International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Vol. 0, No. 0 (1993) 000—000
© World Scientific Publishing Company

FROM PLANNING TO SEARCHING FOR THE
SHORTEST PLAN: AN OPTIMAL TRANSITION

R. TREJO, J. GALLOWAY, C. SACHAR, V. KREINOVICH

Department of Computer Science, University of Tezas at El Paso
El Paso, TX 79968, USA, {rtrejo,vladik} @Qcs.utep.edu

C. BARAL and LE CHI TUAN
Dept. Computer Science € Eng., Arizona State University
Tempe, AZ 85287-5406, USA

Received March 2001
Revised October 2001

If we want to find the shortest plan, then usually, we try plans of length 1, 2, ..., until
we find the first length for which such a plan exists. When the planning problem is
difficult and the shortest plan is of a reasonable length, this linear search can take a long
time; to speed up the process, it has been proposed to use binary search instead. Binary
search for the value of a certain parameter x is optimal when for each tested value z, we
need the same amount of computation time; in planning, the computation time increases
with the size of the plan and, as a result, binary search is no longer optimal. We describe
an optimal way of combining planning algorithms into a search for the shortest plan —
optimal in the sense of worst-case complexity. We also describe an algorithm which is
asymptotically optimal in the sense of average complexity.

Keywords: Planning; Optimal planning

1. Introduction

Since Kautz and Selman’s paper® on satisfiability based planning there has been
several papers!0:15:4:5,16,13,14,11 opy planning through finding models of a logical the-
ory. Most of these papers focus on finding a plan of a given length; see also!”:7:2:6:12,
If we want to find the shortest plan, then usually, we try plans of length 1, 2, ...,
until we find the first length for which such a plan exists. When the planning prob-
lem is difficult and the shortest plan is of a reasonable length, this linear search can
take a long time; to speed up the process, it has been often mentioned — as in'3,
that binary search should be used instead.

Binary search for the value of a certain parameter p is optimal when for each
tested value p, we need the same amount of computation time (see, e.g.,®). In
planning, the computation time drastically increases with the size of the plan. As
a result, as we will see, binary search is no longer optimal.

In this paper, we describe an optimal way of combining planning algorithms into
a search for the shortest plan — optimal in the sense of worst-case complexity. We



2 From Planning to Searching for the Shortest Plan: An Optimal Transition

also describe an algorithm which is asymptotically optimal in the sense of average
complexity.

2. Towards Formalization of the Problem

We assume that we have a sequence of planning algorithms, i.e., that for every
integer k from 1 to some upper bound N, we have an algorithm A; which, given a
planning problem, looks for a plan of length k& and returns either such a plan or, if
a plan of this length does not exist, a message that no such plan is possible.

We also assume that if for some planning problem, there exists a plan p of length
k, and I > k, then, by adding “dummy” actions, we can turn a plan p into a new
plan of length [; as a result, for every [ > k, the algorithm A; will discover some
plan for this problem. (If we want to avoid dummy actions, then, alternatively, we
can assume that an algorithm Ay looks for a plan of length < k.)

We want to combine the algorithms A,,..., Ay into a single algorithm which
would either find the shortest plan of length < N, or return a message saying that
no plan of length < N can solve the given problem. In this combination, we start
with one of the algorithms Ay, , then, depending on the outcome of Ay, , apply some
other algorithm Ay, , etc. Two examples of such combinations are linear search and
binary search:

e In linear search, we start with A; (k; = 1); then, if A; did not find a plan,
we proceed to As, etc.

e In binary search, we start with applying A| n/2); if this algorithm A|n/o) finds
a plan, we then try A|x/4|, otherwise, we apply A|3ny4), etc.

