Fuzzy Logic in Non-Destructive Testing of Aerospace Structures
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Abstract—In nondestructive testing, to locate the
faults, we send an ultrasonic signal and measure the
resulting vibration at different points. To describe
and combine the uncertainty corresponding to differ-
ent measurements and fuzzy estimates, we used fuzzy
logic. As a result, we get reasonably simple computa-
tional models which lead to as good fault detection as

the known more complicated models.

I. NONDESTRUCTIVE TESTING IS IMPORTANT

One of the most important characteristics of the plane
is its weight: every pound shaved off the plane means a
pound added to the carrying ability of this plane. As a re-
sult, planes are made as light as possible, with their “skin”
as thin as possible. However, the thinner the layer, the
more vulnerable is the resulting structure to stresses and
faults, and flight is a very stressful experience. Therefore,
even minor faults in the plane’s structure, if undetected,
can be disastrous. To avoid possible catastrophic conse-
quences, before the flight, we must thoroughly check the
structural integrity of the plane.

Some faults, like cracks, holes, etc., are external, and
can, therefore, be detected during the visual inspection.
However, to detect internal faults (cracks, holes, etc.),
we must somehow scan the inside of the thin plate that
forms the skin of the plane. This skin is not transparent to
light or to other electromagnetic radiation; very energetic
radiation, e.g., X-rays or gamma-rays, can go through the
metal, but it is difficult to use on such a huge object as a
modern plane.

The one thing that easily penetrates the skin is vibra-
tion. Therefore, we can use sound, ultrasound, etc., to
detect the faults. Usually, a wave easily glosses over ob-
stacles whose size is smaller than its wavelength. There-
fore, since we want to detect the smallest possible faults,
we must choose the sound waves with the smallest possi-
ble wavelength, i.e., the largest possible frequency. This
frequency is usually higher than the frequencies that we
hear, so it corresponds to ultrasound.

Ultrasonic scans are indeed one of the main non-
destructive NDE tools; see, e.g, [2], [3].

In nondestructive testing of structural integrity, we send

an ultrasonic signal to the tested system, and measure
the resulting vibration at different points. Our goal is to
detect the points where the cracks or other possible faults
are.

II. MobpAL APPROACH TO NONDESTRUCTIVE
TESTING: IDEA

In nondestructive testing of aerospace structures, we
would like to process the measurement information as fast
as possible. For large structures, however, with lots of
sensors, and with a highly dynamical (ultrasonic) signal,
we get a large amount of data, and processing this data
as a whole would take too long.

To decrease the data processing time, we can use the
known fact that a vibration of a mechanical structure can
be represented as a combination of different independent
modes (corresponding to different eigenvalues of the corre-
sponding matrix). Therefore, after measuring the vibra-
tions, it is reasonable to separate the measurement results
into results corresponding to different modes, and process
each mode independently.

For each vibration mode, we can estimate the energy
density at each point; if this measured energy density is
higher than in the original (undisturbed) state, this is a
good indication that a fault may be located at this point.
The larger the increase in energy density, the larger the
probability of a fault. As a result, for each point z, and
for each mode i, we get the probability p;(z) that, based
on the measurements related to this mode, there is a fault
at a point x.

We need to combine these probabilities into a probabil-
ity p(x) that there is a fault at x.

III. MAIN PROBLEM OF MODAL APPROACH

The modal approach, as described above, requires the
use of probabilities:

First, we need to describe how the probability of the
fault at a certain point depends on the excess energy at
this point.

Second, we must transform the probabilities coming
from different modes into a single probability value.



Our experience shows that using wrong probabilities
can lead to errors of both possible type:

e time-consuming false positives, when a fault is
claimed in a location where there is no fault at all,
and

e dangerous false negatives, when the existing fault is
not detected at all.

It is therefore very important to get these probabilities
right. How can we get these probabilities?

