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Abstract. In response to a query, web search tools
often return many websites which are not really rel-
evant. One reason for this is that the queried word
may have several meanings different to the one which
the user has in mind. To eliminate these undesirable
meanings, it is reasonable to look for occurrences not
only of the queried word itself, but also for other
words related to this particular meaning, and then
select only the websites for which, based on this infor-
mation, we are confident about their relevance. For
this strategy to work, we must be able to estimate
the degree of relevance d of a website based on the
number of occurrences N of given word.

In this paper, we describe the optimal model for
the dependence d(N).

Introduction. In response to a query, web search
tools often return many websites which are not re-
ally relevant. For example, a query about the word
“fuzzy” may return a webpage on which some per-
son feels fuzzy about his relationship. One reason for
such irrelevant websites is that the queried word may
have several meanings different to the one which the
user has in mind.

To eliminate these undesirable meanings, it is rea-
sonable to look for occurrences not only of the queried
word itself, but also for other words related to this
particular meaning, and then select only the websites
for which, based on this information, we are confi-
dent about their relevance. This strategy has been
described and tested in [1].



For this strategy to work successfully, we must be
able to estimate the degree (fuzzy value, subjective
probability) of relevance d of a website based on the
number of occurrences N of given word.

In this paper, we describe the optimal model for the
dependence d(N). Our justification for the resulting
formula will use methods motivated by the neural
network approach (see, e.g., [2]).

The values d(N) depend on the pre-selection
procedure. In principle, the values d(N) can be
determined as frequencies, from the statistical anal-
ysis of different queries. However, this statistics may
be somewhat confusing because in reality, the fre-
quency d(N) depends on how we pre-select the web-
pages which are analyzed by the web search tool.

Some web search tools pride themselves on cover-
ing the largest possible amount of webpages; other
web search tools pre-select the webpages based on
the topic of the query and only look into those pages
which a priori seem to be relevant. For example, if we
ask about “fuzzy” having science and engineering ap-
plications in mind, then webpages about relationships
would probably not be pre-selected and thus, would
not appear in the search tool’s answer to the query.
The advantage of not having to look through millions
of (most probably irrelevant) webpages is that more
time is left for a more sophisticated analysis of each
pre-selected website.

Depending on the pre-selection, we may have dif-
ferent dependencies d(N). For example, if we do
make a pre-selection, then the subjective probabil-
ity that a page with a small value of IV is relevant
must be higher than without a pre-selection, because
the very fact that the page has been pre-selected in-
creases the chance that this page is relevant.

So, instead of looking for a single function d(N), we
should look for a family of functions which correspond
to different pre-selections.

Relation between the functions d(N) corre-
sponding to different pre-selection procedures.
How are different functions from this family related
to each other? Pre-selection means, in effect, that we
are moving from the original unconditional probabil-
ity of relevance d(IN) to the conditional probability,
under the condition that this particular page has been

pre-selected. In statistics, the transformation from an
unconditional probability Py(H;) of a certain hypoth-
esis H; to its conditional probability P(H;|S) (under
the condition S that the webpage was pre-selected)
is described by the Bayes formula

P(C|H;) - Py(H;)
P(H;|S) = .
1) > P(S|Hj) - Py(Hj)

In mathematical terms, the transformation from

d(N) = Py(H;) to d(N) = P(H;|S) is fractionally
linear, i.e., has the form d(N) — d(N) = ¢(d(N)),

where

k-z+1
m-z+mn

p(z) =

for some real numbers k, [, m, and n.

Resulting description of the desired family of
functions d(N). So, instead of looking for a single
function d(IN), we should look for a family of func-
tions {@(d(N))}, where d(N) is a fixed function and
p(z) are different fractionally linear transformations.
In the following text, when we say “a family of func-
tions”, we will mean a family of this very type.

We can have many different optimality crite-
ria. Among all such families, we want to choose the
best one. In formalizing what “the best” means we
follow the general idea outlined in [2]. The criteria
to choose may be:

e approximation accuracy (i.e., accuracy with
which these functions approximate the empirical
data about the dependence of the probability of
relevance d on the number of occurrences N),

e computational simplicity, etc.

Non-numeric criteria are possible. In mathe-
matical optimization problems, numeric criteria are
most frequently used, when to every family we assign
some value expressing its performance, and choose
a family for which this value is maximal. However,
it is not necessary to restrict ourselves to such nu-
meric criteria only. For example, if we have several
different families that have the same approximation
accuracy A, we can choose between them the one
that has the minimal computational complexity C.



In this case, the actual criterion that we use to com-

pare two families is not numeric, but more compli-

cated: A family Fj is better than the family Fp if

and only if either A(Fy) > A(F3), or A(Fy) = A(F?)

and C(F1) < C(Fy).

A general description of optimality criteria. A

criterion can be even more complicated than above.

What a criterion must do is to allow, us for every pair

of families (Fy, F), to tell:

e whether the first family is better with respect to
this criterion (we’ll denote it by Fy > F5),

e or the second is better (F; < F»),

e or these families have the same quality in the
sense of this criterion (we’ll denote it by Fy ~ F5).

Of course, it is necessary to demand that these

choices be consistent, e.g., if F; > Fy and F» > Fj

then F; > F3.