We want to find a combination for which the worst-case computation time is the
smallest possible. Let us fix a class of planning problems, and let ¢; denote the
worst-case computation time of an algorithm Aj on problems from this class. For
each combination algorithm C', and for each actual size s, we can define the worst-
case computation time T'(C,s) of the combination C' on such planning problems
by adding the times ¢;, for all the algorithms Ay which are used for the planning
problems with the shortest plan of size s. Then, we can define the worst-case
complexity of the combination C' as the largest of the values T'(C, 1),...,T(C,N).
For example, for linear search Cy;,, when s = 1, we only apply A;, so we need time
T(Chin, 1) = ¢1; when s = 2, we apply both A; and A, so the time is T'(Chin, 2) =
c1 + co, etc. The worst-case computation time is when s = N, then this time is
equal to T'(Ciin) = T(Ciin, N) = ¢1 + ... + cn. For binary search, we will have to
similarly compare ¢|n/2| + ¢|n/a) + .. With ¢|n/2) + ¢|anya) + ..+, etc.

Which combination C' is optimal depends on the values c¢. If ¢, = const, then
binary search is the best combination algorithm3. In general, however, c; grows
with k. Planning is known to be an NP-hard problem (see, e.g.,!), and so we
would expect the time ¢ to grow at least exponentially with k (i.e., that c; > 2F
and c¢g41/ck > 2). Our preliminary experiments show that this is probably indeed



From Planning to Searching for the Shortest Plan: An Optimal Transition 3

the case: when we computed ¢;, as the largest time on some small set of problems,
we got an exponential growth.
For exponentially growing cg, the following algorithm is optimal:

3. Optimal Combination of Planning Algorithms Which Search for Plans
of Different Sizes

Combination Algorithm C;. (“One step forward, two steps back”)
e First, apply the algorithm Ay _;.

e The second step depends on whether there exists a plan of size N — 1. If no
such plan exists, we then apply An:

e if Ay finds a plan, this is the shortest plan, so we stop;

e if Ay does not find a plan, then no plan of size < N is possible, so we
stop.

If there is a plan of size N — 1, then we apply An_s.

e The third step depends on whether there exists a plan of size N — 3. If no
such plan exists, we then apply An_s:

e if Ay_o finds a plan, this is the shortest plan, so we stop.

e if Ay o does not find a plan, then the plan produced by An_1 is the
shortest possible, so we stop.

If there is a plan of size N — 3, then we apply An_s.

e So, if after applying Anx_3 we have not yet found the shortest plan, we apply
ApN_5, and then, depending on the result, Ay 4 or Ay_g. If we are not done
yet, we apply Anx_z, and then, depending on the result, Ax_g or An_g. etc.

We will prove that this combination algorithm C} is optimal, and that it is optimal
not only when the growth is eractly exponential (c; = 2*), but also for the case
when the growth is approzimately exponential:

Definition 1. Let ¢ = 1.325... denote a solution to the equation ¢°> = g+ 1. We
say that a sequence cy, is approzimately exponential if for all k, we have cpy1/cp > q.

Theorem 1. If a sequence cy is approrimately exponential, then, of all possible
combination algorithms, the Algorithm C1 has the smallest possible worst-case com-
putation time: T(Cy) = ming T(C).

Proof. To prove this theorem, we will prove two statements: first, that for C7, we
have T'(Cy) = T(C1,N) = ¢y +c¢n—1, and second, that for every other combination
algorithm C, we have T(C) > ¢y + cny—1- From these two statements, we can
conclude that T'(C) > T(C4) for all C' and therefore, that C; is indeed optimal.



4 From Planning to Searching for the Shortest Plan: An Optimal Transition

The second statement is the easiest to prove: if the actual size is s = N, then
the combination algorithm C' has to produce a plan of size N, and the only way
to produce such a plan is to apply the algorithm Apy. To prove that this is indeed
the shortest plan, we need to prove that no plan of size N — 1 exists; for this, we
must apply the algorithm Ax_;. Thus, for s = N, we must apply at least two
algorithms Ax and Ay _;. As a result, the corresponding value T'(C, N) has to
be > ¢y + en—1. Therefore, T(C) = max; T(C,s) > T(C,N) > en +cn—1. The
statement is proven.

