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Abstract

One of the reasons why fuzzy methodology is successful is that fuzzy
systems are universal approximators, i.e., that we can approximate an
arbitrary continuous function within any given accuracy by a fuzzy sys-
tem. In some practical applications (e.g., in control), it is desirable to
approximate not only the original function, but also its derivatives (so
that, e.g., a fuzzy control approximating a smooth control will also be
smooth). In our paper, we show that for any given accuracy, we can ap-
proximate an arbitrary smooth function by a fuzzy systems so that not
only the function is approximated within this accuracy, but its derivatives
are approximated as well. In other words, we prove that fuzzy systems
are universal approximators for smooth functions and their derivatives.



Introduction. It is known that fuzzy systems are universal approximators;
this result was proven almost simultaneously, in 1990-92 papers by J. Buckley,
Z. Cao, E. Czogala, D. Dubois, M. Grabisch, J. Han, Y. Hayashi, C.-C. Jou,
A. Kandel, B. Kosko, J. Mendel, H. Prade, and L.-X. Wang (see [1, 2, 3, 4, 5, 6,
7,8,9, 10, 11, 12, 13, 15, 16, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37,
38, 39, 40, 41, 42, 43, 44] and a survey [30]). To be more precise, it was proven
that any input-output system can be approximated, within any given accuracy,
by a system described by fuzzy rules. Such fuzzy-rule representation has two
major advantages:

e first, fuzzy rules (in contrast to, say, differential equations) are intuitively
clear;

e second, fuzzy rule representation is naturally parallelizable.

Due to these advantages, fuzzy rules work well in many practical applications.

However, in some applications, the existing fuzzy rule approximation tech-
niques are not sufficient, because in these problems (e.g., in many control appli-
cations), derivatives of the approximated function are very important, and so,
we want not only the approximating function be close to the approximated one,
but we also want their derivatives to be close.

For example, when we approximate a smooth control, we want the ap-
proximation to be smooth as well.

However, standard fuzzy approximation techniques do not guarantee the accu-
racy of approximating a derivative.

It is worth mentioning that in contrast to fuzzy system, neural networks
are known to be universal approximators which can approximate an arbi-
trary smooth function together with its derivatives (see, e.g., [17, 18]).

In this paper, we prove that (similar to neural networks) fuzzy systems are
universal approximators not only for the approximated functions themselves,
but also for their derivatives.

Basic formulas and notations. In this paper, we follow [36, 38|, and consider
fuzzy systems in which “and” is represented by an algebraic product, aggrega-
tion is represented by sum, membership functions for the input are Gaussian,
and outputs are crisp. For such systems, the input-output function is given by
a formula
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wy, are real numbers, and py ;(z) are Gaussian functions.

In the following text, we follow a convenient notation (widely used in physics)
of denoting a partial derivative of a function f with respect to a variable x; by
f.i, and, correspondingly, a partial derivative with respect to z; and x; by f;;.
A general derivative has the form fp, where D = i; .. .14 is a sequence of indices
(i.e., the form f;, 4,.)-

Definition 1. Let d be an integer, let € > 0 be a real numbers. We say that a
function g(x1, ..., x,) approrimates a function f(x1,...,x,) and its derivatives
of order < d with accuracy ¢ if for all x; € [-A, A],

If(z1,. . 2n) —g(z1,. .., 20)| < e

and for every derivative D of order < d,

fo(z1,...,xn) — g1, .., 20)| <e.

Theorem. Let d and n be integers, let A > 0 and e > 0 be real numbers, and let
f(z1,...,x,) be a d-times differentiable function on [—A, A]™. Then, there ex-
ists a function g(x1,...,x,) of type (1a)—(1c) which approzimates f(x1,...,xy,)
and its derivatives of order < d with accuracy €.

In other words, fuzzy systems are universal approzimators for smooth functions
and their derivatives.

