indicate how the same
data parallel problem solution is easily identifiable in the SequenceL solutions.
One goal of the paper is to convince the reader that SequenceLl. holds promise

as a grid-oriented language.

2 Data Parallelisms in Java

The key to achieving high performance on distributed-memory machines is
to allocate data to various processor memories to maximize locality and min-
imize communication [5]. Data parallelism is parallelism that derives from
subdividing the data domain in some manner and assigning the subdomains
to different processors. Data parallelisms (e.g., those characteristic of SIMD-
type architectures) typically result in the same computation being performed
simultaneously on subdivided data sets, as opposed to dividing up the com-
putation itself.

As an example, we will consider a word search problem: to find all occurrences
of a desired word s; of length ny in a given string s of a larger length n > n;.
We will illustrate this problem on the example of searching for the word test
of length n; = 4 in a string here is a test string of length n = 21. In
principle, the tested word can start in any of the positions from 0 to n —
ny of the longer string. Therefore, a straightforward parallelizable algorithm
for solving this problem consists of checking, for each such place i, whether
a substring of s of length n; starting at this place coincides with s;. The
corresponding sequential Java program is as follows:

String s="here is a test string";
String sl="test";
char[]sample=s.toCharArray();
char[]find=s1.toCharArray() ;

System.out.println(sample) ;
n=sample.length;
nl=find.length;

for(i=0;i<=n-n1;i++)
{System.out.println}(s.substring(i,i+nl));
if (s.substring(i,i+nl) .equals(sl))
{System.out.println}(i);}
}

This algorithm can be naturally parallelized: if we have sufficiently many pro-
cessors, we can ask different processors to check the equality of substrings
corresponding to different starting places i. However, even in Java, a language
specifically designed for computation over the Web, this natural paralleliza-
tion is not so easy to describe. The resulting code is given in the Appendix.

This solution uses a built-in construction thread which describes paralleliz-
able threads of a computation process. In this solution, an array w consisting of
n—ny+1 (=18 in our example) substring variables is declared (in line 33) and
filled with the corresponding substrings (lines 35-38). This “filling” initializes
the 18 instances of the class constructor method wrdsrch2 (lines 7-12). Once
the 18 instances are set up, the processes of comparing the strings are initiated
and executed concurrently (in lines 42-43). When these 18 processes end, they
join into the main process, and the 18 instances of the boolean variable found
are then printed as output.

Even when we know the sequential program, the concurrent solution to this
problem is not easy to write and not easy to understand. It uses difficult-to-
understand special language constructs such as thread, try, join, run. The
next sections of the paper are intended to convince the reader that the high
level executable language Sequencel. may provide a more suitable abstraction
for representing data parallelisms.

3 Introducing the SequenceL Language

Sequencel. was introduced as an approach to software development that offers
a different, and for many, a more intuitive approach to problem solving [2,3].
For an exact description of SequenceL, the reader is referred to [2,3]. We will
just mention that there exists a rather efficient interpreter for this language,
and a new, even more efficient interpreter is being completed. Sequencel is
universal in the usual sense: the universal Turing machine can be described
in this language and therefore, an arbitrary algorithm can be described in
it. In this paper, we briefly (and informally) describe the basic ideas behind
Sequencell, the basic constructions, and how they help in parallelization.

The main idea underlying the design of SequenceL is the idea — similar to
declarative languages — that ideally, the main product of the software de-
veloper should be the exact description of what the program should achieve
and not necessarily how to achieve it. In traditional languages, programmers
write explicit algorithms; these algorithms implicitly contain all the relations
between the input data and the output of the program that we want to im-
plement by writing this program. The goal of the Sequencel. design effort is
to provide a language in which a programmer would, instead, explicitly for-
mulate the exact relationship between the input and the output, and then the
compiler will choose an appropriate algorithm depending on such factors as
the availability of parallelization.