Let us now prove the first statement. From the description of the algorithm C1,
we see that for s = N and s > N, we have T'(C1,s) = cy_1+cn; for s = N—1 and
s =N — 2, we have T(Cy,s) = ¢y_1 + ¢N_3 + cN_2, etc. In general, for s = N —
(2k—1) and s = N —2k, we have T(C1,5) = cN-1+¢cn—3+. ..+ CN_(2k41) T CN_2k-
To prove that T'(Cy, N) is the largest of these values, we will prove that for every
k>0,

T(Ci,N — (2k +2)) <T(C1,N — 2k); (1)

then, by induction, we will be able to conclude that T(Ci,s) < T(Cy,N) =
¢N + cy—1. Substituting the above explicit expressions for T'(Cy, s) instead of both
sides of the desired inequality (1), and canceling equal terms on both sides, we con-
clude that this inequality is equivalent to the following one: ¢y _(2r4-3) +Cn—(2k42) <
cN—2k- If we divide both sides of this inequality by ¢y _(2x43), We get an equivalent
inequality 1+ ¢1 < eN—_2k/CN—(2k+3), Where we denoted ¢1 = cN_(2k+2)/CN—(2k+3)-
Similarly, we can represent cy_sk/cn_(2k+3) @S Q1 - @2 - g3, Where we denoted
@2 = CN—(2k+1)/CN—(2k+2) and g3 = cN_2r/CN_(2k+1)- Since ¢ is approximately
exponential, we have ¢; > ¢ for all i. In terms of g;, the desired inequality takes
the form 1+ ¢1 < ¢ - ¢2 - g3, or, equivalently, 1 < ¢; - (g2 - g3 — 1). This inequal-
ity can already be proven. Namely, since ¢; > ¢ > 1, and ¢° + ¢ = 1, we have
q1-(g2-g3—1) > q-(¢*> —1) = ¢® — ¢ = 1. The inequality is proven, and hence, the
first statement is also true. Thus, the theorem is proven.

Comment. In our considerations, we estimated the computation time of each al-
gorithm Aj by its worst-case computation time c;. The actual computation time
of applying Ay depends on the actual size of the plan: e.g., if we apply a program
AN to the planning situation in which the size of the actual plan is equal to 1,
we expect Ay to run much faster than on the cases when the actual size of the
plan is equal to V. To take this difference into account, let us denote, by cy s,
the worst-case computation time of the program Ay on planning problems in which
the actual size of the plan is s. It is reasonable to assume that the value ¢y, is
monotonically non-decreasing with s. We also assume that for all values s > k (for
which A, cannot find the plan), the value ¢ s is the same and equal to cg k; then,
Crp = IMaXs Cp,s = Ck k-

In this new model, for each combination algorithm C' and for each actual plan
size s, we define T(C) as the largest of the values T(C, s), where T(C, s) is defined
as the sum of the values ¢ s corresponding to all the algorithms A, which were
called in the process of running C.



From Planning to Searching for the Shortest Plan: An Optimal Transition 5

One can see that, in effect, the above proof of Theorem 1 also proves that the
algorithm C is optimal under the new definition as well, i.e., that T'(Cy) < T(C)
for any other combination algorithm C.

4. Average-Case Computation Time: Towards Formalization

In the previous section, we described a combination algorithm for which the worst-
case computation time is the smallest possible. In this combination algorithm, we
start with checking for a plan of size N — 1. In some real-life situations, we know
that most probably, the actual plan is not long; in such situations, starting with
plans of (almost) maximum possible size (N —1) would be, in most cases, a waste of
computation time. In general, if we know the probabilities P(s) of different values
of the actual size, then, instead of looking for a combination algorithm C' with the
smallest worst-case computation time T'(C') = max, T'(C, s), it is reasonable to look
for a combination algorithm C with the smallest possible value of the average-case
computation time T,y (C).

This average-case computation time can be defined as T, (C) = >, P(s) -
Tav(C, s), where the average time T,y (C, s) can be defined as a sum of average-case
computation times ¢’ of applying algorithms Ay which are called in the process of
applying the combination algorithm C' to the case when the actual plan size is s.