Proof. We want this proof to be natural. Therefore, at first, we start with the
analysis of how this theorem can be proved, and then, we will transform this
analysis into the actual proof of the theorem.

By definition, a general Gaussian function has the form

i) = exp (<220

g

for some a and o > 0. In this proof, we will fix the value o and consider only
the Gaussian functions with this particular value of o. For such functions,
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and @*) is a vector with components (@k,1s--.,0ky,). For such membership
functions, the expressions (1b) and (1c) take the form:

N(@) =) wi- GE—a®), (2b)
k

D(&) =Y _ G(@—ak). (2¢)
k

Both expressions look like integral sums: namely, if we take, as values @ ¥, all

points on a dense rectangular grid with linear step Aa; = ... = Aa,, = h filling
a box [-N,N] x ... x [=N, N], and as wg, the values wy = w(@®) of some
function w(a@) on this grid, then after multiplying by Aay - ... - Aa, = h", the

expressions (2b)—(2c) become the integral sums:

N N
N(f)~h”z/_N.../_Nw(6)~G(f—d’)dc‘i, (3b)

N N
D(f)-hw/ / G(7 — @) da. (3¢)

-N -N
The ratio N(&)/D(Z) does not change if we multiply both numerator and de-
nominator by h™. Therefore, when h — 0 and N — oo, the ratio g(¥) =

N(Z)/D(Z) becomes closer and closer to the ratio Noo(Z)/Goo(Z) of the two
(multi-dimensional) infinite integrals:

Noo(a‘:’):/Z.../Zw(6)~G(f—&’)d&’, (4b)

Doo(f):/_:../:c(f—a)dai (40)

By introducing a new auxiliary vector variable b= i — @, we can see that the
denominator integral is equal to

Do () = / / G(B) db: (5)
therefore, this integral does not depend on & at all: the function Do (Z) is

a (known) constant C. So, to find the weights that approximate the desired
function f(&), it is sufficient to find a function w(@) for which

C-f(f)z/_o;.../_o;w(a)-G(:E—&')dd'. (6)

The right-hand side of this equality is known as a convolution of the functions
w(Z) and G(Z); it is well known that the Fourier transform of a convolution



R xS of two functions R(Z) and S(Z) is equal to the product of their Fourier
transforms: if T(Z) = R(Z) * G(Z), then T(&) = R(D) - S(3) (see, e.g., [33, 34]).
Therefore, . R

C- (@) = w(@) - G(@), (7)
and so, a natural way to find the desired function w(@) is to first find its Fourier
transform w(&) from the above equality, i.e., as

(@) = Cuf;") ®)

G(
and then apply the inverse Fourier transform and get the desired function w(a).

Warning: this is not yet the proof itself, just the idea of it, because a
Fourier transform is not always defined; the actual proof follows.

For a first derivative g;(Z) of the function ¢g(Z), from the formulas (1), (2b), and
(2¢), we can deduce a similar representation:

where
N(Z) =Y wy G —a®)~ T oow(a')-c’i(:z—a')da', (10b)
o L]
and
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The last integral is equal to 0, so, to guarantee that the corresponding expression
9.:(Z) is close to the corresponding derivative f;(&) of the function f(Z), we must
make sure that the

c.f,i(f):/_:../:w(a).e,i(f—a)da. (11)

In principle, if the equality (6) is true, then we can get (11) simply by differen-
tiating both sides of this equality.

Similarly, to guarantee that this approximation approximates derivatives f p
of higher order, we must guarantee that

C.fp(f):/_:../_Zw(a').a,p(f—a')da (12)

for this derivative D. If we have attained the formula (6), then (12) follows by
differentiating both sides of that formula.



Now, let us transform the above idea into the exact proof. We start with a
smooth function f(Z) which is defined on an n-dimensional box [—-A, Al x ... x
[—A, A]. Tt is known (see, e.g., [21]), that we can extend this function f to a
smooth function which is equal to 0 outside a larger box

[—2A,2A] x ... x [-24, 2A]. (13)

So, without losing generality, we can assume that our function f(&) is every-
where defined, everywhere smooth, and is equal to 0 outside the box (13).