A criterion must choose a unique optimal fam-
ily. A natural demand is that this criterion must
choose a unique optimal family (i.e., a family that is
better with respect to this criterion than any other
family). The reason for this demand is simple:

If a criterion does not choose any family at all, then
it is of no use.

If several different families are “the best” accord-
ing to this criterion, then we still have a problem to
choose among those “best”. Therefore, we need some
additional criterion for that choice. For example, if
several families turn out to have the same approxi-
mation accuracy, we can choose among them a family
with minimal computational complexity. So what we
actually do in this case is abandon that criterion for
which there were several “best” families, and con-
sider a new “composite” criterion instead: Fj is bet-
ter than F» according to this new criterion if either
it was better according to the old criterion or accord-
ing to the old criterion they had the same quality
and F; is better than F5 according to the additional
criterion.

In other words, if a criterion does not allow us to
choose a unique best family it means that this crite-
rion is not ultimate; we have to modify it until we
come to a final criterion that will have that property.

A criterion must be scale-invariant. There are
several different ways of handling a query. For ex-
ample, if we ask for the word “neural”, we may take
this query literally and only look for the occurrences
of this very word “neural”, or we can also take into
consideration closely related words such as “neuron”
and “neurons”. On average, using several closely re-
lated words increases the number of occurrences. For
example, if we use two words instead of one, then
probably we do not have a double increase in the
number of occurrences, but we will have a propor-
tional increase with some coefficient A between 1 and
2. Similarly, if we use three words instead of one, we
may have, on average, a proportional increase with
some coeflicient A between 1 and 3.

In general, whenever we had N occurrences, we
will now have (on average) N = A - N occurrences.
How will the dependence d(NN) change, i.e., what will
be the new function d(N) describing the dependence
of the probability of relation on the new number of
occurrences N7 N new occurrences are equivalent to
N = N/X old occurrences, so the desired probability
d(N) is equal to d(N) = d(N/\).

It is reasonable to require that the relative qual-
ity of two different families should not change if we
simply change the way we count occurrences.

An alternative way to handle occurrences of similar
words is to count them not as full occurrences, but as
partial occurrences of the original word: e.g., we may
count each occurrence of the word “neuron” as 0.8
of an occurrence of the word “neural”. Since we are
using fractional values, the resulting total number of
occurrences N is not necessarily an integer. So, we
must define d(N) not only for integer values of N,
but also for arbitrary real values N.

We arrive at the following definitions:

Definition 1. By a relevance function, we mean a
smooth monotonic function d(N) defined for all real
numbers N > 0 for which d(0) =0 and d(N) — 1 as
N — oo.

Definition 2. By a family of functions we mean
the set of functions that is obtained from a relevance
function d(N) by applying fractionally linear trans-
formations.



Definition 3. A pair of relations (<,~) is called
consistent if it satisfies the following conditions: (1)
if F<Gand G < H then F < H; (2) F ~ F; (3) if
F ~GthenG~F; (4) if F ~G and G ~ H then
F~H;(5)ifF <G and G~ H then F < H; (6) if
F ~Gand G < H then F < H; (7) if F < G then
G < F or G ~ F are impossible.

Definition 4. Assume a set F is given. Its elements
will be called alternatives. By an optimality criterion
we mean a consistent pair (<,~) of relations on the
set F of all alternatives. If F > G, we say that F
is better than G; if F' ~ (G, we say that the alter-
natives F' and G are equivalent with respect to this
criterion. We say that an alternative F' is optimal (or
best) with respect to a criterion (<,~) if for every
other alternative G, either F > G or F' ~ G.

Definition 5. We say that a criterion is final if there
exists an optimal alternative, and this optimal alter-
native is unique.

In the present section we consider optimality crite-
ria on the set F of all families.

Definition 6. Let A > 0. By the A-rescaling Sx(p) of
a function d(N), we mean a function d(N) = d(N/\).
By the A-rescaling Sx(F') of the family F, we mean
the family of the functions that are obtained from

d € F by A-rescaling.

Definition 7. We say that an optimality criterion

on F is scale-invariant if for every two families F'

and G and for every number A > 0, the following two

conditions are true:

e if F' is better than G in the sense of this criterion
(i.e., F > G), then Sy (F) > S\(G);

o if F' is equivalent to G in the sense of this
criterion (i.e., F ~ G), then S\(F) ~ S\(G).

Theorem 1. If a family F is optimal in the sense
of some optimality criterion that is final and scale-
invariant, then every function d from F is equal to

A-NP

AN =7 we

(1)

for some A and 3 > 0.

The proof is similar to the proofs presented in [2, 3].

Comment. According to the above formula, even if
the number of occurrences N is very large, the de-
gree of relevance is close to 1 but still not equal to 1.
It may be reasonable to require that in such situ-
ations, we should get the degree of relevance equal
to 1. With this is mind, we may want to have a
function d(N) which is only piece-wise smooth, with
a smooth part continuously blending into identical 1
for large n; when applying the fractional-linear trans-
formations, we shall take this “equal to 1” part into
consideration. One can see from the proof that in
this case, we end up with the following more general

formula:

1) ,
for some A > B and f.
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