Computing the Shape of the Image of a
Multi-Linear Mapping Is Possible But

Computationally Intractable: Theorems

Raul Trejo and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
emails {rtrejo,vladik}@cs.utep.edu

Abstract

In systems without inertia (or with negligible inertia), a change in the
values of control variables z(),..., z(™ leads to the immediate change
in the state z of the system. In more precise terms, for such systems,
every component z; of the state vector z = (21,..., 24) is a function of the
control variables. When we know what state z we want to achieve, the
natural question is: can we achieve this state, i.e., are there values of the
control variables which lead to this very state?

The simplest possible functional dependence is described by linear
functions. For such functions, the question of whether we can achieve
a given state z reduces to the solvability of the corresponding system
of linear equations; this solvability can be checked by using known (and
feasible) algorithms from linear algebra.

Next in complexity is the case when instead of a linear dependence,
we have a multi-linear dependence. In this paper, we show that for multi-
linear functions, the controllability problem is, in principle, algorithmi-
cally solvable, but it is computationally hard (NP-hard).

Keywords: multi-linear mappings; control; inverse kinematics; computation-

ally intractable.

1 Introduction

In systems without inertia (or with negligible inertia), a change in the values of
control variables (1) € R% ... z(™ € R leads to the immediate change in
the state z € R? of the system. In more precise terms, for such systems, every

component z; of the state vector z = (z1,...,24) is a function of the variables
z) = (xgl), .. ,.7;‘(111)), oz = (a:g"), .. 737((1:))7 ie.,

2 = Fy(aW, ... 2™ = fi(azgl),...,x((ill),...,azgn),...,x((i:)).

When we know what state z we want to achieve, the natural question is: can
we achieve this state, i.e., are there values of the control variables which lead to
this very state?

This problem is very useful in control. For example, in robotics, such a
problem appears when we try to control a robotic manipulator. If we know,
for every link of a robotic arm, its length and the angles between this link and
the previous and consequent links, then we can determine the positions of the
end joints; in mechanics, the corresponding (non-dynamic) computations form
a typical problem from kinematics. In robotic control, we face an inverse prob-
lem: given the position of the endpoints, find the angles between the links which
guarantee the desired position. This inverse problem is called the problem of
inverse kinematics; see, e.g., (Craig, 2001). This problem is often very compu-
tationally intensive (especially when we want the reach the desired position with
a high accuracy), and therefore, requires a significant amount of computation
time. Since a robot is often used to solve real-time problems, we would like to
perform these time-consuming computations only when it is necessary. In other
words, before starting the time-consuming computations of possible values of
29 we would like to first check whether we can reach the desired state z or
not. For example, if the robotic arm is too far away from the target point, it
cannot reach it; we would like to know that without first trying to reach the
point.

The simplest possible functional dependence is described by linear functions
fi. For such functions, the question of whether we can achieve a given state z
reduces to the solvability of the corresponding system of linear equations; this
solvability can be checked by using known (and feasible) algorithms from linear
algebra.

Next in complexity is the case when instead of a linear dependence, we have

a multi-linear one, i.e., a dependence F : R* x ... x R%* — R® of the form

dy dn
— E : (1) (n)
zi = Ajiq .0y -xil ‘Z'z" .
11=1 in=1

Multi-linear (and especially bilinear) dependencies occur in different control
problems, ranging from species population control to controlling chemical re-
actions to controlling nuclear fission; see, e.g., (Mohler, 1991). Is the above
problem still algorithmically solvable for such dependences? Is it feasibly solv-
able? These are the questions which we answer in the present paper.

In other words, we answer the following questions: Is there a (feasible)
algorithm that would, given a multi-linear mapping, determine its image? Or,
at least, given a multi-linear mapping and a point, determine whether this given
point belongs to the image of a given multi-linear mapping?

In this paper, we will prove two things:

o first, that there do exist algorithms for determining the desired shape and
for checking whether a given point belongs to a given image;

e second, that no feasible algorithm is possible for these tasks, or, more
precisely, that even for bilinear mappings, this problem is computationally
intractable (NP-hard).

