Towards Feasible Approach to Plan Checking
Under Probabilistic Uncertainty: Interval Methods

Raiil Trejo and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
{rtrejo,vladik }@cs.utep.edu

Abstract

The main problem of planning is to find a sequence of
actions that an agent must perform to achieve a given
objective. An important part of planning is check-
ing whether a given plan achieves the desired objec-
tive. Historically, in AI, the planning and plan checking
problems were mainly formulated and solved in a deter-
ministic environment, when the initial state is known
precisely and when the results of each action in each
state is known (and uniquely determined). In this de-
terministic case, planning is difficult, but plan check-
ing is straightforward. In many real-life situations, we
only know the probabilities of different fluents; in such
situations, even plan checking becomes computation-
ally difficult. In this paper, we describe how methods
of interval computations can be used to get a feasible
approzimation to plan checking under probabilistic un-
certainty. The resulting method is a natural general-
ization of 0-approximation proposed earlier to describe
planning in the case of partial knowledge. It turns out
that some of the resulting probabilistic techniques co-
incides with heuristically proposed “fuzzy” methods.
Thus, we justify these fuzzy heuristics as a reasonable
feasible approximation to the (NP-hard) probabilistic
problem.

Traditional (deterministic) planning and
plan checking

The main problem of planning is to find a sequence of
actions that an agent must perform to achieve a given
objective. An important part of planning is checking
whether a given plan achieves the desired objective; this
plan checking is also called projection.

Historically, in AI, the planning and plan checking
problems were mainly formulated and solved in a deter-
ministic environment, when the initial state is known
precisely and when the results of each action in each
state is known (and uniquely determined) (Allen et
al. 1990).

To formulate the deterministic planning problem pre-
cisely we must be able to describe states of the world
and actions. States are usually characterized by their

Copyright © 2001, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Chitta Baral
Dept. of Computer Science & Engineering
Arizona State University
Tempe, AZ 85287-5406, USA
chitta@asu.edu

properties (fluents) fi,..., fn; the set of all possible
fluents will be denoted by F. A state s can thus be
defined simply as a set of fluents, meaning the set of all
the fluents which are true in this state.

At each moment of time, an agent can execute an
action. We will denote the set of all possible actions
by A. We have rules which describe how an action
a € A changes a state s; these rules are of the form
“a causes F if Fy,...,F,”, where F' and F; are fluent
literals, i.e., fluents or their negations. The set of all
such rules is called a domain description and denoted
by D. The result res(a, s) of applying the action a to
the state s is thus defined as

Tes(a, 3) = {fl (f € S&_'f ¢ VD(G, 8)) \ f € VD((I,S)},
where Vp(a, s) denotes the set of conclusions of all rules
from D for which all conditions hold in s.

A plan « is a sequence of of actions a = [ay, ..., a,);
the result res(ay,res(ap—1,...,res(a,s)...)) of apply-
ing these actions to the state s will be denoted by
res(a, s).

To complete the description of deterministic plan-
ning, we must formulate possible objectives. In general,
as an objective, we can take a complex combination of
elementary properties (fluents) which characterize the
final state; for example, a typical objective of an as-
sembling manufacture robot is to reach the state of the
world in which all manufactured items are fully assem-
bled. To simplify the description of the problem, we
can always add this combination as a new fluent literal
(see, e.g. (Allen et al. 1990)); thus, without losing gen-
erality, it is sufficient to consider only objectives of the
type f € F.

In these terms, the planning problem can be formu-
lated as follows: given a set of fluents F, a goal f € F,
a set of actions A and a set of rules D describing how
these actions affect the state of the world, to find a se-
quence of actions a = [ay, ..., ax] that, when executed
from the initial state of the world sg, makes f true.
The problem of plan checking is, given F, A, a goal,
and a sequence of actions a, to check whether the goal
becomes true after execution of « in the initial state. In
the deterministic case, planning is computationally dif-
ficult (NP-hard, see, e.g., a survey (Baral et. al. 1999)),
but checking a given plan is feasible: it can be done by

a straightforward computation of res(a,so) (Allen et
al. 1990).

