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Abstract

Function approximation is a very important practical problem: in
many practical applications, we know the exact form of the functional
dependence y = f(z1,...,%,) between physical quantities, but this ex-
act dependence is complicated, so we need a lot of computer space to
store it, and a lot of time to process it, i.e., to predict y from the given
;. It is therefore necessary to find a simpler approzimate expression
g(x1,...,2n) = f(zx1,...,%,) for this same dependence. This problem
has been analyzed in numerical mathematics for several centuries, and
it is, therefore, one of the most thoroughly analyzed problems of applied
mathematics. There are many results related to approximation by polyno-
mials, trigonometric polynomials, splines of different type, etc. Since this
problem has been analyzed for so long, no wonder that for many reason-
able formulations of the optimality criteria, the corresponding problems
of finding the optimal approximations have already been solved.

Lately, however, new clustering-related techniques have been applied
to solve this problem (by Yager, Filev, Chu, and others). At first glance,
since for most traditional optimality criteria, optimal approximations are
already known, clustering approach can only lead to non-optimal approx-
imations, i.e., approximations of inferior quality. We show, however, that
there exist new reasonable criteria with respect to which clustering-based



function approximation is indeed the optimal method of function approx-
imation.

1 Informal Formulation of the Problem

1.1 Clustering: the choice of an optimal clustering method
is important

In many practical problems, we have several points that represent different
observations, and we must divide them into clusters so that points from one
cluster are, in general, closer to each other than points belonging to different
clusters.

There exist different clustering techniques; a survey of main non-fuzzy tech-
niques is given, e.g., in [10]; the main ideas of fuzzy clustering are described in
[1,2,3,4,5,6,7,8,9,12, 13, 14, 15].

It is known that different clustering methods lead to results of different
quality, so it is extremely important to find the best clustering technique.

1.2 Non-clustering applications of clustering techniques:
before comparing different clustering methods, we must
first check whether it makes sense to use clustering at
all

Often, clustering methods are used not for clustering itself, but as an auziliary
tool to solve other practical problems.

In such applications, before we find the clustering technique which is the best
for this particular application, it is desirable to first find out whether clustering-
based methods are indeed good for the corresponding problem. Otherwise,
if clustering-based methods are, in principle, much worse than other known
techniques, then the search for an optimal clustering-based method makes no
practical sense: we will spend quite some time and effort to select the “best”
(“least bad”) of bad methods, while much better non-cluster-based methods are
readily available.

1.3 Function approximation: a recent application area of
clustering techniques

One of such non-clustering application of clustering techniques is the problem
of function approzximation. This is a very important practical problem: in many
practical applications, we know the exact form of the functional dependence
y = f(x1,...,T,) between physical quantities, but this exact dependence is
complicated, so we need a lot of computer space to store it, and a lot of time
to process it, i.e., to predict y from the given z;. It is therefore necessary to



find a simpler approzimate expression g(z1,...,Z,) = f(x1,...,%,) for this
same dependence. This problem has been analyzed in numerical mathematics
for several centuries, and it is, therefore, one of the most thoroughly analyzed
problems of applied mathematics. There are many results related to approxi-
mation by polynomials, trigonometric polynomials, splines of different type, etc.
(see, e.g., [11]). Since this problem has been analyzed for so long, no wonder that
for many reasonable formulations of the optimality criteria, the corresponding
problems of finding the optimal approximations have already been solved.
Lately, however, clustering-related techniques have been applied to solve this
problem (see, e.g., [7, 8, 13]). Instead of applying traditional techniques of nu-
merical mathematics, we approximate a given function f(z1,...,z,) as follows:

e we pick a small step A > 0 and make a rectangular grid based on this step;

e for each point (a:?’ )P )) from this grid, we find the corresponding
value y(?) = f (x§” ) ..., zP) and construct the corresponding point 2(P) =

(m?’), ... ,m,(zp),y(p)) from the graph of the function f(z1,...,2,);

e then, we apply a clustering algorithm to the resulting points z(?); often,
such algorithms work in several steps, leading to a hierarchical clusteriza-
tion; for example, a bottom-up clusterization is performed as follows:

— first, we pick some reasonably small distance d; and combine the
points into a cluster only if they are d;-close to each other; since d;
is small, some points may be left off this classification;

— then, we repeat this clusterization procedure for a larger value ds >
di; as a result, some old clusters may combine into a single new
cluster, and some point that were not previously clustered are now
classified;

— if necessary, we repeat this procedure for an even large value d3z > da,
etc.