Since the problem is provably complex even for the simplest possible nonlinear
mappings — namely, for bilinear ones — it is therefore complex for more sophis-
ticated nonlinear mappings — e.g., for trigonometric mappings which appear in
robotic inverse kinematic problems.

The fact that the general “inverse kinematic” problem is computationally
intractable (NP-hard) means that we cannot hope to have a general feasible
algorithm which solves this problem for all possible control situations. Instead,
for each specific class of control problems, we must develop a different algorithm
which takes into consideration specific features of this particular class of prob-
lems; it should also be expected that in algorithm developed for this class of
problems may not be easily transferable to other control problems.

Comment. For the exact definition of the notion of NP-hardness, see, e.g.,
(Garey and Johnson, 1979). For the readers who are not well familiar with this
notion, in the following sections, we will give an explanation of what NP-hard

means.

2 The Problem Is (In Principle) Algorithmically
Solvable

To describe a general shape of a multi-linear mapping, we must recall the fol-
lowing definition (see, e.g., (Arnold, 1983)):

Definition 1. Let n be a positive integer, and R™ be an n—dimensional vector
space. A set S C R™ is called semi-algebraic if this set is a union of finitely
many sets Sp...,Sp, each of which consists of all tuples that satisfy one or
several conditions of the types

Pj(-fL'l,..-,.Z'n):Qj(.Z’l,.-.,.Z’n), (].)

Pk(xla"'axn)>Qk(x17"'7xn)ﬂ (2)
or

P(z1,...,2n) > Qi(z1,...,24,), (3)

for some polynomials P; and @);.

Definition 2. A real number r is called algebraic if P(r) = 0 for some polyno-
mial P(z) with integer coefficients that is not identically 0.

PROPOSITION 1.
o The image of every multi-linear mapping is a semi-algebraic set.

o If all the coefficients ai, .5, of the multi-linear mapping are algebraic num-
bers, then each set Sy, in the description of the image as a semi-algebraic
set can be described by conditions (1) — (3) in which all the coefficients of
all the polynomials P; and Q; are algebraic numbers.

Comments.

e For readers’ convenience, all the proofs are given in the last section of this
paper.

e Let us now describe what computability means for algebraic numbers,

multi-linear mappings, and image sets.

Definition 3. We say that an algebraic number r is given to an algorithm if
this algorithm can use the following information:

e the integer coefficients of a polynomial P(x) for which P(r) = 0;

e the rational endpoints a, b of an interval [a,b] on which r is the only root
of the polynomial P(z).

Comment. If we know the coefficients of the polynomial P(x), and if we know
the interval [a,b] on which this polynomial has exactly one root 7, then known
numerical methods can easily compute this root r with arbitrary accuracy.

Definition 4.

o We say that a multi-linear mapping is given to an algorithm, if this algo-
rithm can use the following information:

— a positive integer d;

a positive integer n;
— n positive integers di, .. .,dy,;
— dxd; x...xd, algebraic numbers a;;, ..., -

o We say that an algorithm computes an algebraic number r if it computes

two things:

— the coefficients of a polynomial P(x) with integer coefficients for
which P(r) = 0;

— the rational endpoints a,b of an interval [a,b] on which r is the only
root of the polynomial P(x).

e We say that an algorithm computes a polynomial P(z1,...,xy) if:

— this polynomial has algebraic coefficients and

— the algorithm computes all the coefficients of this polynomial.
o We say that an algorithm computes a semi-algebraic set S if the algorithm:

— produces the list of equalities and inequalities (1) — (3) that define
the set S, and

— computes all the polynomials from these equalities and inequalities.

PROPOSITION 2. There exists an algorithm that, given o multi-linear map-
ping, computes the (semi-algebraic) image of this mapping.