Imperfect sensors: First reason to
consider planning and plan checking
under probabilistic uncertainty

In real life, we often do not know have a complete
knowledge of the initial state so. For some fluents
f € F, we know whether f or —f are initially true, but
for some other fluents f, we may only know the proba-
bility p(f,so) that f is initially true. (The probability
p(—f,s0) that =f is true is then equal to 1 — p(f, s0).)

This probability may reflect either the expert’s uncer-
tainty in his own opinion (such probabilities are called
subjective), or the fact that sensors and measuring in-
struments used to determine whether this fluent holds
are never 100% reliable (such probabilities are called
objective).

Towards the description of the
corresponding planning and plan
checking problems

Due to this probabilistic uncertainty, we do not know
the exact initial state sg; at best, we know the prob-
abilities P(s = s¢) of different initial states s. These
probabilities (and similar uncertainty about observa-
tions in the future) form the basis of the Partially
Observable Markov Decision Processes (POMDP) ap-
proach to planning under probabilistic uncertainty (see,
e.g., (Heffner et al. 1998; Kaelbling, et al. 1998) and ref-
erences therein).

Most examples of using POMDP assume that we
know the probabilities of all possible initial states. Such
a representation is possible for a simple example in
which the total number n; = #(F) of fluents is small:
Indeed, since we define a state s as a subset s C F
of the set of all the fluents, the number of all possible
states is equal to the number of all possible subsets, i.e.,
to 27/, Thus, to describe the probability p(s) of each
state, we need to use 2"/ — 1 real numbers p(s) € [0, 1]
(2" — 1 since > p(s) = 1, so one of the values p(s) is
uniquely determined if we know the others). Even for
ny = 20 fluents, we need more than a million different
probabilities. In such situations, we cannot represent
this probabilistic uncertainty by describing the proba-
bility of every possible initial state s.

In other words, we may know the probability p(f, so)
of each of ny fluents f € F, but we may not know the
probability of each of 2"/ possible states s C F.

In some cases, we know that different fluents are sta-
tistically independent; in this case, if we know the initial
probabilities p(f;, so) of different fluents f; € F, we can
determine the probability of every possible state. For
example, for F = {fi, f2}, the probability p(sq = {f1})
that the initial state sg coincides with {fi1} is equal
to the probability that in the initial state sg, f1 is

true and f2 is false, i.e., is equal to p(so = {f1}) =
p(f1,50) - P(=f2,80) = P(f1,50) - (1 = P(f2, 50))-

In real life, often, the errors of different sensors are
partially caused by the same causes and therefore, are
not independent; in most such cases, we do not know
the exact extent of this correlation. Thus, even when
we know the exact initial probability p(f,so) of each
fluent f € F, we may have several different probability
distributions P on the set of all initial states; the set
of all possible distributions coincides with the set of all
distributions P for which the probability of each fluent
f is equal to the given value: P(f) = p(f,so). In this
case, we will say that the probability distribution P is
consistent with the given probabilities p(f, s¢).

Even the probabilities p(f, so) of different fluents may
not be known exactly. Indeed, a natural way to get
these probabilities is to apply statistical techniques to
the records of sensor errors and/or expert judgments.
From these statistical estimates, however, we do not
get the ezact values of these probabilities, we can only
get approrimate values. So, in reality, for a fluent f,
often, we do not even know the exact value of the
initial probability p(f,s¢), we only know the interval
p(f,s0) = [p (f,50),p" (f, $0)] which contains the ac-
tual (unknown) value of p(f,so) (see, e.g., (Givan et
al. 1997). In this case, possible values of the probabil-
ity p(—f, so) that —f hold is s¢ form the interval

p(_'f7 80) = [1 _p+(fa 80)7 1 _p_(fa 80)]‘

Comment. An even more general approach, related to
Dempster-Shafer formalism, allows for the possibility
that for some fluents fi,..., fr, we do not even the
intervals p(f;,so); instead, we may know, e.g., only
the probability p(fi V ...V fk,50). Heuristic meth-
ods for this approach (based on independence-type
assumptions) were considered, e.g., in (Lowrance et
al. 1990); guaranteed estimates which are not based
on any heuristic assumptions are described in (Doan
et al. 1996).