After this, on each resulting cluster, we approximate the original function by a
simple expression. This approximation can be a linear function, or it can be a
non-linear function, as in fuzzy rules, etc.

The smaller h, the closer the neighboring points z®). So, it makes sense to
choose d; depending on h, e.g., to choose the values d; as d; = k; - h for some
coefficients k;.

1.4 Clustering in function approximation: hopeless?

This application of clusterization techniques is not only proposed as a practically
useful tool, but it is also proposed as a case study for comparing the relative
quality of different clustering techniques. But does this comparison make sense?



Since for most traditional optimality criteria, optimal approximations are
already known, for these criteria, comparing two different clustering techniques
means comparing two clearly non-optimal algorithms.

1.5 There is hope

Function-approximation comparison of clustering methods would make sense
only if we can find some reasonable criteria with respect to which clustering-
based function approximation is indeed the optimal method of function approx-
imation.

Such criteria will be presented in this paper, for the simplest case of:

e smooth functions of one variable y = f(x),
o the simplest possible clustering algorithm, and

e the simplest possible (linear) approximation on each cluster.

2 For some reasonable criteria, clustering leads
to the optimal function approximation: for-
mulation of the result

Definition 1. (of clustering) Let k = (1 < k1 < ks < ... < ...) be a
strictly increasing sequence of real numbers, let h > 0 be a real number,
and let 2V, 23 ... (™) ¢ R? be points. By a (k,h)-clustering of the set
{2, ..., 2™} we mean the following procedure:

e First, we combine, into a single cluster, points 2P and 2(9 for which
d(2P), 2(9) < k; - h (where d denotes Euclidean distance). To be more
precise, we consider the points z(?) and 29 to be:

— immediately close if d(zP), () < k; - h, and

— belonging to a common cluster if there exists a sequence of indices
P =p1,P2,--.,Pk—1,Pr = q for which, for every i, 2(P?) is immediately
close to zPi+1).

e Then, we discard all points z(P) which have already been clusterized (i.e.,
which already have been assigned to a cluster). belong to one cluster with
some other point. On the set of remaining (un-clustered) points, we apply
a similar clustering procedure, but with ky > ki instead of k.

o Then, we again discard the clustered points. If there still are non-clustered
points, we apply a similar procedure with k3, etc.

o We stop when all points have been clustered.



Definition 2. (of clustering-based function approximation)

e Let f(z) be a continuously differentiable function on an interval [a,b].
This function will be called an approzimated function.

e Let h > 0 be a real number. This number will be called a step.

e By a linear approximation method M, we mean a mapping which, given
a finite set of points 2, ..., 2(N) € R? produces a linear function y =
a-x+b.

e By an M -based k-clustering-based h-step approzimation fur rn(x) to f(z),
we mean the following piecewise-linear function:

— First, we consider the points zP) = (z®, f(z®))), where z() = a,
@ =a+h,..., 2P =a+(p—1)-h, ..., until we reach b.

— Then, we apply the k-clustering algorithm to these points.

— Finally, for each of the resulting clusters, we use the method M to
generate a linear function.

These linear functions, taken together, form the desired approximation
fak,h-

Definition 3. Let € > 0 be a real number. We say that the functions f(z) and
g(z) are e-close if J(f,g) < e, where J(f,g) = max, |f'(z) — ¢'(z)|.
Definition 4. Let f(z) be a continuously differentiable function on an in-

terval [a,b]. We say that a piecewise-linear function f(z) is an optimal e-
approximation to f(z) if:

e f~(x) is an g-approximation to f, and

e among all the piece-wise linear functions g(x) which are e-approximations
to f, the function fr(x) has the smallest possible number of linear pieces.