For small N, we can find the best possible combination algorithm by exhaustive
search: namely, we can enumerate all possible combination algorithms, compute
the value T,y (C) for all of them, and find the combination algorithm C' for which
this value is the smallest possible. When N increases, the number of all possible
combination algorithms increases exponentially and therefore, we cannot try them
all. Tt is therefore desirable to find a method for optimal combination when N is
large.

In this paper, we present an asymptotically optimal algorithm C for solving this
problem, i.e., an algorithm for which, as N — oo, the value T,,(C) gets closer and
closer to the optimal value mine Ty (C). To find this algorithm, let us describe this
problem in an asymptotic form.

We want to find a plan of size s which can take any value from 0 to N (0 means
that the initial condition already satisfies the goal, so no actions are necessary). Let
us describe the size s by a normalized size x = s/N which takes N +1 possible values
0,1/N,...,1 from the interval [0,1]. For each value k from 0 to N, we know the
average-case computation time ¢}’ of running the algorithm A, which looks for a
plan of size k (i.e., of normalized size k/N). We will describe this computation time
as function of a normalized size: c¢(k/N) is defined as ¢§". A typical behavior is when
this computation time grows exponentially with k, i.e., when ¢}’ = a - bk for some
constants a and b; in this case, for z = k/N, we have k = z - N and c(z) = a- bV *.
This expression can be naturally defined for arbitrary values z € [0,1]; as a result,
we get a monotonically non-decreasing function ¢ : [0,1] — R which extrapolates
the values ¢(k/N).

Similarly, we can reformulate the probabilities P(s) in terms of normalized size



6 From Planning to Searching for the Shortest Plan: An Optimal Transition

s/N, as P,(s/N) = P(s). For the interval [0, 1], it is reasonable to talk about the
probability density p(x) such that the probability P,(s/N) to have a normalized size
from the interval [s/N, (s +1)/N) is equal to f;;;l)/N p(z) dz. In principle, we can
define p(z) as P,(s/N)/(1/N) for all z € [s/N, (s + 1)/N), but more reasonably,
if we have an analytical expression for P,(x), then we can extrapolate it to an
analytical expression for the density function p(z).

Originally, we have no information about the size or the normalized size of the
desired plan; this normalized size can take any value from the interval [0,1], or
any value > 1. Since by using algorithms A with k¥ < N, we cannot determine
the actual size of the plan if this size is larger than N (i.e., if s/N > 1), we will
describe this situation by saying that the actual size of the shortest plan belongs
to the “extended” interval [0,1+], where “14” indicates that values > 1 are also
possible.

We want to combine the algorithms Ay corresponding to different values of
normalized size = k/N into a single algorithm which would either find the shortest
plan of normalized length < 1, or return a message saying that no plan of normalized
length < 1 can solve the given problem. In this combination C, we start with some
normalized size z € [0,1] and check whether there exists a plan of this normalized
size. If such a plan exists, then we know that the actual normalized size belongs
to the interval [0, z]; if a plan of normalized size x does not exist, then we know
that the actual size of the shortest plan belongs to the interval [z,14]. In each of
these cases, at the next step, we select a value within the corresponding interval
and check whether there exists a plan with this particular value of normalized size,
etc.

For example, in binary search, we first check = 1/2; then, depending on the
result of this first check, we check for the values z = 1/4 or z = 3/4, etc.

Our goal is to find the actual size s of the shortest plan. In terms of the
normalized size x = s/N, we want to find z with the accuracy of 1/N, i.e., we
want to find an interval of width < 1/N which contains the desired value z = s/N.
In the following text, we will denote 1/N by &; then, the asymptotic of N — oo
corresponds to € — 0.

Now, we are ready to formulate the problem in formal terms:

e We have a monotonically non-decreasing function ¢(z) from [0, 1] to real num-
bers; this function describes the cost of checking for a plan of normalized
size x.

e We also have a probability density p(z); this probability density describes
relative frequencies of plans of different size.

