
Why Fundamental Physical Equations

Are of Second Order?

Takeshi Yamakawa1 and Vladik Kreinovich2

1Control Engineering and Science

Kyushu Institute of Technology

680-4, Kawazu, Iizuka

Fukuoka 820-8502, Japan

email yamakawa@ces.kyutech.ac.jp

2Department of Computer Science

University of Texas at El Paso

El Paso, TX 79968, USA

email vladik@cs.utep.edu

Abstract

In this paper, we use a deep mathematical result (namely, a minor

modification of Kolmogorov’s solution to Hilbert’s 13th problem) to ex-

plain why fundamental physical equations are of second order. This same

result explain why all these fundamental equations naturally lead to non-

smooth solutions like singularity.

Formulation of the problem. Most physical phenomena are described in
terms of partial differential equations. These differential equations can be arbi-
trarily complicated; in particular, they can be of high order: e.g., the equations
of elasticity theory (see, e.g., [8]) are of fourth order (i.e., involve derivatives of
fourth order). However, amazingly, these higher order equations only occur in
the description of non-fundamental phenomena, i.e., phenomena which (like elas-
ticity) can be reduced to more fundamental forces and fields, while fundamental
physical equations, i.e., equations which describe the evolution of fundamental
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fields and forces, are of (at most) second order. Newton’s equations were of
second order, and so are Maxwell’s equations which describe electrodynamics,
Einstein’s equations which describe general relativity, Schrödinger’s and Dirac’s
equations which describe quantum physics, etc. Why?

In order to answer this question, let us reformulate it in physical
terms. What do mathematical terms “first order”, “second order”, etc., mean
physically?

The fact that a system is described by a differential equation of first order
means that the state s(t) of this system at a given moment t uniquely determines
the rate ṡ(t) with which the state changes, and thus, uniquely determines the
state s(t + ∆t) of the system in the “next” moment of time t + ∆t. In other
words, the state s(t + ∆t) is a function of a state at the previous moment of
time: s(t + ∆t) = f(s(t)). Therefore, to describe the evolution of a system
which is described by first order differential equations, it is sufficient to have a
function of one variable which describes how the state changes.

If a system is described by differential equations of second order, then it is not
enough to know the initial state s(t) to predict the evolution of a system (i.e., to
predict the next state s(t+∆t)); in addition to the state s(t), we must also know
the previous value of the rate ṡ(t) with which the state changed. This rate is,
from a strict mathematical viewpoint, a limit of the ratios (s(t)− s(t−∆t))/∆t

when ∆t → 0. From the physical (practical) viewpoint, this “limit” means,
crudely speaking, that the rate can be defined (within an arbitrary accuracy)
as the ratio (s(t) − s(t − ∆t))/∆t for a sufficiently small ∆t. Therefore, for
systems which are described by second-order differential equations, to predict
s(t + ∆t), we must know s(t) and the ratio (s(t) − s(t − ∆t))/∆t. Knowing
s(t) and the ratio is equivalent to knowing s(t) and s(t−∆t). In other words,
for such systems, to predict the state of the system in the next moment of
time, we must know the state of this system in two previous moments of time:
s(t + ∆t) = f(s(t), s(t−∆t)). Therefore, to describe the evolution of a system
which is described by second order differential equations, it is sufficient to have
a function of two variables which describes how the state changes.

Similarly, to describe the evolution of a system which is described by third
order differential equations, it is sufficient to have a function of three variables
which describes how the state changes, and in general, to describe the evolution
of a system which is described by k-th order differential equations, it is sufficient
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to have a function of k variables which describes how the state changes:

s(t + ∆t) = f(s(t), s(t−∆t), . . . , s(t− (k − 1) ·∆t)).