We say that a piecewise-linear function f(x) is an almost optimal e-approximation
to f(z) if:

e f~(z) is an e-approximation to f, and

e it is either optimal, or it has one more linear piece than an optimal ap-
proximation.

Comment. This optimality criterion makes sense, e.g., if the main goal of our
function approximation is to extrapolate from the experimentally observed values
or pre-computed values o of the function.

Indeed, if the extrapolation interval [zg,z] is small enough, then, on this
interval, the function can be well approximated by a linear expression f(z) &



f(xo) + f'(x0) - (x — 20). We can then use the approximate expression fx () for
f(z) to estimate f'(zo) as fL(xo). Since we know f(zo) exactly, the accuracy
of the resulting extrapolation is determined by the accuracy with which we can
estimate the derivative f'(zo). So, if we, e.g., want to be able to predict the
value f(z) with an accuracy § on all extrapolation intervals of the length < L,
then we must be able to estimate the derivative f'(zo) with the accuracy §/L,
i.e., we must have |f'(z) — fL(z)| < §/L for all z. In our notation, we must
have J(f, f~) < d/L.

Theorem. (clustering leads to optimal function approximation) For every
e > 0, there exists a sequence k and a linear approximation method M for
which, as h — 0, the M -based k-clustering based h-step approzimations to f(x)
tend to an almost optimal e-approzimation limy_,o fark,n to f.

Comment. So, for an appropriate clustering-based function approximation, for
sufficiently small h, the M-based k-clustering based h-step approximation far,p
to f(z) is practically identical to an almost optimal e-approximation to f. Thus,
clustering indeed leads to an (almost) optimal function approximation.

3 Proof

Let us first describe the above clustering in analytical terms. For small h, we
have f(z®Pt1)) = f(z(P + h) = f(z®) + h - f'(z(P) + o(h), and therefore, the
distance d(z(®), z2(Pt1)) between the points z(?) = (z®), f(z®))) and 2P+ =
(z® + h, f(zP) + h)) is equal to

AP, 27 0) = 12 + (F(z® +h) - fa))? =

\/h2 + 02 (f1(@®)? + o(h?) = h- /14 (f'(2(#)))> + o(h).

Thus, for sufficiently small h, points = for which /1 + (f'(z))? < k1 get clus-
tered together with their neighbors, while other points are left out.
Similarly, on the second step, we get all points for which

ki < V14 (f'(2))? < ko

into clusters, and on each step i, we get points for which

kioi <1+ (f'(2)? <k

into clusters. In terms of the derivatives, this inequality is equivalent to (k;)? <

1+ (f(2))? < (kig1)?, or to /(k)% — 1 < |f'(2)| < v/(kiz1)? — 1. Let us show

that for appropriate values k;, the resulting clustering indeed leads to an almost
optimal approximation.




Approximating a function f(x), in the sense of Definition 2, by a piecewise-
linear function fy(x) means that we approximate the derivative f'(z) of the
original function by a piecewise-constant function fL,(x). We want this approx-
imation to consist of as few pieces as possible. This means that the function
fL(x) should take as few constant levels as possible.

Due to the definition of e-approximation, each constant v of the approximat-
ing piecewise-constant derivative f.,(z) can serve as a good approximator for
all values z for which f'(z) € [v —e,v +¢€]. Therefore, the intervals [v —e,v + €]
corresponding to all constant values v of ff, must cover the whole range of the
function f'(z).

Since the approximated function f(z) is assumed to be continuously differ-
entiable, its derivative f'(z) is a continuous function and therefore, the range
of this derivative is a closed interval. So, if v + ¢ does not cover the upper end-
point of the derivative’s range, then there should be another interval of this type
[v' —eg,v' + €] which covers all points close to v +¢, i.e., for which v/ —e < v+e.
If v — e < v + ¢, then we can shift all further constant values higher and still
get an e-approximation (and maybe even get fewer segments this way). So,
without losing generality, we can assume that in the optimal approximation,
the two neighboring intervals [v — e,v + €] and [v' — €,v’ + €] intersect only in
their boundary points, i.e., v/ —e =v +¢, and v/ = v + 2¢.