The goal of a combination algorithm is to find the actual normalized size x with
the given accuracy € > 0. For each such algorithm, and for each actual value
z of normalized size, we can define the computation time ¢(C,z) as the sum of
all the values ¢(x) for all points z for which the corresponding algorithm A; was
invoked. Then, we use our knowledge of the probabilities of different sizes to define



From Planning to Searching for the Shortest Plan: An Optimal Transition 7

the average-case computation time ¢(C) as the average value of ¢(C,z): t(C) =
fol t(C,z) - p(x)dz. We want to choose the combination algorithm C for which
the average computation time ¢(C) is (asymptotically, when ¢ — 0) the smallest
possible.

5. Average-Case Computation Time: Main Result
We will prove that the following algorithm Cj is asymptotically optimal:

Combination Algorithm C,. In the beginning, we only know that the normalized
size x of the shortest plan is somewhere in the interval [z, x|, where x~ = 0 and
zt =1

On each step of this algorithm, whenever we have the interval [z~ , 7], we select
a checking point x € (x~,xT) which divides the integral f;f p(z) - ¢(z) dz into two
equal halves: [7_ p(z)-c(z)dz = f;+ p(2) - ¢(z)dz. Then:

e if there is a plan of normalized size x, then we replace x+ by z: [z, z1] :=
[7,2];

e otherwise, we replace x~ by z: [z, 2] := [z, 27].
We continue these iterations until we get z+ — z~ < ¢.

Theorem 2. When ¢ — 0, the algorithm Ca has (asymptotically) the smallest
possible average-case computation time t(Cs).

Proof: Main Idea. Let us start with estimating the average-case computation
time for the binary search algorithm Cp.

At the first step of binary search, we check for z = 0.5. As a result of this
first step, the interval [z~,zT] containing the actual normalized size z is equal
either to [0,0.5], or to [0.5,1+]. The corresponding computation time is equal to
P([0,1]) - ¢(0.5), where, for arbitrary a and b, P([a,b]) denotes f: p(z)dz.

At the second step, we check z = 0.25 if s € [0,0.5] (the probability of which
is P([0,0.5]), and we check z = 0.75 if s € [0.5,1]. As a result, we get an interval
[z, 27] of width 272. The resulting contribution of the second step to the average
computation time is P([0,0.5]) - ¢(0.25) + P([0.5,1]) - ¢(0.75).

On k-th step, the corresponding contribution is equal to

P([0,2=* D)) . ¢(0.5 - 27 k1)) 4 p([2=k=1 2. 2= (=D)L g(1.5 - 27Dy

After % steps, we end up with an interval of width 27%; so, the number n of steps
necessary to get an interval of desired width ¢ is determined by the equality 27 ~ ¢,
ie., k~log,(1/e).

The sum corresponding to each of these n steps is an integral sum for the integral
fol p(z) - ¢(x) dz, and the larger k, the closer this sum is to the integral. Thus, this
integral is an asymptotic expression for the sum, and asymptotically, the total
computation time is equal to the product of this integral and the total number of

steps: t(Cy) ~ ([ p(z) - c(z) dz) - log,(1/e).



8 From Planning to Searching for the Shortest Plan: An Optimal Transition

Let us now use this estimate to find the (asymptotic) average computation time
t(C) for an arbitrary combination algorithm C. An arbitrary combination algorithm
can be characterized as follows. Let us map the first point z € (0, 1) which is checked
according to the algorithm C into a point f(z) = 0.5 which is first checked in
binary search Cp. Then, let us map the points z' € (0,z) and 2" € (x,1) which are
checked next in C' (depending on the result of checking for ) into, correspondingly,
f(z') =0.25 and f(z") = 0.75. In general, let us map every point x which is checked
in C into the value f(z) which is checked at the corresponding step of the binary
search algorithm Cj. As a result, we get a monotonic function f : [0,1] — [0,1]; let
g(z) denote an inverse function to f,ie., g = f 1.