Comments.

e The mere existence of the algorithm does not necessarily mean that this
algorithm is practical. Indeed, as we will see from the proof, the algorithm
that we propose uses an algorithm proposed by A. Tarski, and it is known
that for the problem solved by Tarski’s algorithm, for some cases, at least
doubly exponential time is necessary, i.e., time > 22°, where s is the
length of the input (in bits); see, e.g., (Davenport and Heintz, 1988).
Even for small s, 22" is unrealistically large. Thus, the running time of
our algorithm is at least doubly exponential and hence, unrealistic. In the
following text, we will show that realistic algorithms are, most probably,
not possible at all.

e Since the problem of describing the image itself turns out to be too com-
plicated, we may want to consider a simpler problem: checking whether
a given point belongs to a given image. (In the following text, this easier
problem will also be shown to be computationally intractable.) Let us
first describe this problem formally.

Definition 5. We say that a point z = (z1,...,24) € R? is given to an algorithm
if all d coordinates z1, ..., zq of this point are given to this algorithm.

PROPOSITION 3. There exists an algorithm that, given a multi-linear map-
ping f: R% x ... x R*™ — R? and a point z € R?, checks whether the given
point z belongs to the image of the given mapping.

Comment. Before we start formulating and proving our result (that finding the
image of a multi-linear mapping is computationally intractable), let us briefly
recall what the terms computationally intractable and computationally feasible

mean.

3 Feasible and Intractable: General Definitions
(Brief Reminder)

3.1 Feasible

Some algorithms require lots of time to run. For example, some algorithms
require the running time of > 2% computational steps on an input of size (bit
length) s. For reasonable sizes s & 300, the resulting running time exceeds the
lifetime of the Universe and is, therefore, for all practical purposes, non-feasible.

In order to find out which algorithms are feasible and which are not, we must
formalize what “feasible” means. This formalization problem has been studied
in theoretical computer science; no completely satisfactory definition has yet
been proposed.

The best known formalization is: an algorithm U/ is feasible if and only if
it is polynomial time, i.e., if and only if there exists a polynomial P such that
for every input z, the running time #;;(x) of the algorithm I/ on the input z is
bounded by P(|z|) (here, |z| denotes the length of the input z).

This definition is not perfect, because there are algorithms that are polyno-
mial time but that require billions of years to compute, and there are algorithms
that require in a few cases exponential time but that are, in general, very prac-
tical. However, this is the best definition we have so far.

3.2 Intractable (NP-hard)

For many mathematical problems, it is not yet known (2001) whether these
problems can be solved in polynomial time or not. However, it is known that
some combinatorial problems are as tough as possible, in the sense that if we
can solve any of these problems in polynomial time, then, crudely speaking,
we can solve many practically important combinatorial problems in polynomial
time. The corresponding set of important combinatorial problems is usually
denoted by NP, and problems whose fast solution leads to a fast solution of
all problems from the class NP are called NP-hard. The majority of computer
scientists believe that NP-hard problems are not feasible. For that reason, NP-
hard problems are also called intractable. For formal definitions and detailed
descriptions, see, e.g., (Garey and Johnson, 1979).

3.3

Intractable (NP-hard): Practical viewpoint

The fact that a general problem is “intractable” in this sense does not necessarily

mean that we cannot solve it in practice:

3.4

First, NP-hardness means that we cannot have a general algorithm for
solving all possible instance of this general problem in reasonable time.
We can, however, have algorithms which solve problems from a certain
subclass.

Second, even if we cannot solve the problem much faster than in the
exponential time 29 it still leaves the possibility to solve this problem for
inputs of small input length s. For example, for inputs of size s = 20, we
need 220 =~ 108 computational steps, which is milliseconds on any modern
computer. For inputs of size s = 30, we need 230 x~ 10? steps: also quite
a doable amount.

For bilinear mappings, the size of the problem, crudely speaking, corre-
sponds to the number of variables. So, if we have a few variables, the
problem is quite solvable.