The cases of complete information about the fluent
and the complete lack of information about this fluent
can be described as a particular case of the interval
formulation: p(f,so) = [1,1] means that we are 100%
sure that f is true; p(f,so) = [0, 0] means that we are
100% sure that f is false; and p(f,sp) = [0,1] means
that we have no information about f.

In this realistic case of interval probabilities p(f, so)
(f € F), we have to consider all probability distribu-
tions P which are consistent with these interval prob-
abilities, i.e., all probability distributions P for which
the probability of each fluent f belongs to the corre-
sponding interval: P(f) € p(f,so)-

If we have a complete domain description D, then,
for each initial state s and for each action plan «,
we can determine the resulting state res(a,s). Thus,
for every probability distribution P which is consis-
tent with the given interval probabilities, and for ev-
ery objective fluent f, we can determine the probabil-
ity p(f,res(a, sg)) that this objective will be satisfied

in the final state, as the sum) P(s) of the probabili-
ties of all initial states s for which f holds in res(a, s).
Since the interval probabilities do not determine the
probability distribution uniquely, we may have different
probability distributions P which are consistent with
this data; for different distributions, we may get dif-
ferent values p(f,res(a,sg)). Let us denote the in-
terval of all possible values of such probabilities by
p(f,res(a, 50)) = [p (f,res(a, 50)),0* (f, res(a, so)))-

Since we do not have the complete knowledge of the
initial state, we, therefore, cannot be 100% sure that
the result of applying a given sequence of actions will
always lead to a given objective; at best, we can hope
that the probability of achieving a given objective is
high enough, i.e., that this probability is higher than
a given number pg. So, in this probabilistic context,
the planning problem means finding a plan « for which
p~(f,res(a, s0)) > po. Correspondingly, a plan check-
ing problem means checking whether this inequality
holds for a given plan a.

Summarizing: with probabilistic uncertainty in sen-
sors, the planning problem takes the following form.
We are given a set of fluents F, a set of actions A, a
domain description D (i.e., set of rules which describe
how actions affect the state), the initial interval prob-
abilities p(f, so) for all f € F, the objective f € F,
and the desired success probability po. Our goal is to
find a sequence of actions a such that the probability
p(f,res(a, so)) of the objective f being true after exe-
cution of « is guaranteed to be greater or equal than py.

A natural step in solving the planning problem is
checking the given plan. The problem of plan check-
ing is, given a planning problem and a candidate plan
a, to check whether the probability p(f,res(a,so)) is
guaranteed to be greater or equal than py, i.e., whether

p (f7 7'68(047 80)) > Do-

For probabilistic uncertainty, even plan
checking is NP-hard; so, we need a good
approximate plan checking algorithm

In contrast to the deterministic planning where plan
checking is easy, the probabilistic plan checking problem
is NP-hard: indeed, in (Baral et. al. 1999), it is shown,
in effect, that this problem is NP-hard even if we only
allow intervals of the type [0,0], [1,1], and [0, 1] (see
also (Littman et al. 1998)). It is therefore desirable to
find good approximate algorithms for plan checking.

A natural way to check the success of a plan is to es-
timate the probability p~ (f,res(a, so)), and then com-
pare the resulting estimate with the desired probability
value pg. Since it is NP-hard to check whether p~ > po,
it is, therefore, NP-hard to compute the value p—; thus,
at best, we can look for a feasible algorithm for comput-
ing a good approximation p~ for the desired difficult-
to-compute probability bound p—.