Consider as an example a simple program to compute the mean of several
(n) data values. In the traditional approach one states an algorithm (i.e., a

step-by-step sequence of instructions) that will produce the desired result:
Traditional Approach - Pseudo Code

1. Get the numbers, one at a time, counting them as they are read.
2. Add the values together (sum them).
3. Divide the sum by the count obtained in Step 1.

In Sequencel., one explicitly declares the desired result:
SequenceL. Approach - Pseudo Code

The desired output is the ratio of the sum of the input values and the number
of the input values.

This reformulation would help to overcome one of the main difficulties of tra-
ditional programming that drastically impedes its productivity — the difficulty
of understanding what exactly is computed by a given program. Complexity
of a program is caused by the complexity of its data structures and especially
by the complexity of its control structures. Software engineers have long re-
alized that the construction of loops is complex and costly [6]. Bishop noted
that “Since Pratt’s paper on the design of loop control structures was pub-
lished more than a decade ago, there has been continued interest in the need
to provide better language features for iteration” [1].

To avoid the complexity of data structures, Sequencel. has only one data type
construction: a list (sequence) [s1, ..., s,]. By using this list construction, we
may go from basic data constants (also called singletons or scalars) to non-
scalar types: lists of singletons and nested lists (lists of lists). Whenever this
does not lead to confusion, singletons are identified with one-element lists.
Nested structures can be nested to any depth. In other words, a constant is a
term build from singletons by using a sequence construction [s1, ..., sy].

We can also allow variables as singletons. For the resulting more general terms,
it makes sense to allow the notation s(i), meaning i-th element of the list s.
As we will see in the following text, we will sometimes need to interpret the
expression s(i) for values ¢ which are larger than the number of elements in s.
We will use the following interpretation of s(i) for such i: we repeat the list s
again and again until we reach 1, so, e.g., [10, 30, 50](4) = 10, [10, 30, 50](5) =
30, etc. For lists of lists, we can similarly define s(i, j) as s(i)(j), i.e., as j-th
element of the list s(7).

To avoid the complexity of control structures, SequenceL defines a program also
as a sequence, namely, as a sequence consisting of lists and function symbols.

Roughly speaking, a Sequencel. program consists of:

(a) data which can be viewed as sequences of symbols, and
(b) rules which define substitutions of strings by other strings.

The execution of a program consist in applying rules to the data. (This ide-
ology is somewhat similar to that of term rewriting systems but rules can be
substantially more complex.)

Function symbols can be of four types:

e Binary symbols correspond to functions of two variables and are described in
infix notation, like + in 2 4 3; the left argument will be called a predecessor
of the binary function symbol, and the right argument will be called its
SUCCESSOT.

e There are also two types of unary symbols, corresponding to postfiz notation
(like factorial ! in n!) and prefiz notation (like sin in sin(z)).

e We can also have functions without inputs.

Functions f(z1,...,z,) of three or more variables are described as functions
of a single variable — namely, of a list [z1,...,z,].

There is only one type of control operation: built-in recursion, in which a
subsequence of a program which contains a function symbol is replaced by
a new subsequence which describes the result of the corresponding function.
The original subsequence is said to be consumed, and the new replacement is
said to be produced.

e The replacement result may be a constant, e.g., 2+2 is replaced by 4.
e This result can itself contain a function symbol, e.g., a factorial expression
fact[n] is replaced by nxfact[n-1] when n>1 and by 1 otherwise.

