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Abstract—For non-destructive testing of aerospace

structures, it is extremely important to know how the

probability of detecting a fault depends on its size.

Recently, an empirical formula has been found which

described this dependence. In this paper, we provide

the theoretical justification for this formula by using

methods motivated by the neural network approach.

I. Formulation of the Problem

For non-destructive testing of aerospace structures (see,
e.g., [3]–[7], [9], [11]), it is extremely important to know
how the probability p(a) of detecting a fault of linear size
a depends on this size a. This dependence is called a prob-
ability of detection (POD) curve. Recently, an empirical
formula has been found which described this dependence
[2], [7], [8]:

p(a) =
A · aβ

1 +A · aβ
. (1)

Since important decisions are based on this formula, it is
desirable to find out how reliable it is, i.e., whether it is a
crude empirical approximation or a precise formula which
has deep theoretical justifications.

II. What We Are Planning to Do

In this paper, we show that this formula (1) can indeed
be theoretically justified. Our justification for this for-
mula will use methods motivated by the neural network
approach (see, e.g., [10]).

III. We Must Choose a Family of Functions,
Not a Single Function

A. POD can be, in principle, experimentally determined

For practical applications, we need the function p(a)
which would determine the probability that if a sample
with a fault size a is presented to a certain NDE technique,
then this fault will be detected. In order to determine this
function empirically, we must have a statistics of samples
which were presented to this techniques and for which,
later on, the fault was discovered; from this statistics, we
can determine the desired probability.

B. POD depends on the pre-selection procedure

This probability, however, depends on how we select
the samples presented to the NDE techniques. For ex-
ample, most structures are inspected visually before us-
ing a more complicated NDE technology. Some aerospace
structures are easier to inspect visually, so we can detect
more faults visually, and only harder-than-usual faults are
presented to the NDE technique; as a result of this pre-
selection, for such structures, the success probability p(a)
is lower than in other cases. Other structures are more
difficult to inspect visually; for these structures, all the
faults (including easy-to-detect ones) are presented to the
NDE techniques, and the success probabilities p(a) will be
higher. In view of this pre-selection, for one and the same
NDE technique we may have different POD functions de-
pending on which structures we apply it to. So, instead
of looking for a single function p(a), we should look for
a family of POD functions which correspond to different
pre-selections.

C. Relation between POD curves corresponding to differ-
ent pre-selection procedures

How are different functions from this family related to
each other? Pre-selection means, in effect, that we are
moving from the original unconditional detection prob-
ability to the conditional probability, under the condi-
tion that this particular sample has been pre-selected. In
statistics, the transformation from an unconditional prob-
ability P0(Hi) of a certain hypothesis Hi to its conditional
probability P (Hi|S) (under the condition S that a sample
was pre-selected) is described by the Bayes formula

P (Hi|S) =
P (C|Hi) · P0(Hi)∑
j

P (S|Hj) · P0(Hj)
.

In mathematical terms, the transformation from p(a) =
P0(Hi) to p̃(a) = P (Hi|S) is fractionally linear, i.e., has
the form p(a) → p̃(a) = φ(p(a)), where

φ(z) =
k · z + l

m · z + n

for some real numbers k, l, m, and n.



D. Resulting description of the desired family of POD
functions

So, instead of looking for a single function p(a), we
should look for a family of functions {φ(p(a))}, where
p(a) is a fixed function and φ(z) are different fractionally
linear transformations. In the following text, when we say
“a family of functions”, we will mean a family of this very
type.

IV. Which Family is the Best?

A. We can have many different optimality criteria

Among all such families, we want to choose the best
one. In formalizing what “the best” means we follow the
general idea outlined in [10]. The criteria to choose may
be:

• approximation accuracy (i.e., accuracy with which
these functions approximate the emprical data about
the dependence of the POD of the fault size),

• computational simplicity, or

• something else.

B. Non-numeric criteria are possible

In mathematical optimization problems, numeric cri-
teria are most frequently used, when to every family we
assign some value expressing its performance, and choose
a family for which this value is maximal. However, it is
not necessary to restrict ourselves to such numeric crite-
ria only. For example, if we have several different families
that have the same approximation accuracy A, we can
choose between them the one that has the minimal com-
putational complexity C. In this case, the actual criterion
that we use to compare two families is not numeric, but
more complicated:

A family F1 is better than the family F2 if and only
if:

• either A(F1) > A(F2),

• or A(F1) = A(F2) and C(F1) < C(F2).

C. A general description of optimality criteria

A criterion can be even more complicated than above.
What a criterion must do is to allow, us for every pair of
families (F1, F2), to tell:

• whether the first family is better with respect to this
criterion (we’ll denote it by F1 > F2),

• or the second is better (F1 < F2),

• or these families have the same quality in the sense
of this criterion (we’ll denote it by F1 ∼ F2).

Of course, it is necessary to demand that these choices be
consistent, e.g., if F1 > F2 and F2 > F3 then F1 > F3.