Propositional satisfiability: historically the first ex-
ample of an NP-hard problem

The standard method of proving that some problem is NP-hard is by reducing

this problem to some other problem for which NP-hardness has already been

proved. Historically the first example of an NP-hard problem was the so-called

propositional satisfiability problem for 3-CNF formulas.

This problem can be formulated as follows:

Let vq,...,v be a finite list of Boolean (propositional) variables, i.e., vari-
ables that take two possible values: “true” and “false”.

By a literal, we mean either a variable v;, or its negation —w;; the negation

—w; will also be denoted by v_;.

By a disjunction (clause) D, we mean an expression of the type aV...Vb,
where a,...,b are literals.

By a 3-CNF formula, we mean an expression of the type D1&...&D,y,,
where D, ..., D, are disjunctions each of which has two or three literals.

By a Boolean vector, we mean a sequence of k truth values vy, ..., v.

For each Boolean vector, we can define the truth value of a CNF formula
F' by substituting the values v; into the formula F'.

We say that a propositional formula is satisfiable if there exists a Boolean
vector that makes this formula true.

For example, a formula (v; V v2)&(v1 V —w3) is satisfied by a Boolean

vector v; = vy =“true”.

By a SAT problem, we mean the following problem:

GIVEN: a 3-CNF formula;
CHECK: whether this formula is satisfiable.

Now, we are ready to formulate our results about computational intractabil-
ity.

4 The Problem Is Computationally Intractable
It turns out that our problem is computationally intractable even in the simplest
case:

e when we only consider bilinear mappings;

e when we only consider mappings with integer coeflicients a;;, i,;

e when we are not interested in computing the entire image set, but only in
checking whether a given point z = (z1,...,24) € R? belongs to this set;

e when we are only interested in point z with integer coefficients z;.

Since the problem is computationally intractable even for this simple case, an
arbitrary more general problem is also computationally intractable.

PROPOSITION 4. The following problem is computationally intractable

(NP-hard):
GIVEN: e a bilinear mapping f : R™* x R% — R® with integer coefficients
Qiiyin s and
e a point z = (21,...,2q) € R with integer coordinates z;,

CHECK: whether the given point z belongs to the image of the given map-
ping f.

5 Proofs

5.1 Proofs of Propositions 1-3

The fact that the point z = (21,...,24) belongs to the image of a multi-linear
mapping can be described by the following logical formula:

d1 dn
32V 3P 3 e (z1 D DRED DR TR T N I
=1 =1
d1 dn
=1 =1

This formula belongs to a general class (called first order formulas of real num-
bers theory) described by A. Tarski (1951). Namely, in this class:

e We start with constants 0 and 1, and with variables that run over all real
numbers.

e By applying standard arithmetic operations +, —,-,:, to these constants
and variables, we get elementary expressions called terms.

e An elementary formula is an expression of one of the types t; < to, t; = to,
t1 > ta, t1 <ta, 1 ;ﬁ ta, and t1 > to.

e Finally, a formula is any expression that can be obtained from elementary
formulas by using propositional connectives (such as V, &, =, — (implies),
etc.), and quantifiers Vo and 3z over all real numbers.

Comments.

e For general notions of logic, see, e.g., (Barwise, 1977; Enderton, 1972;
Schoenfield, 1967).

e In our definition, we started with two real numbers 0 and 1. It is known
that if we start with arbitrary algebraic real numbers, we end up with the
same class of first order formulas. Indeed, if we know that r is the only real
number on the interval [a,b] for which P(r) = 0 for a given polynomial
P(z) with integer coefficients, then we can use this fact to re-formulate
an arbitrary formula that contains r: e.g., the formula r +1 = s can be
reformulated as

Ve((a <2&z<b& P(z) =0) 5> z+1=3).

10

Tarski has shown (1951, see also (Arnold, 1983)) that there exists an algorithm
that checks, for each such formula, whether it is true or not. Thus, by applying
Tarski’s algorithm to the resulting formula, we will be able to check whether the
given vector z € R? belongs to the image of the desired mapping. Proposition

3 is proven.