There are three different types of basic functions:

e The most basic type includes regular operations which operate on all ele-
ments of the operand list; e.g., a (binary) addition operator a + b adds cor-
responding elements of the two lists @ and b, while the unary sum operator
+a adds all the elements of a list a. Thus, +[5] = [5], +[4, 4, 3,2] = [13], and
the sum +[[10, 20, 30, 40, 50], [4, 5, 6, 7, 8]] is defined as [10, 20, 30,40, 50] +
[4,5,6,7,8],i.e., as a component-wise sum [14, 25, 36, 47, 58]. If different lists
contain different number of elements, we normalize them by repeating ele-
ments of the smaller list again and again: e.g.,

+][10, 20, 30, 40, 50}, [4, 5, 6]] = +[[10, 20, 30, 40, 50], [4, 5, 6, 4, 5]] =
[14, 25, 36, 44, 55].

e In contrast to regular operations which are applied to all elements of the

list, irregular operations are only applied to those elements which satisfy

a certain condition. For example, if the list salary contains salaries of all
the faculty, and the list evaluation contains their evaluations, then the
conditional unary multiplication operation
*[salary(i),1.1] when evaluation(i)>5

means that we increase by 10% the salary of all the faculty whose evaluations
are better than 5.

e There are also generative constructions which describe standard short-
hand (“three dot”) notations, e.g., [1,...,5] is interpreted as the list
[1,2,3,4,5].

More complex functions can be defined by combining the basic functions. For
example, if we describe a matrix a as a list of its rows

[[alla R a’ln]a LRI [a'mla .- -;amn”:

so that a(i, j) is exactly a;;, then we can define a binary operation of matrix
multiplication as follows:

Function matmul (consume (pred(n,*),succ(*,m)) ,produce(next)),
where next(i,j)=+[pred(i,*)*succ(*,j)]
taking (i,j) from [1,...,n] X [1,...,m]

The intent of this description is that if the function symbol matmul appears
in the program between the lists representing two matrices, say, a and b, and
if we apply this function, then the substring

a matmul b

is replaced by a single list which represent the product of the two matrices
a and b. Let us describe how this intent is reflected in the above SequenceL
description.

e The word Function is a standard term of SequenceL, and the following
word matmul is the name of the newly defined function.

e The information in parentheses which immediately follows the word
consume describes the input to the function matmul (i.e., describes what
is “consumed” by this function):

- The fact that this information contains both the words pred (predecessor)
and succ (successor) means that thus defined function is a binary function
in infix notation. In other words, the symbol matmul must appear in a
program in between two lists, a predecessor list pred and a successor list
succ.

- The appearance of two indices in pred (namely, the expression pred(n,*))
means that pred is a list of lists (i.e., crudely speaking, a matrix). The first
index n describes the number of elements in the list pred. The number of
elements in the each of n sublists is denoted by a wild-card symbol *, which

means that it must be the same for all these sublists. In our explanation,
we will denote this common number by p.

- The appearance of two indices in succ (namely, the expression succ (*,m))
means that succ is also a list of lists (matrix). The first index * is the same
wild card as for pred, which means that the number of lists (rows) in succ
must be the same as the number of elements p in each of the sublists of
pred (i.e., in each column of pred).

e The information in parentheses which immediately follows the word
produce describes the output to the function matmul (i.e., describes what
is “produced” by this function). This output is a list called next.

e The information after the word where is a body of the function it describes
what the output next looks like:

- The appearance of two indices in next (namely, the expression next (i, j))
means that next is also a list of lists (matrix).

- The expression

next (i, j)=+[pred(i,*)*succ(*,j)]
describes the value next (i, j) for all possible i and j:

e the wild card symbol * in the expression pred(i,*)*succ(*,j)
means that we consider the same value of the corresponding index,
i.e., we consider the products pred(i,k)*succ(k,j)] for different
values of the wild card index k;

e the infix multiplication symbol in [prev(i,k)*succ(k,j)] means a
componentwise multiplication of the lists

[prev(i,1),...,prev(i,p)]
and
[succ(1,j),...,succ(p,j)l;
in other words, we create a list of products
[prev(i,1)*succ(l,j),...,prev(i,p)*succ(p,j)].

e finally, the + in front of the list means that this + is the above-
described unary sum operation, which adds all the elements of the
above list of products:

next (i, j)=prev(i,1)*succ(l,j)+...+prev(i,p)*succ(p,j).
The line
taking (i,j) from [1,...,n] X [1,...,m]
means that we take all pairs of indices (i,j) for which i=1,...,n and
j=1,...,m.
So, this function indeed describes the desired matrix multiplication.