If we denote the values of the constant pieces of the approximating derivative
by v1 < vy < ... < vy, then we can conclude that vy = vy + 2¢, v3 = vy + 26 =
vy +4e, ..., and vy = v1 +2(k — 1) - € for all k. As soon as the values v; are
fixed, the approximation itself is easy to describe: for each x, we pick the value
v; for which f'(z) € [v; — e, v; +€].

We cannot use this optimal approximation for our purposes because the
corresponding values v; may depend on the approximating function f(z), while
we want the values which will work for all functions f(x). Let us therefore use
the above optimal approximation to design a new, almost optimal approximation
in which each constant value w; is equal to 2k - € for some integer k. Indeed,
let us take an arbitrary value v; from the original optimal approximation. Since
intervals [2k - €,2(k + 1) - €] cover the entire real line, the value v; must belong
to one of these intervals, i.e., v; € [2k - €,2(k + 1) - €] for some integer k. The
desired construction of an almost optimal approximation depends on whether
v; in the lower or in the upper half of this interval.

If v; is in the lower half, ie., if v; € [2k-¢,(2k + 1) - €], then we take
A=wv;—2k-g (sothat 0 < A <e¢),usews =v1 —A,..., Wy = vy — A,
and Wy, 11 = wy, + 26. Let us show that these values cover f'(z) for all z (if
we show this, then, since this approximation has one more segment than the
optimal one, it is almost optimal). Indeed, the original intervals [v; — &, v; + €]
covered the range [v1 — &, v, + €]. The new intervals [w; — &, w; + €] cover the
range [w1 — &, Wm41 + €]- Let us show that the old range is thus covered:



e Since w; = vy, — A, with A > 0, we have w; <wv; and w; —e <w; —e.

e Similarly, since wy,4+1 = Wy, + 26 = vy, — A 4+ 2 and A < g, we conclude
that wy,+1 > vy, and therefore, w41 +€ > vy + €.

So, [v1 — &,vm + €] C [w1 — €, W41 + €], and all values are covered by the
new approximation. Thus, in this case, the new approximation is indeed almost
optimal.

If v; is in the upper half, ie., if v; € [(2k+ 1) - &, (2k + 2) - €], then we take
A= (2k+2)-e—wv; (sothat 0 < A <¢),usew; =v1+A,...,wy =v,+A, and
wo = wy — 2¢. Let us show that these values cover f'(z) for all z (if we show
this, then, since this approximation has one more segment than the optimal
one, it is almost optimal). Indeed, the original intervals [v; — €, v; + €] covered
the range [v1 — €, v, + €]. The new intervals [w; — €, w; + €] cover the range
[wo — €, wm + €]. Let us show that the old range is thus covered:

e Since wy, = vy + A, with A > 0, we have w,, > v,,, and w,,, +€ > vy, + €.

e Similarly, since wg = w; — 2¢ = v; + A — 2¢ and A < ¢, we conclude that
wo < v; and therefore, wg — e > vy — €.

So, [v1 — €,vm + €] C [wo — €, wn, + €], and all values are covered by the new ap-
proximation. Thus, in this case, the new approximation is also almost optimal.

In this almost optimal approximation, the values v; are equal to 0, 2¢, 4¢,
etc. Points for which f'(z) € [v; —e, v; + €] are approximated by the same piece.
Therefore, the points £ where one piece is changing to another correspond to
values v; £ € = +¢,43¢,+5¢,... In other words, we group together points for
which f'(z) € [—¢,¢], for which f'(z) € [¢, 3¢, for which f'(z) € [3e, 5¢], etc.

For clustering to lead to this almost optimal approximation, we must choose
the values k; = /1 + (f'(x))? which correspond to these thresholds for f'(z),
ie, k1 =vV1+¢e2 ka =1+ 92, and in general, k; = /1 + (2 — 1)% - 2.

The corresponding approximating procedure M is straightforward: for a
piece on which (2k—1)-e < f'(z) < (2k+1)-¢, we take 2k-¢ as the approximating
value for the derivative and thus, 2k-z-x + C for some constant C for fx(x); we
can determine this constant C, e.g., by the least squares method. The theorem
is proven.
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