This word “approximation” may mean two things: it
may mean that our algorithm misses a successful plan
(i.e., it is unable to confirm that a plan is successful),

and it may mean that the approximate algorithm erro-
neously declares a bad plan to be successful.

There are many heuristic techniques which provide
us with approximate values of probabilities; e.g., tech-
niques based on fuzzy logic have been successfully
combined with more traditional AI techniques to pro-
duce an award-winning robot (Congdon et al. 1993;
Saffiotti et al. 1995). For a robot, usually, errors of
both types are equally bad, so we just try to minimize
the total number of such errors.

In many real-life applications, missing a successful
plan is bad, but selecting a failing plan as supposedly
successful can be disastrous: e.g., when we plan to send
astronauts on a space mission, it is bad but still toler-
able if we miss a possibility of a cheaper mission and
thus erroneously overestimate the mission’s cost, but it
would be a disaster to send a mission with a low success
probability under the erroneous assumption that this
mission’s success probability is high. Due to this fact,
we are interested in a plan checking algorithm which
will never overestimate the success probability. In other
words, we want to guarantee that our estimate p — never
exceeds the actual value p~: p— < p~.

In the following text, we will show, among other
things, that the above-mentioned fuzzy techniques
(which were not originally intended to provide such
guarantees) can, in fact, lead to guaranteed estimates.

Imperfect actuators: Second reason to
consider planning and plan checking
under probabilistic uncertainty

In the above text, we took into consideration that sen-
sors can be imperfect, but we still assumed that the
actuators are perfect, i.e., that the results of each ac-
tion in a given state are uniquely determined by our
choice of this action. In reality, of course, actuators are
also imperfect; as a result, if we apply, several times, the
same action a to the same state s, we may get different
results. For example, if we want a robot to move for-
ward, we send to it, at several consequent moments of
time, a signal to go forward. Due to actuator errors, a
robot usually deviates from the desired trajectory, and
this deviation may change from time to time (the robot
“wobbles”). In other words, instead of deterministic
rules of the type “a causes F' if Fi,...,F,”, we now
have probabilistic rules of the type

a causes F' with probability p if Fi,..., Fp,.

Similarly to the sensor uncertainty, we may not know
the exact values of the corresponding probabilities; in-
stead, we only know the interval of possible values. In
this case, the probabilistic rules take the following form:

a causes F' with probability p € p if F1,...,F,,

for some given probability interval p. To illustrate this
idea, let us give three simple examples: a determinis-
tic action corresponds to p = [1, 1]; a non-deterministic

statement that an action a may cause F' can be de-
scribed by p = [0, 1], and coin toss leads to F' = “heads”
with probability p = [0.5,0.5].

These additional interval probabilities make the plan-
ning and plan checking problems even more compli-
cated. In POMDP description, these probabilities are
taken into consideration; however, it is assumed that
the probabilities corresponding to consequent actions
are independent. This is indeed true in some real-life
situations when the actuator errors are purely random.
In real life, many actuators also have a systematic error
component, i.e., a component which leads to a strong
correlation between probabilities corresponding to con-
sequent actions (this assumption is also made in the
interval version of POMDP, described, e.g., in (Draper
et al. 1994)). Thus, in our description, we do not want
to assume this independence; instead, similarly to sen-
sor uncertainty, we consider all possible probability dis-
tributions which are consistent with the given interval
probabilities.

This framework — no independence assumption at all,
probabilities are allowed to change over time within the
intervals, etc. — may yield overly conservative estimates
for the probabilities (especially for long plans), but it is
unavoidable in the situations when we need to guarantee
that the plan succeeds with a given probability.