D. A criterion must choose a unique optimal family

A natural demand is that this criterion must choose a
unique optimal family (i.e., a family that is better with
respect to this criterion than any other family).
The reason for this demand is simple:

• If a criterion does not choose any family at all, then
it is of no use.

• If several different families are “the best” according to
this criterion, then we still have a problem to choose
among those “best”. Therefore, we need some addi-
tional criterion for that choice. For example, if sev-
eral families turn out to have the same approximation
accuracy, we can choose among them a family with
minimal computational complexity. So what we actu-
ally do in this case is abandon that criterion for which
there were several “best” families, and consider a new
“composite” criterion instead: F1 is better than F2

according to this new criterion if either it was better
according to the old criterion or according to the old
criterion they had the same quality and F1 is better
than F2 according to the additional criterion.

In other words, if a criterion does not allow us to choose
a unique best family it means that this criterion is not
ultimate; we have to modify it until we come to a final
criterion that will have that property.

E. A criterion must be scale-invariant

The next natural condition that the criterion must sat-
isfy is that the relative quality of the two families should
not depend on the choice of the units in which we measure
the size of the fault.
Suppose that instead of the original unit of length, we

consider a new unit of length which is λ times larger than
the original one. How will the POD curve change, i.e.,
what will be the new function p̃(ã) describing the depen-
dence of the probability of detection on the size ã in the
new units?
One new unit is equal to λ old units, therefore, the

length ã in the new units means the length a = λ · ã in
the old units. So, the probability p̃(ã) is equal to p̃(ã) =
p(λ · a).
This argument can be used to motivate that the crite-

rion is invariant with respect to rescaling transformations.

We arrive at the following definitions:



V. Definitions and the Main Result

Definition 1.

• By a probability function, we mean a smooth mono-
tonic function p(a) defined for all a ≥ 0 for which
p(0) = 0 and p(a) → 1 as a → ∞.

• By a family of functions we mean the set of functions
that is obtained from a probability function p(a) by
applying fractionally linear transformations.

• A pair of relations (<,∼) is called consistent if it
satisfies the following conditions: (1) if F < G and
G < H then F < H; (2) F ∼ F ; (3) if F ∼ G then
G ∼ F ; (4) if F ∼ G and G ∼ H then F ∼ H; (5) if
F < G and G ∼ H then F < H; (6) if F ∼ G and
G < H then F < H; (7) if F < G then G < F or
G ∼ F are impossible.

• Assume a set F is given. Its elements will be called
alternatives. By an optimality criterion we mean a
consistent pair (<,∼) of relations on the set F of all
alternatives. If F > G, we say that F is better than
G; if F ∼ G, we say that the alternatives F and G
are equivalent with respect to this criterion. We say
that an alternative F is optimal (or best) with respect
to a criterion (<,∼) if for every other alternative G,
either F > G or F ∼ G.

• We say that a criterion is final if there exists an
optimal alternative, and this optimal alternative is
unique.

In the present section we consider optimality criteria on
the set F of all families.

Definition 2. Let λ > 0. By the λ-rescaling Sλ(p) of a
function p(a), we mean a function p̃(a) = p(λ · a). By the
λ-rescaling Sλ(F ) of the family F , we mean the family of
the functions that are obtained from p ∈ F by λ-rescaling.

Definition 3. We say that an optimality criterion on F
is scale-invariant if for every two families F and G and
for every number λ > 0, the following two conditions are
true:

• if F is better than G in the sense of this criterion
(i.e., F > G), then Sλ(F ) > Sλ(G);

• if F is equivalent to G in the sense of this criterion
(i.e., F ∼ G), then Sλ(F ) ∼ Sλ(G).

Theorem. If a family F is optimal in the sense of some
optimality criterion that is final and scale-invariant, then
every function p from F is equal to (1) for some A and
β > 0.

VI. Proof

1. Let us first show that the optimal family is scale-
invariant.

Indeed, we assumed thet the optimal family Fopt exists
and is scale-invariant in the sense that Sλ(Fopt) = Fopt

for all real numbers λ > 0. Indeed, we assumed that
the optimality criterion is final, therefore there exists a
unique optimal family Fopt. Let’s now prove that this
optimal family is scale-invariant (this proof is practically
the same as in [10]). The fact that Fopt is optimal means
that for every other F , either Fopt > F or Fopt ∼ F . If
Fopt ∼ F for some F ̸= Fopt, then from the definition of
the optimality criterion we can easily deduce that F is
also optimal, which contradicts the fact that there is only
one optimal family. So for every F either Fopt > F or
Fopt = F .
Take an arbitrary λ and let F = Sλ(Fopt). If Fopt >

F = Sλ(Fopt), then from the invariance of the optimality
criterion we conclude that Sλ−1(Fopt) > Fopt, and that
conclusion contradicts the choice of Fopt as the optimal
family. So Fopt > F = Sλ(Fopt) is impossible, and there-
fore Fopt = F = Sλ(Fopt), i.e., the optimal family is really
scale-invariant.