Comment. To be more precise,

[1,...,n] X [1,...,m]
indicates a lezicographically ordered Cartesian product, i.e., the (ordered)
set of all possible pairs of indices

((1,1),(1,2), ..., (1,m), (2,1),...,(2,m),...,(n,1),..., (n,m)}.

4 Sequencel’s Computational Model

As we have mentioned, the execution of a program in SequenceL is similar to
a term rewriting system: a subterm of a certain type is replaced by a different
subterm, etc., until the further reduction is impossible. However, Sequencel.
is more general than usual term rewriting systems:

e in a term rewriting system, the replacing term is, in essence, a combinatorial
transformation of the original terms (permutations, repetitions, deletions,
etc.), while

e in Sequencel,, the replaced term can be obtained from the original term by
an arbitrary algorithm.

Let us illustrate this idea in more formal terms, on the simplified case of
programs which contain no variables. Let S be a set of all possible sequences
obtained from basic constants by using the list operation [.,...,.| and the index
operation (.).

Let N be the set of all function symbols. As we have mentioned earlier, a
program is a finite sequence consisting of elements of S and function symbols.
The set of all the programs will be denoted by II. For each function symbol
f € N, we define its type H(f):

for binary functions in infix notation (which have both predecessor and
successor), the type is defined as a set {pred, succ};

for prefix unary functions, the type is {succ};

for postfix unary functions, the type is {pred}; and

for functions without inputs, the type is the empty set {}.

In other words, the set of all possible function types is D = 2{predsueet and H
is a function from the set N (of all function symbols) to D.

To describe the meaning of a function symbol f € N, we must describe how
a subsequence containing f (and no other function symbols) is replaced by a
new subsequence. Depending on the function type, the original subsequence
is of one of the types f, af, f3, or aff3, where a and 3 are lists from S.
The set of all possible subsequences of these types can be described as F' =
NU(SXN)U(N xS)U(Sx N x S). Thus, the meaning B of different function
symbols is defined as a (partially defined) function which maps subsequences
into new subsequences, i.e., as a partially defined function from F' to II.

If we add a special symbol undefined whenever the function symbol is not
defined, then we can describe the meaning as a total (everywhere defined)
function B : F — I1 U {undefined}. This function B must be consistent with
the type H(f) of each function symbol f: e.g., if f is a binary function symbol,

10

then B(f) can only be defined for triples («, f, 3) and undefined for elements
of NU(S x N)U (N x S).

For example, if we allow natural numbers and parentheses as basic constants
and arithmetic operations as function symbols (with standard interpretation),
then the expression (4+5)/(5—2) is an example of a program. A subsequence
4 + 5 corresponds to a triple (a, f,3), with « = 4, f = 4, and 8 = 5. The
meaning B(4,+,5) of this subsequence is the number 9. For a subsequence
“)/(”, the meaning is undefined.

We say that a substring ¢ of a program P is enabled if the “meaning” function
B is defined for this substring. The set of all enabled substrings of a program
P will be denoted by Enabled(P). For example, the above program

P = (4+45)/(5—2) has two enabled substrings: 4+5 and 5—2, so Enabled(P) =
{4+5,5—2}.

Now, we can describe how a Sequencel. program is executed. An execution of
a program consists of a sequence of steps. On each step, one or several disjoint
enabled substrings d; are replaced by their meanings B(J;). Formally, for each
program P for which Enabled(P) # 0, we define Ezecute(P) as the set of all
sequences v B(01)y1B(02) . . . ¥ B(0,)Yn+1, for which P can be represented as
P = 71617202 - . . YnOnYny1 for some substrings 1, 1, - .., 0p, Yur1 (n > 0).