Taking actuator imperfection into consideration
makes the plan checking problem even more complex.
However, from the computational viewpoint, for realis-
tic (polynomial-length) plans, we can reformulate this
new uncertainty in the equivalent form of initial state’s
uncertainty. The motivation behind this reduction is
very simple and natural: In the deterministic descrip-
tion, to find the post-action state of the system, it is
sufficient to know its pre-action state. In the more
realistic situation, to determine the post-action state
uniquely, we must also know the pre-action state of the
actuator. Thus, to reduce the new description to the
previous one, we can add, to the the original set of flu-
ents F which describe the state of the system itself,
additional fluents which describe the state of the actu-
ator. Namely, for each action a; from the actions se-
quence (plan) «, and for each rule from D (of the type
“a; causes F' with probability p € p if F,...,F,”) in
which the result of this action a; is not uniquely deter-
mined, we add a new fluent f, whose meaning is that
this rule leads to F' if this fluent is true. Then, the
original probabilistic rule is replaced by the determinis-
tic rule “a causes F' if F1,..., Fy,, f.”, where the initial
interval probability of the new fluent f, is equal to p.

Similarly, we can take care of exogenous actions, i.e.,
of the situations in which, with a certain probability, a
state can change by itself, without any (regular) action
being performed.

Due to the possibility of this reduction, in the fol-
lowing text, we will, without losing generality, restrict
ourselves to the situations in which the results of ac-
tions are deterministic, and the only uncertainty is in
the initial state.

The idea of 0-approximation: a
motivation for our algorithm

Our feasible plan-checking algorithm for planning un-
der probabilistic uncertainty will be a generalization of
the 0-approximation algorithm developed in (Baral and
Son 1997) for the case of partial knowledge, i.e., in our
terms, for the case when for each fluent f € F, the ini-
tial probability interval is equal to [0, 0], [1, 1], or [0, 1].

In terms of these intervals, the O-approximation al-
gorithm can be described as follows: To check whether
a plan a = [a1,...,ay] is successful, for each mo-
ment of time ¢t = 1,...,n, and for each fluent f €
F, we estimate the interval p(f,s;) of possible val-
ues of this fluent’s probability in the state s; =
res(ag,res(az_1,--.,res(ag,s)...)). To be more pre-
cise, for each t and f, we compute the enclosure
p(f,s:) D p(f,st). We start with the known val-
ues p(f,s0) = p(f,s0); after the estimates p(f,s:)
are found for a certain ¢, we compute the estimates
for sy;y1 as follows: Let V7T(a,s;) denote the set
of all fluent literals F' for which D contains a rule
“a causes F if Fi,...,F,” for which all the condi-
tions F; are definitely true (have probability inter-
vals p(F;,s:) = [1,1]). Let V~(a,s:) denote the set
of all fluent literals F' for which D contains a rule
“a causes F' if Fy,...,F,” for which all the conditions
F; may be true (have probability intervals p(F;, s;) #
[0,0]). Then, for every fluent f € F:

o We assign p(f, s¢41) :=[1,1] if

f eV (aprr, s)VB(f,5¢) = [1,1]&~f & V™ (a1, 1))
o We assign p(f, s¢4+1) := [0, 0] if

~f € VF(ap1, s)VDB(S,50) = [0,01&f & V™ (ar41,54))-
e In all other cases, we take p(f, s¢y1) := [0, 1].

It is proven that this algorithm indeed produces an en-
closure and thus, if we get p(f,s,) = [1,1] at the final
state, we are thus guaranteed that this plan works.

The 0-approximation algorithm is feasible: its com-
putation time grows linearly with the length of the plan
and with the size of the domain description. Since the
plan checking problem is NP-hard, it is not surprising
that sometimes, this algorithm errs — fails to realize
that a given plan is successful.

The new algorithm based on interval
computations

In our new algorithm, we will also start with the original
estimates p(f,s0) = p(f,s0) and produce the values
ﬁ(f;st) 2 p(fast) fort = 1,2,...,“.