In some cases, we have enough statistics, so we can
determine these probabilities from the analysis of the ex-
perimental data. However, often, we do not have that
statistics: e.g., when we start a new method, more accu-
rate measurements, etc., there is not yet enough statistics
to determine the probabilities. Similarly, when we ap-
ply the existing method to a new object (e.g., to a Space
Station), there is not yet enough statistics.

IV. EXPERT KNOWLEDGE CAN SUPPLEMENT THE
MISSING STATISTICS

Since we cannot determine the probabilities solely from
experiment, we must therefore use some additional expert
knowledge to supplement our experimental data.

We have successfully done that, by using different soft
computing techniques such as fuzzy techniques, neural
networks, and genetic algorithms (see, e.g., [5], [6], [8]),
and we got pretty good results.

V. EXPERIMENTAL RESULTS

As a case study, we applied the modal approach to
the problem of non-destructive evaluation of structural
integrity of Space Shuttle’s vertical stabilizer.

To test the applicability of our method, we applied this
techniques to measurement results for pieces with known
fault locations.

The methods that we came up with detected all the
faults in >70% of the cases, much larger proportion than
with any previously known techniques (for details, see [1],

(6], [9])-
VI. REMAINING PROBLEMS

There are two main problems with this result:

e first, due to the fact that we used several different
(and reasonably complicated) formalisms, the result-
ing computational models are rather time-consuming
and not very intuitive;

e second, although we got better fault detection that all
previously known methods, but there is a still quite
some room for improvement.

VII. NEw IDEA: THE USE OF Fuzzy RULE BASE

The main problem we face is the problem of complexity
of the computational models we use. Complex models
are justified in such areas as fundamental physics, when
simpler first approximation models have been tried and
turned out not exactly adequate. However, in our case,
the computational models are chosen not because simpler
models have been tried, but because these complex models
were the only ones which we could find which fit our data
and are consistent with the expert knowledge.

The very fact that a large part of our knowledge comes
from expert estimates, which have a high level of uncer-
tainty, makes us believe that within this uncertainty, we
can find simpler computational models which will work
equally well. How can we find such models?

A similar situation, when unnecessarily complex models
were produced by the existing techniques, started the field
of fuzzy logic. Namely, L. Zadeh proposed to use, instead
of traditional analytical models, new simplified models
based on the direct formalization of expert’s knowledge.

In view of the success of fuzzy techniques, it is reason-
able to use a similar approach in fault detection as well.
Let us first describe the corresponding rules.

VIII. EXPERT RULES FOR FAULT DETECTION

For each location, as a result of the measurements, we
get five different values of the excess energy FEi,..., Es
which correspond to 5 different modes. An expert can
look at these values and tell whether we have a definite
fault here, or a fault with a certain degree of certainty, or
definitely no fault at all.

Before we formulate the expert rules, we should note
that for each node, the absolute values of excess energy are
not that characteristic because, e.g., a slight increase or
decrease in the original activation can increase or decrease
all the values of the excess energy, while the fault locations
remain the same. Therefore, it is more reasonable to look
at relative values of the excess energy. Namely, for each
mode i, we compute the mean square average o; of all the
values, and then divide all values of the excess energy by
this means square value to get the corresponding relative
value of the excess energy z; = E;/0;.

In accordance with the standard fuzzy logic method-
ology, we would like to describe some of these values as
“small positive” (SP), some as “large positive” (LP), etc.
To formalize these notions, we must describe the corre-
sponding membership functions pgp(x) and prp(z).

Some intuition about the values x; comes from the sim-
plified situation in which the values of excess energy E; are
random, following a normal distribution with 0 average.
In this simplified situation, the mean square value o; is
(practically) equal to the standard deviation of this distri-



bution. For normal distributions, deviations which exceed
20; are rare and are therefore usually considered to be def-
initely large; on the hand, deviations which are smaller
than the average o; are, naturally, definitely small. Devi-
ations E; > 20; correspond to the values x; = E;/o; > 2,
and deviations E; < o; correspond to z; = FE;/o; < 1.
Therefore, can conclude that values x; > 2 are definitely
large, and positive values x; < 1 are definitely small.
So, for the fuzzy notion “small”, we know that:

e values from 0 to 1 are definitely small, i.e., psp(z;) =
1 for these values, and

e values 2 and larger are definitely not small, i.e.,
usp(z;) =0 for these values.