Based on this function, we can now construct a new infinitely differentiable
function f;(Z) which is close to f(Z) and for which all the derivatives of order
< d are close to the corresponding derivatives of f(Z). It is known, from the
theory of generalized functions (also called Schwartz distributions) (see. e.g.,
[14, 35]), that as such a function, we can take

71(8) = T (14
where s
Gol(7) = exp (—(ié ) (15)

and o9 > 0 is sufficiently small. (To be more precise, as o9 — 0, we have
Go(y) — 6(7) (modulo a multiplicative constant) and thus, fi = Gy * f —
0+ f = f.) The new function f;(Z) is infinitely differentiable: indeed, its
derivative of each order D can be computed as

_ [ Gop(@—3) - f(7)dy
[ Gol#) d7

and the convergence of these integrals follows from the fact that f(%) is different
from 0 only within a box. Since the values of the function f; and of its derivatives
can be made (by choosing appropriate o) arbitrarily close to the values of
function f and its derivatives, it is sufficient to be able to approximate the
function fi, then this approximation will approximate the original function f
as well.

One can also easily check that the function f;(%) tends to 0 as & — oo (and
decreases fast), so that its Fourier transform can be defined for all &:

fip(Z)

: (16)

Fu@) = W~/f1(:ﬁ')-exp(—iu7~f) d. (17)

From this Fourier transform, we can reconstruct the function f;(Z) back by
applying the inverse Fourier transform:

" 1 o R
f1(@) = W'/fl(w)'exp(lw'x) dd. (18)



In the formula (18), we consider all possible values of &. Let us show that we
can restrict the integration by values & of a bounded length (|| < R for some
R), and get a new function fo(Z) which is itself close to f1(Z), and its derivatives
of orders < d are close to the corresponding derivatives of f1(Z). This function
f2(Z) is, thus, defined by the following formula:

- 1 P C o 1
fa (@) = W . /|Q|§R f1(&) - exp(id - ¥) dwd, (19)

or, in terms of Fourier transforms, by the formulas fg(d)’) = f1(@) if |¥] < R
and fo(J) =0 if |J] > R.

It is known that if a function h(Z) is differentiable with respect to one of the
variables z;, then, differentiating by parts, we conclude that

b@) = oy [ 1) exp(—i - )i =

1 exp(—id - )
- h;(Z) dz 20
(2m)n/2 / @) YT (20)
and therefore,
h(w) < 7)dz| <
|h(w)] < 2r)"/? |wz| cexp(—id - &) dE| <
1 1
— - — - [ |h(Z)|dZ. 21
G L / ()] d7 (21)
So, if the integral [ |h ;(Z)| dZ converges, the Fourier transform goes to 0 at least

as fast as |w;|~! when & — oco. Similarly, if a function is twice differentiable,
and the corresponding integral converges, the Fourier transform goes to 0 as
lwi| 7! - Jw;| 71, ete. Our function fi(7) is differentiable infinitely many times,
and the corresponding integrals do converge. Therefore, its Fourier transform
goes to 0 faster than ||~ for any integer N, i.e., for some constant C; > 0,

we have
Ch

|f1("‘_j)| = |—‘|N (22)

Therefore, for every R > 0, the difference between the full integral (18) (which
defines f1(Z)) and its restriction (19) (which defines f2(#)) can be bounded as
follows:

1) = 0@ = Gz [ A(@)-ew(a-az (23)

hence

2 C
|f1(f)_f2(f)§(27$n/2-/ fl(a)cwg%én/z./g Sz, (24)



If we turn to radial coordinates, with radius 7 and angles 61, .. ., then the bound-
ing integral in the right-hand side of (24) turns into

. . ®rn=ldr  const
|f1(Z) — f2(Z)| < const / N = RN-n- (25)

R r

So, if we take N > n, then, for sufficiently large R, we can get a sufficiently small
upper bound which bounds the difference between the values of the functions
f1(Z) and fo(&) for all Z.