For example, since the program P = (4 + 5)/(5 — 2) contains two disjoint
enabled substrings, Frecute(P) = {P’', P", P"}, where:

P'=(B(4,+,5))/(5-2) = (9)/(5 - 2),
P"=(4+5)/(B(5,—,2)) = (4+5)/(3),
P" = (B(4,+,5))/(B(5 —=,2)) = (9)/(3).

A computation of a program P is then defined as a sequence Pi,..., P,, in
which P, = P, P, € Ezecute(P;), and Enabled(P,) = 0.

In our example, computations in which P, = P’ or P, = P" correspond to
sequential computations in which only one arithmetic operations is performed
at a time. Computation in which P, = P" correspond to the concurrent
solution, in which both addition and subtraction are computed on the same

computation step. This concurrent solution is represented by a computation
sequence Py = (4+5)/(5—2), P,=(9)/(3), and P; = 3.

11

5 Data Parallelisms in SequenceL

We have seen that the computation model of Sequencel. naturally leads to
concurrency. Let us now show how a similar concurrency naturally emerges in
the above word search problem.

In Sequencel terms, the above word search algorithm can be described by the
following function:

Function search(consume(pred(n),succ(nl)),produce(next)),
where next(x)=(pred(x)=succ)
taking x from [[1,...,n1],...,[n-n1+1,...,n]]

This description means that the symbol search can appear in a pro-
gram only between two lists, a predecessor list pred (“long text”) whole
length is denoted by n, and a successor list succ (“short text”) whose
length is denoted by nil. As a result of the function search, the two lists
pred and succ are replaced by a single list next. This list consists of
n-n1+1 Boolean values next(x); each value is equal to true or false de-
pending on whether pred(x)=succ, i.e., whether the short text succ of
length n1 is indeed contained in the long list at n1 consecutive indices x
(=01,...,n11,[2,...,n1+1], ..., [n-n1+1,...,n]).

In particular, in our example, when search is applied to the texts
prec=[here is a test string] and succ=[test],
the index x takes 18 possible values:

[1,2,3,41,[2,3,4,5]1,[3,4,5,6],[4,5,6,7],
(5,6,7,81,[6,7,8,9],[7,8,9,10]1,[8,9,10,11],
[9,10,11,12],[10,11,12,13],[11,12,13,14],[12,13,14,15],
[13,14,15,16],[14,15,16,17]1,[15,16,17,18],[16,17,18,19],
[17,18,19,20]1,[18,19,20,21]

The function search replaces both strings pred and succ with a single list of
18 Boolean values of the following 18 relations:

[[herel=[test], [ere]=[test], [re il=[test],[e is]=[test],

[is]=[test],[is al=[test],[s a J=[test],[a tl=[test],

[a te]l=[test],[tes]=[test], [test]l=[test],[est]=[test],

[st sl=[test],[t stl=[test],[strl=[test], [stril=[test],
[trin]=[test], [ringl=[test]]

12

Now, we need to find the truth values of all these 18 relations. In view of
the above-described computational model of SequenceL, it is clear that all 18
values can be computed concurrently, resulting in the following list:

[false,false,false,false,
false,false,false,false,
false,false,true,false,
false,false,false,false,
false,false]

In essence, we have the exact same natural parallelization as in the Java
program presented in the Appendix: the taking construction subdivides the
larger data set into 18 smaller sets just like like the Java program does in
lines 35-38 and 7-12. However, the parallelisms in Sequencel. are much more
intuitive: in Sequencel, parallelization naturally comes from the program it-
self, and, in contrast to Java, this parallelization does not require changing
the program or using any additional constructions like thread, run, etc.

To further test the parallelization abilities of Sequencel,, we are currently
designing an efficient parallel interpreter for this language.

6 Conclusions

SequenceL: seems to provide a more intuitive approach to data analysis prob-
lems — especially when parallelisms are required in the solution. Even the
most modern computing languages (e.g., Java) are somewhat cumbersome
when it comes to the design and understanding of parallel solutions. Modern
approaches to data analysis as exemplified by the goals of the Grid project
require languages that can express parallelisms at a higher level — languages
for which parallelisms can be identified automatically.