According to the semantics of the rules, a fluent f
holds in the next moment of time iff either it is caused
by some rule, or it was true in the previous moment
of time, and its negation was not caused by any rule.
Thus, in order to find out whether f holds at the mo-
ment t+1 (after applying the action a;y1), we first need
to describe all the rules in which the action a;1 causes
either f or =f. Let us denote by k the total number

of rules in which a;y1 causes f, and let us denote the
conditions of the i-th such rule by F;1,..., F; ;. Sim-
ilarly, let us denote by £ the total number of rules in
which a;y1 cause —f, and let us denote the conditions
of the j-th such rule by Gj1,...,Gim;- In terms of
these notations, f holds at the moment of time ¢ + 1 iff
the following formula B holds at moment ¢:

(Fl,l& .. '&qunl) V...V (Fk,l& .. .&kak)v

{f&_‘[(Gl,l& . &Gl,ml) V...V (G(’l& . &Gf,mg)]}-

Thus, if we know the enclosures p(F, s;) for all fluent lit-
erals at time ¢, in order to find the enclosure p(f, s¢+1)
for the probability interval p(f, s;+1), it is sufficient to
be able to find the enclosure for the above Boolean com-
bination B. Since the Boolean combination B consists
of sequential application of propositional connectives &,
V, and —, it is therefore sufficient to be able to solve the
following three auxiliary problems:

e given the enclosure p(F') for p(F'), compute the en-
closure p(—F) for p(—F);

e given the enclosures p(F;) (1 < i < n) for the in-
tervals p(F;), compute the enclosure p(F1 & ... &F},)
for p(Fi& ... &F),);

e given the enclosures p(F;) (1 <i < n) for the inter-
vals p(F;), compute the enclosure p(F1 V...V Fy,) for
p(FAV...VE,).

The following propositions solve these problems:

Proposition 1. If p(F) C p(F), then

~ def ~ ~
P(~F) CB(-F) = [L-pH(F),1 -5 (F)].
Proposition 2. If p(F;) C p(F;) fori=1,...,n, then

p(Fi&...&F,) Cp(Fi&...&F,) < [max(0,5~(Fi)+
coi+ P (Fn) —n+ 1),min(pt(F),...,pH(F,))], and
p(FAV...VF,) Cp(FRV...VF,) ¥ max(p~(F),...,
P~ (Fp)),min(1,p*(F1) + ... + 5+ (F))].

One can prove that the estimates provided by Proposi-
tions 1, 2 are indeed the narrowest possible.

By using these estimates, we can find, step-by-step,
the enclosure for p(f, s;+1) and thus, the desired enclo-
sure for the interval p(f, s,,) which describes the prob-
ability of success in the final state.

Let us give a simple example. Let a domain
description D consist of the following three rules:
a causes f if g,h; a causes f if k; a causes —f if j, k.
The objective is f, the checked plan consists of the sin-
gle action a. In this case, the validity of f at the fi-
nal moment of time s; is equivalent to the validity of
the following propositional formula at the moment sq:
(9&h)VEV{f&[j&k]}. If initially, p(f, s0) = [0.1,0.2],
P(g9,%0) = [0.7,0.9], p(h,s0) = [0.6,0.7], p(j,s0) =
[0.2,0.3], and p(k, so) = [0.7,0.9], then we can compute
the enclosure p(f, s1) as follows:

* p(g&h,s) =

[max(0,0.7 + 0.6 — 1),min(0.9,0.7)] = [0.3,0.7];
b f)(]&ka sl) =

[max(0,0.2 + 0.4 — 1), min(0.3,0.6)] = [0, 0.3];

b f’(_'[J&k]aS) = [1 -0,1- 03] = [075 1];
o p(f&[j&k],s) =

[max(0,0.1 + 0.7 — 1), min(0.2,1)] = [0,0.2];
* p((9&h) V k) v {f&[j&k]}) =

[max(0.3,0.7,0), min(1,0.7 + 0.9 + 0.2)] = [0.7, 1].
Thus, if po < 0.7, this plan is successful; otherwise, we
cannot, guarantee its success with a given probability.