It is also known that for an arbitrary formula from this class, the set of
all vectors satisfying this formula is semi-algebraic (Seidenberg, 1954; Tarski,
1951), and that there exists an algorithm that computes the coefficients of the
corresponding polynomials P; and ();. Thus, Propositions 1 and 2 are also

proven.

5.2 Proof of Proposition 4

To prove this result, we will show that if we can solve our problem in polynomial
time, then we will be able to solve the propositional satisfiability problem SAT
for 3-CNF formulas in polynomial time. Since the problem SAT is known to be
NP-hard, from this reduction, it will follow that our problem is also NP-hard.

Indeed, let us assume that we can solve our problem in polynomial time. Let
us show how we can then solve any instance of SAT in polynomial time. Let
F=D&...&D,, be a formula in 3-CNF with variables v, ..., vg.

By definition of a 3-CNF formula, each disjunction D; is an expression of
the type a V b or of the type a V bV ¢, where each of the expressions a, b, and ¢
is a literal, i.e., either a variable v; (1 <14 < k), or a negation —w; of a variable
v;. In accordance with the above description of the 3-CNF formulas, we will
denote a negation —w; of the variable v; by v_; (i.e., by using negative indices).

Based on the formula F', we will construct a system of bilinear equations
that has a solution if and only if the formula F' is satisfiable. This system will
have a solution if and only if a certain point with integer coefficients belongs to
the image of a certain bilinear mapping with integer coefficients. The size of the
data that describes this mapping will be bounded by a polynomial (actually,
by the square) of the size of the original problem. Since we assumed that we
can check, in polynomial time, whether a given point belongs to an image of
a given mapping, we will thus be able, given a formula in 3-CNF, to check, in
polynomial time, whether a given formula is satisfiable or not.

Let us now construct the desired system of bilinear equations. Let us first

agree on notations:

11

e an integer variable ¢ will take values from 1 to k (this variable corresponds
to different variables x1,...,xg);

e an integer variable j will take values from 1 to m (this variable corresponds
to different disjunctions Dy, ..., Dy,,); and

e integer variables a, §, and v will take values from —k to —1 and from 1
to k (these variables correspond to different literals v_g, ..., v_1, ..., vy,

ceey ’Uk).
The desired mapping will be defined on the following linear spaces:

o As a first space R%, we will take a space of dimension d; = 1+ 2k + (2k)?.
Vectors from this space R will be denoted by = = (%0,{%a}, {Tag});
their coeflicients will be denoted by x¢, Z4, and zqs.

o As a second space R%, we will take a space of dimension dy =
1 + 2k. Vectors from this space R% will be denoted by y =
(Yo,Y—ks---,Y—1,Y1,---,Yk); their coefficients will be denoted by yo and

Ya-
Let us describe the desired bilinear equations:

e First, we construct an equation

Zo - Yo = 1. (4)

Second, for every i from 1 to k, we construct the following two equations:

Ti Yo+ T—i Yo =1; ()

To-Yi +To-y—i=1 (6)
e Third, for every a = —k,...,—1,1,...,k, we construct an equation

To Yo — To Yo = 0. (M)

Fourth, for every a and 3, we construct an equation

To -Yg — Tap Yo = 0. (8)

Fifth, we add equations that correspond to m different disjunctions D,
1<j<m:

12

— For every disjunction D; = v, V vg that consists of two literals
(-k<a<k, -k <pB<k), we add the equation

Tap " Yo = 0. (9)

— For every disjunction D; = v, V vg Vv, that consists of three literals
(—k<a<k —-k<p<k,—k<~v<k), we add the equation

ZTag Yy = 0. (10)

The left-hand sides of the equations (4) — (10) form a bilinear mapping from
R% x R% to RY, where d = 1+ 2k + 2k + (2k)? +m; it is easy to see that all the
coefficients of this bilinear mapping are integers (moreover, they only take the
values —1, 0, and 1). The solvability of this system of equations is equivalent to
checking whether the point z = (1,1,...,1,0,...,0) formed by the right-hand
sides of these equations belongs to the image of this bilinear mapping.

