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Abstract. In many practical problems, we must find a pattern in
an image. For situations in which the desired pattern consists of
several simple components, the traditional approach is first to look
for such components, and then to see whether the relative loca-
tions of these components are consistent with the pattern. Recent
experiments have shown that a much more efficient pattern recog-
nition can be achieved if we look for the whole pattern (without
decomposing it first). In this paper, we give a simple geometric
explanation of this empirical fact.

The practical problem. In many pattern recognition problems,
we must locate a known simple pattern in a complicated black-and-
white image. For example:
• in automatic analysis of electronic schemes, we must locate

symbols of standard electronic components (such as −| |−);
• in text recognition, we must find letters,
• similar pattern matching problems arise in satellite imaging,

etc.

Traditional approach. Most traditional methods for solving this
problem are based on the fact that the desired pattern consists of
simple geometric components (straight line intervals, arcs, etc.)

For example, the above symbol for capacitor consists of four
straight line intervals −, |, |, and −.



Traditional methods consist of two stages:
• first, we try to locate each component of the desired pattern;
• after all components are located, we check that their relative

locations are close to the relative locations of these compo-
nents in the desired pattern (to be more precise, we check
that the difference between the observed and desired relative
locations is within the limits set by the observation inaccuracy
of component location).

A new approach turns out to be better. The authors of
[Murshed Bortolozzi 1998] propose to recognize the entire pat-
tern (symbol) without first decomposing it into simple components.
The resulting algorithm requires more computation time, but leads
to much better recognition: namely, if we set up the parameters
of both methods in such a way as to avoid false negatives (un-
recognized symbols), then for the new method, the number of false
positives (false recognitions of a pattern) is much smaller than for
the traditional methods.

In this paper, we give a simple geometric explanation of this
empirical phenomenon.

Geometric reformulation of the problem. We start with a
sample pattern P which consists of several components Pi: P =
P1 ∪ . . . ∪ Pn. Without losing generality, we can assume that P
is a compact set. In the actual image, the actual pattern may be
shifted relative to the standard one, so this actual pattern has the
form TP for some shift (translation) T .

For simplicity, we will assume that the pattern is surrounded
by an empty space, i.e. (at least locally):
• either the actual image I coincides with the shifted pattern

TP , in which case the pattern is present,
• or the actual image is different from the shifted pattern, in

which case the pattern is not here.

Description of measurement inaccuracy. Due to measure-
ment inaccuracy, the observed image Ĩ is, in general, slightly dif-
ferent from the actual image I. Namely, due to this inaccuracy, for
each point p from the original image, the corresponding observed
point p̃ may be different from p.



The observation inaccuracy can be characterized by the largest
possible distance d(p̃, p) between the actual and the observed
points. If this inaccuracy is ε > 0, this means that:
• every point from I is ε-close to some point from Ĩ, and
• every point from Ĩ is ε-close to some point from I.

In other words, this means that the Hausdorff distance between the
actual and observed images does not exceed ε: dH(I, Ĩ) ≤ ε.

New approach reformulated in geometric terms. If the de-
sired pattern P is present in the image, i.e., if I = TP , then:

There exists a T for which dH(TP, Ĩ) ≤ ε. (1)

Vice versa, if for an observed image Ĩ, this condition holds, this
means that there exists a pattern TP which is consistent with the
observed image, and therefore, it is quite possible that the observed
image contains a desired pattern. Thus, the condition (1) expresses

the fact that the observed image Ĩ is consistent with the assumption
that the actual image contains the desired pattern.

Hence, if we want to avoid false negatives (i.e., un-recognized
patterns), we must check the condition (1). This is what the new
approach does.

How good is the new approach.
• If the result of the new approach is negative, this means that

the observed image does not contain the pattern;
• on the other hand, if the result of this approach is positive,

this means that it is possible that the observed image contains
the pattern (i.e., that the observed image is consistent with the
assumption that it is actually the shifted standard pattern).

We cannot get any better than that. Of course, due to the ob-
servation inaccuracy, without additional assumptions, we can never
guarantee that the image is actually the desired pattern: the actual
image could as well be a slightly distorted pattern, and because of
the observation inaccuracy, we do not notice this distortion.

With this comment in mind, we can see that we cannot get
any better pattern recognition than by using the new approach.



Traditional approach reformulated in geometric terms. In
traditional approach, we first look for components, i.e., we look for
the possibility for representing the observed image Ĩ as a union of
n sets Ĩ1, . . . , Ĩn such that for every i, the i-th component Ĩi of the
observed image is consistent with it being actually a shift TiPi of
i-th component Pi of the desired pattern P .