The soundness of the above algorithm can be formu-
lated in precise terms:

Definition 1. By a planning problem, we mean the

tuple (‘7:7 -Aa D7 {p(fa sO)}fEfa f;pO)a where:

e T is a finite set whose elements are called fluents;

e A is a finite set whose elements are called actions;

e D is a finite set of expression of the type
“a causes F ifFy,...,F,,”, where F and F; are fluent
literals, i.e., fluents or their negations;

e cach p(f,so) is a sub-interval of the interval [0,1];

o f € F is called objective, and po € [0,1].

A sequence of actions a = [a1, . .. ,ay] is called a plan.

By a plan checking problem we mean a pair consisting
of a planning problem and a plan a.

We say that a probability distribution P on the set of
all initial states is consistent with the planning problem
if P(f) € p(f, s0) for every fluent f.

We say that a plan is successful if p(f,res(a,sp)) >
po for every probability distribution P with is consistent
with the planning problem.

Proposition 3. For every plan checking problem, for
every probability distribution P on the set of all initial
states which is consistent with the given interval prob-
abilities, the probability P(f,res(a,sg)) is contained in
the interval p(f, sn) computed by the above algorithm.

(Proof is by induction over the length of the plan, sim-
ilarly to the proof about 0-approximation.)

Corollary. If the above algorithm tells that the plan
is successful (i.e., if p~(f,sn) > po), then this plan is
indeed successful.

Definition 2. We say that a planning problem corre-
sponds to incomplete information if for every fluent f,
the interval p(f, so) is equal to [0,0], [1,1], or [0,1].

Proposition 4. For planning problems corresponding
to incomplete information, the above algorithm coin-
cides with the 0-approzimation algorithm.

Comments.

1) For degenerate intervals p(F;) = [pi,pi], we get
[ma‘x(pl + p2 — 1,0),min(p1,p2)] as IN)(Fl&FQ)7 and
[max(p1,p2), min(1,p; + pa)] for V. Both lower and
upper bounds are particular cases of the operations
used in the fuzzy approach (Congdon et al. 1993;
Saffiotti et al. 1995); thus, we get a new justification
for this approach.

2) The above step-by-step approach to getting guar-

anteed estimates can be viewed as a particular case of
interval computations, i.e., computations in which the

input is only known with interval uncertainty (see, e.g.,
(Hammer et al. 1993; Kearfott et al. 1996)). Interval
computations have been used, together with more tra-
ditional AT techniques, to produce a robot which won
1st place at the AAAT’97 robot competition (Baral and
Son 1997a; Baral et al. 1998; Morales et al. 1998).

3) Estimates obtained by using interval computations
are often overestimations, because when we compute
the probability intervals for the next moment of time,
we assume that the previous intervals are “indepen-
dent”, while in reality, they come from the same
source and may therefore be dependent. For exam-
ple, if we have two rules “a causes f if f;” and
“a causes f if —f1”, with p(f1,s0) = [0.6,0.7] and with
f initially false, then after the action a, f is always
true (p(f,s1) = [1,1]). In this case, our algorithm finds
f as f1 V-fi, so we get p(—fi,s0) = [0.3,0.4], and
p(f,s1) = [max(0.6,0.3), min(0.6+0.4,1)] = [0.6, 1]. To
take this dependence into consideration, we can use gen-
eralized (affine) interval computations (Hansen 1975).

4) If we are sure that all the probabilities are indepen-
dent, then we can use a feasible technique — Monte-
Carlo simulations (see, e.g., (Kreinovich et al. 1994)).

Conclusions

In this paper, we show that methods of interval com-
putations can be used to get a feasible approxima-
tion to plan checking under probabilistic uncertainty.
The resulting method is a natural generalization of 0-
approximation proposed earlier to describe planning in
the case of partial knowledge. It turns out that some
of the resulting probabilistic techniques coincides with
heuristically proposed “fuzzy” methods. Thus, we jus-
tify these fuzzy heuristics as a reasonable feasible ap-
proximation to the (NP-hard) probabilistic problem.