Let us show that this system of equation has a solution if and only if the
original propositional formula F' is satisfiable.

o Let us first assume that F' is satisfiable. This means that there exists a
Boolean vector v = (v1,...,v;) that makes this formula F true. Let us
show that in this situation, the following = and y are the solution to the
system of equations (4) — (10):

® o =yo=1;

o x; =y; =0if v; =“rue”, and z; = y; = 1 if v; =“false”, 1 < i < k;

ez =y ;=1-2;,1<i<k;

® Tn3 =Ta T3
As a result of this choice, y4 = z4, and z, = 0 if and only if v, =“true”.
Let us show that the equations (4) — (10) are indeed satisfied for the
resulting vectors z € R% and y € R%:

— Equation (4) is trivially true.

— Equation (5) has the form (z; + z_;) - yo = 1, and is true due to
zi+x—;=1and yo = 1.

— Equation (6) follows from (5) since we have chosen z, = y,.

13

— Equation (7) follows directly from the fact that we have chosen z, =
Ya-

— Equation (8) is true due to our choice of 243 = 24 - 5 and the fact
that yo =1 and yg = 3.

— Let us now show that the equations (9) and (10) are also true. Since
the values v; make the formula F' = D& ...&D,, true, all disjunc-
tions D; must also be true. Let us consider two possible cases.

x If D; has exactly two literals, i.e., if D; = vy V vg, then one of
these literals v, and vg must be true, and therefore, the real-
valued variable corresponding to this literal must be equal to
0. Thus, either z, = 0 or zg = 0. In both cases, we have
Zag = %o - 23 = 0, i.e., equation (9) is true.

* If D; has exactly three literals, i.e., if D; = v4 Vg Vv, then one
of these literals v,, vg, and v, must be true, and therefore, the
real-valued variable corresponding to this literal must be equal
to 0. Thus, either z, =0, or 23 =0, or z,(=y,) =0. f 2, =0
or zg = 0, then, similar to the previous case, we conclude that
zqp = 0. Hence, x4 - yy = 0, and the equation (10) is true. If
yy = 0, then also zqp -y, = 0. Thus, the equation (10) is true
in both cases.

Thus, if the formula F is satisfiable, the system (4)—(10) has a solution and
therefore, the point z belongs to the image of the given bilinear mapping.

e Let us now show that if the system (4) — (10) has a solution z and y, then
the propositional formula F' is satisfiable. Before we show this, we need
to prove some properties of the solutions (z,vy).

1. 29 # 0 and yo # 0.
This property follows from the equation (4).
2. if o =0, then z_, # 0.
This property follows from the fact that (5) has the form
(@itz i) yo=1
and from the already proven property yo # 0. Hence, z; +x_; #

0.

14

3. o4 = 0if and only if y, = 0.
This property follows from the equation (7) and from the already
proven properties zo # 0 and yo # 0.

4. zo3 = 0 if and only if either z, =0 or zg3 = 0.

If 24 =0 or zg = 0, then z, - zg = 0, so from the equation (8),
we conclude that z,p - yo = 0. Since yo # 0, we conclude that
zqp = 0. Vice versa, if z,3 = 0, then from the equation (8), we
conclude that z, - 3 = 0 and therefore, that either z, = 0, or
zg = 0.

Now, we are ready to show that the formula F is satisfiable. Namely, we
will show that the following Boolean vector makes the formula F' true: for
every i, we take:

o v; =“true” if z; = 0 and

o v; =“false” if z; # 0.
Let us show that for this choice, £, = 0 implies v, =“true”. Indeed:

— For a = i, this directly follows from the definition of v;.

— For a = —i, if x_; = 0, then, due to Property 2, we have z; # 0,

_«

hence, v; =“false” and v_; = —w; =“true”.