These formulas determine the value of the membership
function for all positive values of x;, except for the val-
ues from 1 to 2. In accordance with the standard fuzzy
techniques, we use the simplest — linear — interpolation to
define pgp(x;) for values from this interval, i.e., we take
usp(x;) =2 —x; for z; € [1,2].

Similarly, we define the membership function for
“large” as follows: prp(x;) =0 for x; € [0,1]; prp(z;) =
x; — 1 for x; € [1,2]; and prp(z;) =1 for x; > 2.

Similarly, we describe the membership functions corre-
sponding to “small negative” (SN) and “large negative”
(LN): in precise terms, for x; < 0, we set usn(z;) =
psp(|zil) and prn(2i) = prp(|w).

This takes care of fuzzy terms used in the condition of
expert rules. To describe the conclusion, we determined
that experts use 5 different levels of certainty, from level
1 to level 5 (absolute certainty). We can identify these
levels with numbers from 0.2 to 1.

Now, we are ready to describe the rules.

1. If the “total” excess energy x1 + ...+ x5 attains its
largest possible value, or is close to the largest possible
value (by < 0.06), then we definitely have a fault at this
location (this conclusion corresponds to level 5).

2. If all 5 modes show increase, then we have a level 4
certainty that there is a fault at this location.

3. If 4 modes show increase, and one mode shows small
or large decrease, then level 4.

4. If 3 modes show increase and 2 show small decreases
then level 4.

5. If 3 modes show increase, and we have either 1 small
and 1 large decrease, or 2 large decreases, then level 3.

6. If 2 modes show large increase and 3 modes show
small decrease, then level 3.

7. If 2 modes show large increase, 1 or 2 modes show
large decrease, and the rest show decrease, then level 2.

8. If 1 mode shows large increase, 1 mode shows small
increase, and 3 modes show small decrease, then level 2.

9. In all other cases, level 1.

IX. THE PROBLEM WITH THIS RULE BASE AND How
WE SOLVE IT

The technique of fuzzy modeling and fuzzy control en-
ables us to transform rule bases (like the one above) into
an algorithm which transforms the inputs x4, ..., z, into
a (defuzzified) value of the output y. In principle, we can
apply this technique to our rule base, but the problem is
that we will need too many rules. Indeed, standard rules
are based on the conditions like “if x1 is A1, ..., and z,, is
A, then y is B”. In our case, we have 5 input variables,
each of which can take 4 different fuzzy values (LN, SN,
SP, and LP). So, to describe all possible combinations
of inputs, we must use 4° = 1,024 rules. It is doable, but
it is definitely not the simplification for which we were
looking.

To decrease the number of the resulting rules, we can
use the fact that all the rules do not distinguish between
different modes. Therefore, if we permute the values x;
(e.g., swap the values z; and x2), the expert’s conclusion
will not change. Hence, instead of considering all possi-
ble combinations of x;, we can first apply some permu-
tation to decrease the number of possible combinations.
One such permutation is sorting the values of x;, i.e., re-
ordering these values in the decreasing order. Let us show
that if we apply the rules to thus re-ordered values, then
we can indeed drastically decrease the number of resulting
fuzzy rules.

Let y1 > yo... > y5 denote the values x1,...,x5 re-
ordered in decreasing order. Let us show how, e.g., Rules
2, 3, and 4 from the above rule base can be reformulated
in terms of these new values y;:

Rule 2. To say that all five values x; are positive is the
same as to say that the smallest of these values is positive,
so the condition of Rule 2 can be reformulated as y5 > 0.