2. Let us now show that the functions from the optimal
family sastisfy a certain functional equation.

Due to Part 1 of this proof, if the function p(a) belongs
to the optimal family Fopt, then, for every λ > 0, the
re-scaled function p(λ · a) also belongs to Fopt, i.e., due
to definition of a family, there exist values k(λ), etc., for
which

p(λ · a) = k(λ) · p(a) + l(λ)

m(λ) · p(a) + n(λ)
. (2)

3. Let us now deduce the actual form of the functions p
from the optimal family.

The solution to the functional equation (2) is, in
essence, described in [1]. For completeness, let us describe
the proof in detail.
For λ = 1, we have n = 1, so, since p is smooth (hence

continuous), for λ ≈ 1, we have n(λ) ̸= 0; hence, we can
divide both the numerator and the denominator of (2) by
n(λ) and thus, get a similar formula with n(λ) = 1.
If we multiply both sides of the resulting equation by

the denominator, we get the following formula:

m(λ) · p(a) · p(λ · a) + p(a) = k(λ) · p(a) + l(λ).

If we fix λ and take three different values of a, we get
three linear equations for determining three unknowns
k(λ), l(λ), and m(λ), from which we can determine these
unknowns using Cramer’s rule. Cramer’s rule expresses
every unknown as a fraction of two determinants, and



these determinants polynomially depend on the coeffi-
cients. The coefficients either do not depend on λ at all
(like p(a)) or depend smoothly (p(λ ·a) smoothly depends
on λ because p(a) is a smooth function). Therefore, these
polynomials are also smooth functions of λ, and so are
their ratios k(λ), l(λ), and m(λ).
Now that we know that all the functions in the equa-

tions (2) are differentiable, we can differentiate both sides
with respect to λ and set λ = 1. As a result, we get the
following differential equation:

a · dp
da

= C0 + C1 · p+ C2 · p2

for some constants Ci. To solve this equation, we can
separate the variables, i.e., move all the terms related to
a to one side and all the terms related to p to the other
side, and get the differential equation

dp

C0 + C1 · p+ C2 · p2
=

da

a
. (3)

Let us first show that C2 ̸= 0. Indeed:

• If C2 = 0 and C1 = 0, then p/C0 = ln(a) + const,
which contradicts to our assumption that p(0) = 0.

• If C2 = 0 and C1 ̸= 0, then we get C−1
1 · ln(C1 · p +

C0) = ln(a)+const hence C1·p+C0 = A·aα, which for
α < 0, contradicts to the assumption that p(0) = 0,
and for α > 0, contradicts to the assumption that
p(a) → 1 as a → ∞.

Thus, the case C2 = 0 is impossible, and C2 ̸= 0. For
C2 ̸= 0, in general, the left-hand side of the equation (3)
can be represented as a linear combination of elementary
fractions (p+z1)

−1 and (p+z2)
−1 (where zi are – possibly

complex – roots of a quadratic polynomial C1 + C1 · p +
C2 · p2):

1

C0 + C1 · p+ C2 · p2
= c ·

(
1

p+ z1
− 1

p+ z2

)
(the case of a double root can be handled in a similar
manner). Thus, integrating the equation (3), we conclude
that

c · ln
(
p+ z1
p+ z2

)
= ln(a) + const,

and
p+ z1
p+ z2

= P · aβ

for some A and β. So, the expressionA·aβ can be obtained
from p(a) by a fractional linear transformation; hence, by
applying the inverse transformation (and it is known that
the inverse to a fractionally linear transformation is also
fractionally linear) we conclude that

p(a) =
A · aβ +B

C · aβ +D

for some numbers A, B, C, and D. One can easily check
that only for real values A÷D and β, we get a monotonic
everywhere defined function p(a).
If β < 0, then we can multiply both numerator and

denominator by a−β and get a similar expression with
β > 0. Thus, without losing generality, we can assume
that β > 0.
Now, the condition that p(0) = 0 leads to B/D = 0 and

hence, to B = 0. The condition leads to A = C, i.e., to

p(a) =
A · aβ

A · aβ +D
.

Since p(a) is not identically equal to 1, we have D ̸=
0. Therefore, we can divide both the numerator and the
denominator of this fraction by D, and get the desired
expression (1). The theorem is proven.

Acknowledgment

This work was supported in part by the Future
Aerospace Science and Technology Program (FAST) Cen-
ter for Structural Integrity of Aerospace Systems, effort
sponsored by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant num-
ber F49620-95-1-0518. The authors are thankful to Vladik
Kreinovich for valuable discussions.

References

[1] J. Aczel, Lectures on functional equations and their applica-
tions, New York, London: Academic Press, 1966.

[2] P. Barbier and P. Blondet, Using NDT techniques in the main-
tenance of aeronautical products, Aerospatiale France Report
No. 93-11587/1/GAL, 1993.

[3] D. E. Chimenti, “Guided waves in plates and their use in mate-
rials characterization”, Appl. Mech. Rev., vol. 50, pp. 247–287,
1997.

[4] R. W. Clough and J. Penzien, Dynamics of Structures, New
York: McGraw Hill, 1986.

[5] C. Ferregut, R. Osegueda, and A. Nuñez (eds.), Proceedings
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