The Fourier transform of a derivative f;; is equal to iw; times the Fourier
transform of the original function. Therefore, the Fourier transforms of all the
derivatives of the function f; also tend to 0 faster than ||~ for any integer
N. Therefore, by choosing R sufficiently large, we can guarantee that not only
the values of the function fo(Z) are close to the values of the function fi(%),
but also that the values of all derivatives of f2(Z) of order < d are close to the
corresponding derivatives of f1(Z).

Therefore, to prove that we can approximate fi(Z), it is sufficient to be able
to approximate the close function fo(Z). This function f3(Z) has an advantage
— that its Fourier transform is equal to 0 outside a sphere |[J| < R. We can
therefore define the “weight” function w(Z) by applying the above-described
idea of defining w(Z) to the function fo(Z): namely, we first define its Fourier
transform

(@) = 29 (26)
G(I)
and then reconstruct w(Z) by applying inverse Fourier transform:
1
w(i) = W./w(@) cexp(id - 7) d. (27)

For this function w(Z), we have fo = w* G.

Since the Fourier transform of a function w(Z) is equal to 0 outside the
bounded area, this function w(Z) is infinitely differentiable and therefore, all
integrals of the type [w(a@) - G(Z — @) dd can be approximated by grid-based
integral sums, for appropriate h and N. Thus, for appropriately small & and
large N, we get a fuzzy system g(Z) of the type (1a)—(1c) which approximates the
function fo(%) together with all its derivatives of orders < d. Since the function
f2(&), in its turns, approximates the function f;(Z) and its derivatives, and the
function f;(#) approximates the original function f(Z) and its derivatives, we
conclude that the fuzzy system ¢(Z) approximates the original smooth function
f(&) and its derivatives. The theorem is proven.

Remaining open problem. We have shown that if we use Gaussian member-
ship functions, then we can approximate an arbitrary smooth function together
with its derivatives. Our proof make an essential use of the fact that the mem-
bership functions are Gaussian. An interesting open question is: if we use use



smooth non-Gaussian membership functions, will we still be able to get a uni-
versal approximation for a function and for its derivatives?

Acknowledgments. This work was supported in part by NASA under coop-
erative agreement NCC5-209, by NSF grant No. DUE-9750858, by the United
Space Alliance, grant No. NAS 9-20000 (PWO C0C67713A6), by the Future
Aerospace Science and Technology Program (FAST) Center for Structural In-
tegrity of Aerospace Systems, effort sponsored by the Air Force Office of Sci-
entific Research, Air Force Materiel Command, USAF, under grant number
F49620-95-1-0518, by the National Security Agency under Grant No. MDA904-
98-1-0564, and by the Hong Kong RGC grant 4138/97E.

Part of this work was conducted while one of the authors (V.K.) was visiting
the Department of Mechanical and Automation Engineering at the Chinese
University of Hong Kong under the support of the Hong Kong RGC grant
4138 /97E.

References

[1] J. J. Buckley, “Universal Fuzzy Controllers”, Automatica, 1992, Vol. 28,
pp. 1245-1248.

[2] J. J. Buckley, “Controllable processes and the fuzzy controller”, Fuzzy Sets
and Systems, 1993, Vol. 53, pp. 27-31.

[3] J. J. Buckley, “Sugeno Type Controllers are Universal Controllers”, Fuzzy
Sets and Systems, 1993, Vol. 53, pp. 299-303.

[4] J. J. Buckley, “Approximation paper: Part I”, Proceedings of the Third In-
ternational Workshop on Neural Networks and Fuzzy Logic, Houston, TX,
June 1-3, 1992, NASA, January 1993, Vol. I (NASA Conference Publica-
tion No. 10111), pp. 170-173.