Rule 3. When 4 modes are positive and the fifth is
negative, it means that y4 > 0 and y5 < 0.

We can notice that since Rules 2 and 3 have the same
conclusion, they can be combined into a single rule with
a new (even simpler) condition y, > 0. (Indeed, we either
have y5 > 0 and y5 < 0; if y4 > 0 and y5 > 0, then the
conclusion is true because of Rule 2; if y4 > 0 and y5 < 0,
then the conclusion is true because of Rule 3.)

Rule 4. Similarly, its condition can be reformulated as
yz >0, y4 is SN, and y5 is SN.

As a result, we get the following new (simplified) rule
base:

1. If the “total” excess energy yi + ...+ y5 attains its
largest possible value, or is close to the largest possible
value (by < 0.06), then level 5.

2. If yg > 0, then level 4.

3. If y3 >0, y4 is SN, and y5 is SN, then level 4.

4. If y3 > 0, y4 <0, and y5 is LN, then level 3.

5. If yo is LP, y3 < 0, and y5 is SN, then level 3.



6. If yo is LP, y3 < 0, and y5 is LN, then level 2.

7. If y; is LP, yo is SP, y3 < 0, y4 is SN, and ys is
LN, then level 2.

8. In all other cases, level 1.

To transform these fuzzy rules into a precise algo-
rithm, we must select a fuzzy “and”-operation (t-norm)
and a fuzzy “or”-operation (t-conorm), e.g., min(a, b) and
max(a, b), and a defuzzification; in our paper, we use cen-
troid defuzzification.

For each rule (except for the last one), we can compute
the degree of satisfaction for each of the conditions. The
rule is applicable if its first condition holds, and the second
condition holds, etc. So, to find the degree with which the
rule is applicable, we apply the chosen “and”-operation
to the degrees with which different conditions of this rule
hold.

For each level > 1, we have two rules leading to this
level. The corresponding degree of certainty is achieved if
either the first or the second of these rules is applicable.
Therefore, to find a degree to which this level is justified,
we must apply the chosen “or”-operation to the degrees
to which these two rules are applicable.

As a result, we get the degrees d(I) with which we can
justify levels [ = 2 + 5. Since the last rule (about level 1)
says that this rule is applicable when no other rule applies,
we can compute d(1) as 1—d(2)—...—d(5). Now, centroid
defuzzification leads to the resulting certainty 1 -d(1) +
2-d(2)+...4+5-d(5). This is the value that the system
outputs as the degree of certainty (on a 1 to 5 scale) that
there is a fault at a given location.

X. EXPERIMENTAL RESULTS

We have applied the resulting fuzzy model to the beams
with known fault locations. The results are as follows:

When there is only one fault, this fault can be deter-
mined as the location where the degree of certainty attains
its largest value 5. This criterion leads to a perfect fault
localization, with no false positives and no false negatives.

When there are several faults, all the faults correspond
to locations with degree 4 or larger. This criterion is not
perfect; it avoids the most dangerous errors of false neg-
atives (i.e., all the faults are detected), but it has false
positives, i.e., sometimes faults are wrongly indicated in
the areas where there are none.

To make the fuzzy algorithm better, we take into con-
sideration that the vibration corresponding to each mode
has points in which the amplitude of this vibration is 0.
The corresponding locations are not affected by this mode
and therefore, the corresponding excess energy values can-
not tell anything about the presence or absence of a fault.
Therefore, it makes sense to only consider those values z;
for which the corresponding mode energy is at least, say,

10% of its maximum. If we thus restrict the values z;,
then the number of false positives decreases.

We tried different t-norms and t-conorms. So far, we
have not found a statistically significant difference be-
tween the results obtained by using different t-norms and
t-conorms; we hope that for more complicated examples
of 2D surfaces with faults, we will be able to detect this
difference, and thus, find t-norms and t-conorms which
are the best for fault detection.
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