Now, we are ready to re-formulate the above physical phenomenon in precise
mathematical terms. The above phenomenon is as follows: Every time when

we have a process which is described by k-th order differential equations, with

k ≥ 3, this process is not fundamental, i.e., it can be decomposed into several

more elementary processes each of which is described by equations of first or

second order. We have shown that “a process is described by k-th order differ-
ential equations” means that its evolution is described by a function of k state
variables. Therefore, the above phenomenon can be reformulated as follows:
Every time when we have a physical process whose evolution is described by a

function of three or more variables, this process is not fundamental, i.e., it can

be decomposed into more elementary processes the evolution of each of which

is described by a function of one or two variables.

Explanation. We will explain this phenomenon by proving that it is actually
a general feature of functions of three or more variables. Namely, we will prove
the following result:

Definition. Let m be a positive integer.

• By a state space, we mean a set S = Rm of all m-tuples s = (s1, . . . , sm).

• By an area A in a state space, we mean a box A = [a1, b1]× . . .× [am, bm],
i.e., a set of all states s = (s1, . . . , sm) for which a1 ≤ s1 ≤ b1, . . .,

am ≤ sm ≤ bm.

• By a state function of k variables, we mean a function f : Ak → S, i.e., a

function which transforms every k-tuple of states (s(1), . . . , s(k)) (each of

which belongs to an area A) into a new state s = f(s(1), . . . , s(k)).

Theorem. Every continuous state function of three or more variables can be
represented as a composition of continuous state functions of one or two vari-
ables.

Proof. For m = 1, this result was proven by A. Kolmogorov [5] as a solution
to the conjecture of Hilbert, formulated as the thirteenth problem [4]: one of 22
problems that Hilbert has proposed in 1900 as a challenge to the XX century
mathematics.
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This problem can be traced to the Babylonians, who found (see, e.g., [1])
that the solutions x of quadratic equations ax2 + bx+ c = 0 (viewed as function
of three variables a, b, and c) can be represented as superpositions of functions
of one and two variables, namely, arithmetic operations and square roots. Much
later, similar results were obtained for functions of five variables a, b, c, d, e,
that represent the solution of quartic equations ax4 + bx3 + cx2 + dx + e = 0.
But then, Galois proved in 1830 that for higher order equations, we cannot have
such a representation. This negative result has caused Hilbert to conjecture that
not all functions of several variables can be represented by functions of two or
fewer variables. Hilbert’s conjecture was refuted by Kolmogorov (see, e.g., [11],
Chapter 11) and his student V. Arnold.

It is worth mentioning that Kolmogorov’s result is not only of theoretical
value: it was used to speed up actual computations (see, e.g., [3], [2], [6], [7],
[13], [12]).

Based on the case m = 1, we can now prove the theorem for all m,
by using the following argument (its idea is similar to [14]). Suppose that
we have a state function s = f(s(1), . . . , s(k)) of k state variables s(1) =
(s(1)

1 , . . . , s
(1)
m ), . . ., s(k) = (s(k)

1 , . . . , s
(k)
m ). For each input (s(1), . . . , s(k)),

the value s = f(s(1), . . . , s(k)) of this function is a state f(s(1), . . . , s(k)) =
(f1(s(1), . . . , s(k)), . . . , fm(s(1), . . . , s(k)). where by fi(s(1), . . . , s(k)), we denoted
i-th component of the state s = f(s(1), . . . , s(k)). Therefore, each state-valued
function f : Ak → S = Rm can be represented as m real-valued functions
fi : Ak → R, 1 ≤ i ≤ m.