To show that F' = D1 & . ..&D,, is true, we must show that each disjunc-
tion D; is true. We will consider two possible cases:

— Let us first consider the case when D; has exactly two literals, i.e.,
when D; = v, Vug. In this case, equation (9) is true, i.e., zag-yo = 0,
Since yo # 0 (Property 1), we have x4, = 0. Hence, due to Property
4, either zo, = 0 or zg = 0. In the first case, v, =“true”; in the
second case, vg =“true”. In both cases, D; = v, V vg is true.

— Let us now consider the cases when D; has three literals, i.e., when
D; = vaVugVu,. In this case, the equation (1) is true, i.e., £og Yy =

0. Therefore, either x,3 =0 or y, = 0.
* In the first sub-case, due to Property 4, either z, = 0 or g = 0.

* In the second sub-case, due to Property 3, z, = 0.

15

In both sub-cases, either z, = 0, or zg = 0, or z, = 0. Thus,
either v, =“true”, or vg =“true”, or v, =“true”. In all three cases,

D =vq Vg Vo, is true.
So, the original formula F' is indeed true.

Reduction to satisfiability is proven: the formula F' is satisfiable if and only
if the system (4) — (10) has a solution, i.e., if and only if the corresponding
point z belongs to the image of the corresponding bilinear mapping. Hence, the
proposition is proven.

Acknowledgments. This work was supported in part by NASA under
cooperative agreement NCC5-209, by NSF grants No. DUE-9750858 and
CDA-9522207, by United Space Alliance, grant No. NAS 9-20000 (PWO
C0C67713A6), by the Future Aerospace Science and Technology Program
(FAST) Center for Structural Integrity of Aerospace Systems, effort sponsored
by the Air Force Office of Scientific Research, Air Force Materiel Command,
USAF, under grants F49620-95-1-0518 and F49620-00-1-0365, by the National
Security Agency under Grant No. MDA904-98-1-0561, and by Grant No. W-
00016 from the U.S.-Czech Science and Technology Joint Fund.

We are thankful to Piotr Wojciechowski for the formulation of the prob-
lem and for valuable discussions, and to the anonymous referees for important
suggestions.

References
Arnold, V. 1. (1983), Geometrical Methods in the Theory of Ordinary differential

equations, Springer-Verlag, New York.

Barwise, J., ed. (1977), Handbook of Mathematical Logic, North-Holland, Ams-
terdam.

Bernau, S. and P. J. Wojciechowski (1996), “Images of bilinear mappings into
R3”, Proceedings of the American Mathematical Society, 124(12), pp. 3605
3612.

Craig, J. J. (2001), Introduction to Robotics, Addison-Wesley, New York.

Davenport, J. H. and J. Heintz (1988), “Real quantifier elimination is doubly
exponential”, Journal of Symbolic Computations, 5(1/2), pp. 29-35.

Enderton, H. B. (1972), A mathematical introduction to logic. Academic Press,
New York.

16

Garey, M. and D. Johnson (1979), Computers and intractability: a guide to the
theory of NP-completeness, Freeman, San Francisco.

Lewis, L. R. and C. H. Papadimitriou (1981), Elements of the theory of compu-
tation, Prentice-Hall, Englewood Cliffs, NJ.

Martin, J. C. (1991), Introduction to languages and the theory of computation,
McGraw-Hill, New York.

Mohler, R. R. (1991), Nonlinear systems. Vol. 1. Dynamics and control, Pren-
tice Hall, Englewood CIliff, NJ.

Papadimitriou, C. H. (1994), Computational Complexity, Addison-Wesley, San
Diego.
Schoenfield, J. R. (1967), Mathematical logic, Addison-Wesley.

Seidenberg, A. (1954), “A new decision method for elementary algebra”, Annals
of Math., 60, pp. 365-374.

Tarski, A. (1951), A decision method for elementary algebra and geometry, 2nd
ed., Berkeley and Los Angeles.

17