Due to our choice of this function, with respect to the new variable y = f(z),
the algorithm C' is simply a binary search. In this binary search, the computation
time ¢(y) corresponding to a value y is equal to ¢(x) for x = f~1(y), i.e., ¢(y) =
¢(g(y)). Similarly, the probability density p(y) for y can be determined from the
fact that when y = f(x), the probability p(y) - dy that y is between y and y + dy
is equal to the probability p(z) - dx for £ = g(y) to be between z = f~1(y) and
r+dr = f~1(y+dy) = g(y) + ¢'(v) - dy, where g'(y) denotes the derivative of the
function g(y). To get an interval of y-width €, we need the number of steps which
asymptotically equals to log,(1/e) - I, where I = [ p(y) - ¢(y) dy. Substituting the
above values for p(y) and ¢(y), we conclude that I = [ p(z) - ¢(z) dz for the new
variable x = g(y). In short, to get an interval of y-width e, we need exactly the
same average computation time as binary search.

However, this computation time only leads to an interval of y-width Ay = e,
and we need an interval of z-width Az = ¢. Thus, we need to narrow down from
Ay = € to Az = ¢. Within a narrow interval of width Ay = ¢, the functions ¢(z)
and p(z) do not change much and are asymptotically constant as e — 0. Thus,
within such an interval, binary search is the best possible strategy. We know that
for a binary search to narrow down an interval k times, we need log,(k) steps.
Hence, for each z, the average number of steps needed for this narrowing is equal
to log,(1/f'(x)) = —logy(f'(x)). Therefore, the average computation time for this
z is equal to —log,(f'(z)) - ¢(z), and the average over all possible values z € [0, 1]
is equal to

J=- / log, (f(2)) - p(z) - c(z) da. )
0

The total average computation time is equal to the binary search time (which does
not depend on the choice of the algorithm C) plus this time J; so, to minimize the
total average computation time, it is sufficient to minimize this expression J.

We are describing each combination algorithm C' by the function f(z), so we
must find the function f(z) which minimizes J. The only restriction on f(z) is that
it should be a mapping from the entire interval [0, 1] into the entire interval [0, 1],
i.e., that we should have f(0) = 0 and f(1) = 1. Since fol f(x)dz = f(1) — f(0),



From Planning to Searching for the Shortest Plan: An Optimal Transition 9

we can represent this restriction in terms of f'(z) as follows:

/01 F@)dz = 1. (3)

We are, therefore, minimizing (2) under the condition (3). Lagrange multiplier
method enables us to reduce this conditional optimization problem to an uncondi-
tional optimization problem

- / o (F(@)) - p(a) - e(z) dr + A- / " () dz - min, )
0 0

where A is a constant (Lagrange multiplier) and F(z) denotes f'(z). Differentiating
the left-hand side of (4) with respect to F|(x) (see, e.g.,®), and taking into considera-
tion that log,(z) = In(2)/In(2), we get the equation —p(z)-c(z)/(In(2)- F(z))+ A =
0, i.e., F(z) = f'(x) = const - ¢(z) - p(x). Thus, f(x) = const - fow p(2) - e(z) dz.

In the algorithm C, when we make the first division, we select a point z for
which f(x) = 0.5, i.e., which divides the integral fol p(z) - ¢(z) dz into two equal
halves foz p(2) - e(z)dz = le p(z) - ¢(2) dz = 0.5. Similarly, on each step, when we
have reached an interval [z, z 7], we select a point z € (z~,z") which divides the
integral f;f p(2) - ¢(z) dz into two equal halves. In short, the optimal algorithm is
exactly algorithm Cs. The theorem is proven.

Comment. From the proof, we can extract the explicit (asymptotic) analytical
expression for the computation time of the (asymptotically) optimal combination
algorithm C,.

Indeed, the integral in the binary-search expression is simply the average compu-
tation time (c) of checking for a plan of random size. We can determine the constant
in the formula for f'(x) by using the fact that fol f'(z)dz = 1, so this constant is
equal to 1/{c). Thus, the above expression for f'(z) for the optimal combination
algorithm Cj takes the form f'(z) = ¢q(x) - p(z), where ¢,.(x) = ¢(z)/(c) denotes
the “relative” computation time of checking for plans of different normalized size
z. Thus, the total average-case computation time takes the form

0 = (0o (2) =@ [ 4la@) @) lomsp(0) o (e s, (9

where we denote e = 1/N, (c) = fol p(z) - e(z) dz, and ¢, (z) = c(z)/{c).

