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One of the main applications of Kolmogorov complexity ideas to data processing is via
the Minimum Description Length principle (see, e.g., [1, 11, 13] and references therein).
According to this principle, if several different models (or theories) are consistent with the
same observations, then we should choose a model with the shortest description, i.e., crudely
speaking, a model with the smallest value of Kolmogorov complexity. This principle is in
perfect agreement with the Occam principle (it actually formalizes Occam’s principle), and
it has been successfully applied to various problems.

In particular, it has been successfully used in physics, where Occam’s principle originated
and where it has been successfully used. In modern fundamental physics, however, symmetry
groups play such an important role that often, physicists choose not the simplest model, but
the model which corresponds to the simplest symmetry group (see, e.g., [2-9], [12, 14]).

At first glance, this restriction to symmetry-defined models seem to prevent us from
considering possible simple non-group models, and thus, make this symmetry-group version
of Occam principle worse than the unrestricted one. However, the success of this direction
in theoretical physics seems to indicate that this restriction does not bring any disadvantage
at all. Our analysis shows that this restriction is indeed non-essential.

To formalize the physicists’ idea, we fix a universal programming language (“computer”)
f, and define a symmetry as a program from this language which transforms strings (e.g.,
binary strings) into strings and which is a bijection (1-1 and onto). By a complezxity of a
symmetry s, we mean the length len(s) of this program. We say that a symmetry s defines
a string x uniquely if s(z) = x and s(y) # y for all y # x. Now, for every string x, we
can define its group-symmetric complezity Csym(z) as the smallest complexity of a symmetry
which defines z uniquely. It turns out that this new complexity is asymptotically equivalent
to the usual Kolmogorov complexity C(z) = Cy(x):

Proposition. |C(z) — Csym(z)| = O(1).



Comments.

e Since the Kolmogorov complexity itself is defined modulo the term O(1), we conclude
that Cgym is asymptotically equivalent to the usual Kolmogorov complexity. Therefore,
choosing the model with the simplest symmetry (i.e., a model = for which Csym(z) is
the smallest) is indeed (asymptotically) equivalent to choosing the simplest model.

e This result was first announced in [15].

e An alternative (more physics-oriented) Kolmogorov complexity-based justification of
the use of symmetries in physics was given in [10].

Proof. To prove that |C(z) — Ceym(z)| = O(1), we will first show that Vz(C(z) < Csym(z) +
C) for some constant C; and then, that Va(Csym(z) < C(x) + C3) for some constant Co.

Let us prove the first inequality. By definition, Cgym, () is the length of a program s for
which s(z) = z and s(y) # y for all y # z. To compute x, we can use the following new
program p: Generate, sequentially, all possible binary strings A, 0, 1, 00, 01, etc., and check,
for each string y, whether s(y) = y; as soon as we get s(y) = y for some string y, we stop.
This new program p clearly computes the desired string . This program p has finitely many
instructions added to a call to s; thus, its length len(p) is equal to the length of s plus the
(constant) length C of these extra instructions. Hence, len(p) = len(s) +C} = Ceym(x)+Ch.
Since the program p generates x, the Kolmogorov complexity C(x) of x — i.e., the shortest
length of the program which generates x — cannot exceed len(p) = Cym(z) + C;. Thus,
indeed, C(z) < Cyym(x) + C1. The first inequality is proven.

Let us now prove the second inequality. By definition, C'(z) is the length of a program p
(to be more precise, the shortest program) which generates z: C'(z) = len(p). Based on this
program p, we can construct the desired symmetry s(y) as follows: For any given input y,
the program s first calls p to compute the word x. Then, the program s returns the following

string s(y):
e If y = x, then we return s(z) = z.

o If y = z*, where by x*, we denote a string which differs from x only in the last bit,
then we return the empty string: s(z*) = A.

*

e If y is an empty string (y = A), then we return s(A) = z*.
e For all other input strings y, we return s(y) = y*.

One can easily check that this program is indeed a bijection, i.e., a symmetry. For this
symmetry, we have s(z) = x and s(y) # y for all strings y # z; thus, this symmetry defined
the string x uniquely. The program s has finitely many instructions added to a call to p;
hence, its length len(s) is equal to the length of p plus the (constant) length Cy of these
extra instructions. Thus, len(s) = len(p) + Cy = C(z) + Cs. Since the symmetry s defines
z uniquely, the group-symmetric complexity Csym(z) of = — i.e., the shortest length of the
symmetry which defines = uniquely — cannot exceed len(s) = C(z) + Cy. Thus, indeed,
Coym(7) < C(x) + Cs. The second inequality is also proven, and so is the proposition.
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