[5] J. J. Buckley, “Applicability of the fuzzy controller”, In: P. Z. Wang and K.
F. Loe (eds.), Advances in Fuzzy Systems: Application and Theory, World
Scientific, Singapore, 1993.

[6] J. J. Buckley and E. Czogala, “Fuzzy models, fuzzy controllers, and neural
nets”, Proc. Polish Academy of Sciences, 1993.

[7] J.J. Buckley and Y. Hayashi, “Fuzzy input-output controllers are universal
approximators”, Fuzzy Sets and Systems, 1993, Vol. 58, pp. 273-278.

[8] J. J. Buckley, Y. Hayashi, and E. Czogala, “On the equivalence of neural
nets and fuzzy expert systems”, Proc. of Int. Joint Conf. on Neural Net-
works, June 7-11, 1992, Baltimore, MD, Vol. 2, pp. 691-695.



[9]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. J. Buckley, Y. Hayashi, and E. Czogala, “On the equivalence of neural
nets and fuzzy expert systems”, Fuzzy Sets and Systems, 1993, Vol. 53, pp.
129-134.

Z. Cao, “Mathematical principle of fuzzy reasoning”, Proceedings
NAFIPS’90, Toronto, Canada, June 1990, pp. 362-365.

Z. Cao, A. Kandel, and J. Han, “Mechanism of fuzzy logic controller”,
Proceedings of ISUMA’90, Univ. of Maryland, December 1990, pp. 603—
607.

J. L. Castro, “Fuzzy logic controllers are universal approximators”, IEEE
Trans. Syst., Man, Cybern., 1995, Vol. 25, No. 4, pp. 629-635.

D. Dubois, M. Grabisch, and H. Prade, “Gradual rules and the approxi-
mation of functions”, Proceedings of the 2nd International Conference on
Fuzzy Logic and Neural Networks, lizuka, Japan, July 17-22, 1992, pp.
629-632.

I. M. Gelfand and G. E. Shilov, Generalized functions, Vol. 1, Academic
Press, N. Y. and London, 1964.

Y. Hayashi, J. J. Buckley, and E. Czogala, “Fuzzy expert systems versus
neural networks”, Proc. of Int. Joint Conf. on Neural Networks, June 7-11,
1992, Baltimore, MD, Vol. 2, pp. 720-726.

Y. Hayashi, J. J. Buckley, and E. Czogala, “Approximations between fuzzy
expert systems and neural networks”, Proc. of the 2nd Int. Conf. on Fuzzy
Logic and Neural Networks, July 17-22, 1992, lizuka, Japan, pp. 135-139.

K. Hornik, “Approximation capabilities of multilayer feedforward net-
works”, Neural Networks, 1991, Vol. 4, pp. 251-257.

K. Hornik, M. Stinchcombe, H. White, “Universal approximation of an un-
known mapping and its derivatives using multilayer feedforward networks”,
Neural Networks, 1990, Vol. 3, pp. 551-560.

C.-C. Jou, “On the mapping capabilities of fuzzy inference systems”, Pro-
ceedings of the International Joint Conference on Neural Networks, Balti-
more, Maryland, June 7-11, 1992, Vol. 2, pp. 708-713.

S. Kawamoto, K. Tada, N. Onoe, A. Ishigame, A., and T. Taniguchi,
“Construction of exact fuzzy system for nonlinear system and its stabil-
ity analysis”, 8th Fuzzy System Symposium, Hiroshima, 1992, pp. 517-520
(in Japanese).

J. Kelley, General topology, Van Nostrand, Princeton, NJ, 1955.

10



22]

[23]

[24]

[31]

[32]

[33]

[34]

[35]

B. Kosko, Neural networks and fuzzy systems: a dynamical systems ap-
proach to machine intelligence, Prentice Hall, 1991.

B. Kosko, “Fuzzy Systems as Universal Approximators”, IEEE Int. Conf.
on Fuzzy Systems, San Diego, CA, March 1992, pp. 1143-1162.