Each of these functions fi : Ak → R maps k states (i.e., k×m components)
into a real number. Therefore, each of these functions can be represented as a
real-valued function of k×m real variables s

(1)
1 , . . . , s

(1)
m , . . . , s

(k)
1 , . . . , s

(k)
m . Each

of these m functions fi can be (due to Kolmogorov’s theorem) represented as a
composition of functions of one and two variables. So, to represent the original
state function of k variables as a composition of state functions of one or two
variables, we can do the following:

• First, we apply, to each input state s(j) = (s(j)
1 , . . . , s

(j)
m ), m func-

tions π1(s), . . . , πm(s) of one state variable which transform a state s =
(s1, . . . , sm) into corresponding “degenerate” states π1(s) = (s1, . . . , s1),
. . ., πi(s) = (si, . . . , si), . . ., πm(s) = (sm, . . . , sm). When we apply
these m functions to k input states, we get m × k degenerate states
πi(s(j)) = (s(j)

i , . . . , s
(j)
i ), for all i from 1 to m and for all j from 1 to k.
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• Next, we follow the operations from Kolmogorov’s theorem with
these degenerate states, and get the “degenerate”-valued func-
tions F1(s(1), . . . , s(k)) = (f1(s(1), . . . , s(k)), . . . , f1(s(1), . . . , s(k))), . . .,
Fm(s(1), . . . , s(k)) = (fm(s(1), . . . , s(k)), . . . , fm(s(1), . . . , s(k))), as the de-
sired compositions of state functions of one or two variables.

• Finally, we use combination state functions C2(s, s′), . . . , Cm(s, s′) to com-
bine the functions F1, . . . , Fm into a single state function f . Namely, these
functions work as follows:

C2((s1, . . .), (s′1, s
′
2, . . . , s

′
m)) = (s1, s

′
2, . . . , s

′
m),

. . . ,

Cj((s1, . . . , sj−1, sj , . . .), (s′1, . . . , s
′
j−1, s

′
j , . . .)) =

(s1, . . . , sj−1, s
′
j , . . . , s

′
m),

. . . ,

Cm((s1, . . . , sm−1, sm), (s′1, . . . , s
′
m−1, s

′
m)) = (s1, . . . , sm−1, s

′
m).

We apply these combination functions to the values produced by the func-
tions F1, . . . , Fm, to get the results I2 = C2(F1, F2), I3 = C3(F2, I2), . . .,
Ij = Cj(Fj−1, Ij), . . . As a result, we get:

I2 = C2(F1, F2) =

(f1(s(1), . . . , s(k)), f2(s(1), . . . , s(k)), . . . , f2(s(1), . . . , s(k))),

I3 = C3(I2, F3) =

(f1(s(1), . . . , s(k)), f2(s(1), . . . , s(k)), f3(s(1), . . . , s(k)), . . . , f3(s(1), . . . , s(k))),

. . . ,

Ij = C3(Ij−1, Fj) =

(f1(s(1), . . . , s(k)), . . . , fj(s(1), . . . , s(k)), . . . , fj(s(1), . . . , s(k))),

and finally,
Im = Cm(Im−1, Fm) =

(f1(s(1), . . . , s(k)), . . . , fm(s(1), . . . , s(k))) = f(s(1), . . . , s(k)).
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Thus, the function f(s(1), . . . , s(k)) has been represented as a composition of
state functions of one or two variables. The theorem is proven.

An interesting side result: non-smoothness of fundamental phenom-
ena. In the above explanation, we used the result that every continuous function
of several varuables can be represented as a composition of functions of one or
two variables. A natural next question is: if the function of several variables
has a certain property (e.g., it is smooth), can we represent it as a composition
of functions of onw or two variables which have the same property (i.e., are
also smooth)? It turns out (see, e.g., [11, 15]) that for smooth function, the
asnwer to this question is negative: there exist smooth functions which cannot
be represented as a composition of smooth functions of fewer variables.

In other words, if we represent functions of many variables (corresponding to
non-fundamental phenomena) as a composition of functions of one or two vari-
ables (which correspond to fundamental processes), then in some cases, these
functions of one or two variables which correspond to fundamental processes
cannot everywhere smooth. This result provides a general mathematical expla-

nation of why in different areas of fundamental physics non-smoothness appears:
infinite proper energy and other divergencies in electrodynamics, singularity in
general relativity (see, e.g., [9]), “quantum jump” in quantum mechanics (or, to
be more precise, in quantum measurement; see, e.g., [10]), etc.
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