In particular, when ¢(z) = const, we get ¢.(z) = 1, and the second term in
the expression (5) turns into the entropy — fol p(z) -logs(p(x)) dz of the probability
distribution p(z). It is known that the entropy can be defined as, crudely speaking,
the smallest number of binary questions which we need to ask to get the exact value.
We can therefore view the expression (5) as a natural generalization of the classical
notion of an entropy to the case when different questions have different costs (in
our case, computation time), and so, instead of simply counting the questions, we
count the total cost.



10 From Planning to Searching for the Shortest Plan: An Optimal Transition

Acknowledgment

This work was supported in part by NASA grants NCC5-209 and NCC 2-
1232, by NSF grants DUE-9750858, CDA-9522207, ERA-0112968 and 9710940
Mexico/Conacyt, by the United Space Alliance grant NAS 9-20000 (PWO
C0C67713A6), by the Air Force Office of Scientific Research grants F49620-95-1-
0518 and F49620-00-1-0365, and by the National Security Agency grant MDA904-
98-1-0561. The authors are thankful to Vladimir Lifschitz and to the anonymous
referees for valuable discussions.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

C. Baral, V. Kreinovich, and R. Trejo, “Computational Complexity of Planning and Ap-
proximate Planning in Presence of Incompleteness”, Artificial Intelligence 122 (2000)
241-267.

T. Bylander, “The computational complexity of propositional STRIPS planning”, Ar-
tificial Intelligence 69 (1994) 161-204.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms (MIT
Press, 1990).

Y. Dimopoulos, B. Nebel, and J. Koehler, “Encoding planning problems in non-
monotonic logic programs”, Proc. European Conf. on Planning 1997 ECP-97, Springer-
Verlag, 1997, pp. 169-181.

M. Ernst, T. Millstein, and D. Weld, “Automatic SAT-Compilation of planning prob-
lems”, Proc. of IJCAI 97, 1997, pp. 1169-1176.

K. Erol, D. Nau, and V. S. Subrahmanian, “Complexity, decidability and undecidability
results for domain-independent planning”, Artificial Intelligence 76, No. 1-2 (1995) 75—
88.

M. P. Georgeff, “Planning”, Annual Review of Computer Science 2 (1987) 359—400.
R. Hermann, Differential geometry and the calculus of wariations (Math. Sci. Press,
Brookline, MA, 1977).

H. Kautz and B. Selman, “Planning as satisfiability”, Proc. of ECAI-92, 1992, pp.
359-363.

H. Kautz and B. Selman, “Pushing the envelop: planning, propositional logic and
stochastic search”, Proc. of AAAI-96,1996, pp. 1194-1201.

H. Kautz and B. Selman, “Unifying SAT-based and Graph-based planning”, Proc. of
IJCAI-99, 1999, pp. 318-325.

P. Liberatore, Algorithms and ezperiments of finding minimal models, Technical Report
09-99, Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
1999.

V. Lifschitz, “Answer set planning,” Proc. Int’l Conf. on Logic Programming ICLP’99,
Las Cruces, NM, 1999.

V. Lifschitz, “Action languages, answer sets and planning”, In: The Logic Programming
Paradigm (Springer-Verlag, N.Y., 1999).

I. Niemela and P. Simons, “Efficient implementation of the well-founded and stable
model semantics”, Proc. Joint Int’l Conf. and Symposium on Logic Programming, 1996,
pp- 289-303.

P. Simons, Toward constraint satisfaction through logic programs and the stable model
semantics, Technical Report 47, Helsinki University of Technology, 1997.

D. E. Wilkins, “Domain independent planning: representation and plan generation”,
Artificial Intelligence 22 (1984) 269-301.