B. Kosko, “Fuzzy function approximation”, Proceedings of the International
Joint Conference on Neural Networks, Baltimore, Maryland, June 7-11,
1992, Vol. 1, pp. 209-213.

B. Kosko, “Fuzzy Systems as Universal Approximators”, IEEE Trans. on
Computers, 1994, Vol. 43, No. 11, pp. 1329-1333.

B. Kosko, “Optimal fuzzy rules cover extrema”, Proceedings of the World
Congress on Neural Networks WCNN’94, 1994.

B. Kosko, “Optimal fuzzy rules cover extrema’”, International Journal of
Intelligent Systems, 1995, Vol. 10, No. 2, pp. 249-255.

B. Kosko, “Additive fuzzy systems: from function approximation to learn-
ing”, In: C. H. Chen (ed.), Fuzzy Logic and Neural Network Handbook,
McGraw-Hill, N.Y., 1996, pp. 9-1-9-22.

B. Kosko and J. A. Dickerson, “Function approximation with additive fuzzy
systems”, Chapter 12 in: H. T. Nguyen, M. Sugeno, R. Tong, and R. Yager
(eds.), Theoretical aspects of fuzzy control, J. Wiley, N.Y., 1995, pp. 313
347.

V. Kreinovich, G. C. Mouzouris, and H. T. Nguyen, ”Fuzzy rule based
modeling as a universal control tool”, In: H. T. Nguyen and M. Sugeno
(eds.), Fuzzy Systems: Modeling and Control, Kluwer, Boston, MA, 1998,
pp. 135-195.

H. T. Nguyen and V. Kreinovich, On approximation of controls by fuzzy
systems, Technical Report 92-93/302, LIFE Chair of Fuzzy Theory, Tokyo
Institute of Technology, 1992.

H. T. Nguyen and V. Kreinovich, “On Approximation of Controls by Fuzzy
Systems”, Proceedings of Fifth IFSA Congress, Seoul, Korea, 1993, Vol. 2,
pp- 1414-1417.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
Prentice Hall, Englewood Cliffs, NJ, 1989.

C. Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM, Philadelphia, 1992.

V. S. Vladimirov, Equations of Mathematical Physics, Marcel Dekker, N.Y.,
1971.

11



[36]

L.-X. Wang, “Fuzzy Systems Are Universal Approximators”, Proceedings
of Second IEEE International Conference on Fuzzy Systems, San Diego,
CA, March 1992, pp. 1163-1170.

L-X. Wang, Adaptive Fuzzy Systems and Control, Prentice-Hall,
Englewood-Cliffs, NJ, 1994.

L.-X. Wang and J. L. Mendel, Generating fuzzy rules from numerical data
with applications, University of Southern California, Signal and Image
Processing Institute, Technical Report USC-SIPI # 169, 1991.

L.-X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approxima-
tion, and orthogonal least-squares learning”, IEEFE Transactions on Neural
Networks, 1992, Vol. 3, pp. 807-814.

L.-X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from
examples”, IEEE Transactions on Systems, Man, and Cybernetics, 1992,
Vol. 22, pp. 1414-1417.

R. R. Yager and D. P. Filev, Essentials of fuzzy modeling and control, J.
Wiley & Sons, 1994.

H. Ying, “Sufficient conditions on general fuzzy systems as function ap-
proximators”, Automatica, 1994, Vol. 30, No. 3, pp. 521-525.

X.-J. Zeng and M. G. Singh, “Approximation theory of fuzzy systems -
SISO case”, IEEE Trans. on Fuzzy Systems, 1994, Vol. 2, No. 2, pp. 162—
176.

X.-J. Zeng and M. G. Singh, “Approximation theory of fuzzy systems -
MIMO case”, IEEE Trans. on Fuzzy Systems, 1995, Vol. 3, pp. 219-235.

12