Acknowledgments

This work was supported in part by NASA grant NCC5-
209, by NSF grants DUE-9750858 and CDA-9522207,
by United Space Alliance grant NAS 9-20000 (PWO
C0C67713A6), by the US Air Force grant F49620-95-
1-0518, and by the National Security Agency grant
MDA904-98-1-0561.

The authors are thankful to anonymous referees for
valuable comments.

References

J. Allen, J. Hendler, A. Tate, Readings in Planning,
Morgan Kauffman, San Mateo, CA, 1990.

C. Baral et al., “From theory to practice: The UTEP
robot in AAAT 96 and AAAT 97 robot contests”, Proc.
2nd International Conference on Autonomous Agents
(Agents’98), 1998, pp. 32-38.

C. Baral, V. Kreinovich, and R. Trejo, “Computa-
tional complexity of planning and approximate plan-
ning in presence of incompleteness”, in: Proc. 1J-
CAI’99, Vol. 2, pp. 948-953 (full text to appear in
Artificial Intelligence).

C. Baral and T. Son, “Approximate reasoning about
actions in presence of sensing and incomplete informa-
tion”, In: Proc. of International Logic Programming
Symposium (ILPS’97), 1997, pp. 387-401.

C. Baral and T. Son, “Regular and special sensing in
robot control — relation with action theories”, Proc.
AAAI 97 Workshop on Robots, Softbots, and Im-
mobots — Theories of Action, Planning and Control,
1997a.

C. Congdon et al., “Carmel vs. Flakey: A comparison
of two winners,” AI Magazine, 1993, Vol. 14, No. 1,
pp- 49-57.

A. Doan and P. Haddawy, “Sound Abstraction of
Probabilistic Actions in the Constraint Mass Assign-
ment Framework ”, Proc. UAI’96, pp. 228-235.

D. Draper and S. Hanks, “Localized Partial Evaluation
of Belief Networks”, Proc. UAI’9.

R. Givan, S. Leach, and T. Dean, “Bounded param-
eter Markov decision processes”, Proc. 4th Furopean
Conference on Planning, Toulouse, France, 1997.

R. Hammer et al., Numerical Toolbox for Verified
Computing I, Springer-Verlag, 1993.

E. R. Hansen, “A generalized interval arithmetic”, In:
K. Nickel (ed.), Interval mathematics, Lecture Notes
in Computer Science, 1975, Vol. 29, pp. 7-18.

H. Geftner and B. Bonet, “High-Level Planning
and Control with Incomplete Information Using
POMDPs”, Proc. AIPS-98 Workshop on Integrating
Planning, Scheduling and Execution in Dynamic and
Uncertain Environments, 1998.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra,
“Planning and acting in partially observable stochas-
tic domains”, Artificial Intelligence, 1998, Vol. 101,
pp- 99-134.

R. B. Kearfott and V. Kreinovich (eds.), Applications
of Interval Computations, Kluwer, Dordrecht, 1996.

V. Kreinovich et al., “Monte-Carlo methods make
Dempster-Shafer formalism feasible.” In R. R. Yager
et al. (Eds.), Advances in the Dempster-Shafer Theory
of Evidence, Wiley, N.Y., 1994, pp. 175-191.

M. L. Littman, J. Goldsmith, and M. Mundhenk, “The
Computational Complexity of Probabilistic Plan-
ning”, JAIR, 1998, Vol. 9, pp. 1-36.

J. D. Lowrance and D. E. Wilkins, “Plan evalua-
tion under uncertainty,” Proc. Workshop on Innova-
tive Approaches to Planning, Scheduling and Control,
Morgan Kaufmann, San Francisco, 1990, pp. 439-449.

D. Morales and Tran Cao Son, “Interval Methods in
Robot Navigation”, Reliable Computing, 1998, Vol. 4,
No. 1, pp. 5561.

A. Saffiotti, K. Konolige, and E. H. Ruspini,
“A multivalued-logic approach to integrating planning
and control”, Artificial Intelligence, 1995, Vol. 76, No.
1-2, pp. 481-526.