Sequencel is presented as a candidate Grid Oriented Language. SequenceL is
a high level universal language that provides an abstraction suitable for auto-
matically generating iterative and parallel program structures. The language
is based upon a simple execution strategy similar to term rewriting systems.
We believe that this language is a good candidate for a Grid Oriented Lan-
guage — a language appropriate for describing and using high parallelism of
potential Grid applications.

Although the example data parallel problem solution developed in this paper is
rather simple, the example scales up to many real-world data mining problems
involving image processing and security-based data searches.

13

Acknowledgments

This work was supported in part by NASA under cooperative agreement
NCC5-209 and grant NCC 2-1232, by NSF grants No. DUE-9750858, CDA-
9522207, and 9710940 Mexico/Conacyt, by the United Space Alliance, grant
No. NAS 9-20000 (PWO C0C67713A6), by the Future Aerospace Science and
Technology Program (FAST) Center for Structural Integrity of Aerospace Sys-
tems, effort sponsored by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grants F49620-95-1-0518 and F49620-00-1-
0365, by the National Security Agency under Grants No. MDA904-98-1-0564
and MDA904-98-1-0564, and by Grant No. W-00016 from the U.S.-Czech Sci-
ence and Technology Joint Fund

The authors are thankful to the anonymous referees for helpful suggestions,
and to Michael Gelfond for valuable discussions.

References

[1] J. Bishop, The Effect of Data Abstraction on Loop Programming Tech-
niques, IEEE Trans. Soft. Eng. SE-16 (1990), 389—-402.

[2] D. Cooke, An Introduction to SequenceL: A Language to Experiment with
Nonscalar Constructs, Software Practice and Experience 26 (1996), 1205
1246.

[3] D. Cooke, SequenceL Provides a Different way to View Programming,
Computer Languages 24 (1998), 1-32.

[4] L. Foster and C. Kesselman, Preface to: 1. Foster and C. Kesselman (eds.),
“The Grid, Blueprint for a New Computing Infrastructure”, Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

[56] K. Kennedy, Compilers, Languages, and Libraries, in: 1. Foster and
C. Kesselman (eds.), “The Grid, Blueprint for a New Computing In-
frastructure”, Morgan Kaufmann Publishers, San Francisco, CA, 19909.

[6] H. Mills and R. Linger, Data Structured Programming: Programming
without Arrays and Pointers, IEEE Trans. Soft. Eng. SE-12 (1986), 192
197.

14

Appendix

class wrdsrch2 extends Thread{ String text; String target;
boolean found; int i;

15

wrdsrch2(String in, String targ, int k) { Line 7
target=targ; Line 8
text=in; Line 9
found=false; Line 10
i=k; Line 11

Line 12
public void run() {
if (text.equals(target))
{found = true;}

public static void main (String args[]) {

int i, j, k, n, ni;

String s = "here is a test string";

String s1 = "test";

char[] sample = s.toCharArray();

char[] find = sl.toCharArray();

System.out.println(sample) ;

n = sample.length;

nl = find.length;

String send;

wrdsrch2 w[] = new wrdsrch2[(n-n1)+1]; Line

for(i=0;i<=n-n1;i++) Line
{send = s.substring(i,i+nl); Line
w[i]l = new wrdsrch2(send,sl,i); Line
} Line

System.out.println("To Run ");

for(i=0;i<=n-n1;i++) Line
{wli] .start () ;} Line

33

35
36
37
38

42
43

for(i=0;i<=n-n1;i++)
{try {wli]l.join();
catch (InterruptedException ignored) { }
}

System.out.println("The answer is: ");

for(i=0;i<=n-n1;i++)
{System.out.println(w[i] .found) ;?}

1}

16

Line
Line
Line
Line

45
46
47
48