Similarly to the above argument, we can conclude that the
possibility for Ĩi to be actually a shift of Pi can be described as
follows:

There exists a Ti for which dH(TiPi, Ĩi) ≤ ε. (2)

Therefore, if we want to avoid false negatives (i.e., if we do not

want un-recognized patterns), we should look for a partition Ĩ =

Ĩ1 ∪ . . . ∪ Ĩn which satisfies the property (2) for all i = 1, . . . , n.
This is the first stage of the traditional approach. As a result of
this stage:
• If such a partition is impossible, then, based on the observation

Ĩ, we can conclude that the actual (unknown) image I does not
coincide with the desired pattern, and therefore, the desired
pattern is not present here.

• On the other hand, if the partition is possible, i.e., if Ĩ =
Ĩ1 ∪ . . .∪ Ĩn with dH(Ĩi, TiPi) ≤ ε for some shifts Ti, then it is

not necessarily true that Ĩ can contain the desired pattern: it
may happen that the shifts are too far away from each other.

If the actual image I is indeed a shift of the standard pattern P , i.e.,
if I = TP for some T , then, due to possible observation inaccuracy,
dH(Ĩi, TPi) ≤ ε. Based on the observed components Ĩi, we select

shifts Ti for which dH(Ĩi, TiPi) ≤ ε. Therefore, we can conclude
that if the actual image is indeed the shift of the standard pattern,
then dH(TiPi, TPi) ≤ dH(TiPi, Ĩi) + dH(Ĩi, TPi) ≤ 2ε.

The Hausdorff distance between two shifts TiPi and TPi of
the same set is equal to the distance between d(Ti, T ) these shifts,
i.e., to the Euclidean distance between the vectors corresponding
to these shifts. So, we can conclude that if the pattern is present,
then all the shifts Ti generated on the first stage should be 2ε-close



to some (unknown) shift T . This means, in turn, that for every i
and j, we have d(Ti, Tj) ≤ d(Ti, T ) + d(T, Tj) ≤ 4ε.

So, on the second stage of the traditional method, we check
the following condition:

d(Ti, Tj) ≤ 4ε for all i and j. (3)

How good is the traditional approach.
• If the result of traditional approach is negative, this means

that the observed image does not contain the pattern;
• on the other hand, if the result of this approach is positive, this

does not necessarily mean that it is possible that the observed
image contains the pattern; it is quite possible that the observed
image is inconsistent with the assumption that it is actually
the shifted standard pattern.

Let us give a simple example explaining why this can happen. Let
us consider a 2-component pattern P = | consisting of a vertical
component P1 of length 1 and a horizontal component P2 of the
same length 1. If we take the angle of P as the origin (0, 0) of the
coordinate system, then P1 = {0} × [0, 1] and P2 = [0, 1] × {0}.
Let us take Ĩ = Ĩ1 ∪ Ĩ2, where Ĩ1 = {−2ε} × [0, 1] and Ĩ2 =
[2ε, 1 + 2ε]× {0}.
• For this image, the traditional approach can lead to a positive

answer: indeed, here:
• dH(Ĩ1, T1P1) ≤ ε for T1 = (−ε, 0),

• dH(Ĩ2, T2P2) ≤ ε for T2 = (ε, 0), and
• d(T1, T2) = 2ε < 4ε.

• On the other hand, the image Ĩ is not consistent with the
pattern P because, as one can easily see, dH(Ĩ , TP ) ≥ 2ε for
all possible shifts T .

So, the traditional approach is indeed not perfect.

Open problem. In the above text, we simply gave an example of
when a traditional method leads to unnecessary false positives. It
is desirable to have a general numerical estimate of the quality of
the traditional approach. In precise terms, we have the following
problem:



We have n compact sets Pi, and n compact sets Ĩi. We know
that for every i from 1 to n, dH(Ĩi, TiPi) ≤ ε for some shifts Ti

for which d(Ti, Tj) ≤ 4ε for all i and j. What is the smallest

possible value of th Hausdorff distance dH(Ĩ , TP ) between the

union Ĩ = Ĩ1 ∪ . . . ∪ Ĩn and a shift TP of the union P =
P1 ∪ . . . ∪ Pn?

Our guess is that this smallest possible value is 3ε.

Our argument in favor of this guess is as follows: it looks like,
since the diameter of the set {T1, . . . , Tn} is ≤ 4ε, that its
radius will be ≤ 2ε, i.e., that there should exist a shift T for
which d(Ti, T ) ≤ 2ε for all i. For this shift T , we have

dH(Ĩi, TPi) ≤ dH(Ĩi, TiPi) + dH(TiPi, TPi) ≤

ε+ d(Ti, T ) ≤ ε+ 2ε = 3ε.
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