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Abstract

Expertsusuallydescribequality by usingwords from
natural language sudh as“perfect”, “good”, etc. In this
paper we deducenatural numericalvaluescorrespond-
ing to thesewords, and showthat thesevaluesexplain
empirical dependenciesincovered in data mining and
in the analysisof structural integrity of aemspacestruc-

tures.

1. Formulation of the Problem

In mathematicatlescriptionsquality is characterized
by anumericalvalueof anappropriatel\choserobjective
function.

In real-life, however, to describequality, we usewords
suchas“perfect”, “good”, etc.

We thereforeneedto relate numerical values with
wordsdescribingquality.

¢ If we alreadyhave a numericalvalue, then fuzzy
logic provides us with a reasonablagechniquefor
translatinghis numericalvalueinto words.

e Often, we facethe oppositeproblem: we have an
expert’s estimateof quality in termsof words,and
we musttranslatethis estimatanto numberssothat
we will beableto combinethis quality information
with otherknowledgewhich is alreadygivenin nu-
mericalform.

Of coursewe canalwaysusethegeneraknowledgeelic-
itation technique®f fuzzy logic. However, sincequality
words appeatin variouservironments,it is desirableto
developgenerakrnvironment-indepenenttechniquesor
formalizingquality words.

2. Historically First Result: Formalization of
the Word “Perfect”

2.1 Main ldea

In this paper we exploit the ideawhich wasfirst de-
velopedin [8] (seealso[9]). Thisideais asfollows:

“perfect” meanghata furtherincreaseén intensity
would resultin anoppositeeffect.

2.2 Towards Formalization of This Idea

In [9], thisideais usedto describehe perfecttime al-
locatedfor cooperatie learning.Cooperatioris advanta-
geousbut somelearningis bestdoneindividually. What
portionz of classtime shouldbeallocatedo cooperatie
learningand what portion to individual learning? If we
startwith 0 portionz = 0 (no collaborationat all), and
graduallyincreaset (i.e.,addsomecooperation)ye will
malkethelearningmoreefficient. However, afteracertain
valuez, we will getadecreasén efficiengy.

The optimal (perfect)portionp allocatedfor coopera-
tivelearningcanbedescribedy thefollowing condition:



furtherincreasen this degreeleadsto anoppositeeffect
We canrewrite this conditionasfollows:

very p = not p.

1)

To formalize“very” and“not”, it is naturalto usefuzzy
logic (seege.g.,[6, 12)):

e “very” z istypically interpretecasz - z, and

e “not” z is usuallyinterpretedasl — z.

CommentTheinterpretatiorof “very” asz - z, originally
proposedy in the pioneerpaper[15], was experimen-
tally confirmedin [7].

2.3 Formalization and the Resulting Numerical
Value of “P erfect”

If we usetheseinterpretationsn the above formula,
we gettheequatiorp - p = 1 — p, whoseonly solutionon
theinterval [0, 1] is the goldenproportionnumber

-1
p:\/i =0.618...

2.4. Confirmation of This Numerical Value

Thevalidity of theabove analysigs confirmedboth:

e by the generalfact that the golden proportionis
known to be estheticallypleasingandalso

¢ by the experimentakesultsin learningaccordingto
which the optimal portion of cooperatre education
is aroundé0%][4, 5, 9].

3. Natural Next Result: Formalization of the
Word “Good”

3.1 Idea

While formalizingthenotionof “perfect”, we alsodis-
cussedhow to naturallyformalizetheword “very”. Now,
to find the naturalnumericalequialentg of the word
“good”, we canrelatethis word to the wordswhosefor-
malizationwe alreadyknow. A naturalcommon-sensee-
lationis that“perfect” canbeinterpretedas“verygood”.

3.2 Formalization and the Resulting Numerical
Value of “Good"

Sincewe know that“very” x meansz - z, we thus
concludethatg - g = p = 0.618...,i.e.,thatg = \/p =
0.77... (i.e.,g is approximatelyequalto 0.8).

3.3 Confirmation of This Numerical Value

This valueis alsoin goodaccordancevith common
sensenamely with the 20-80“Pareto”law, accordingto
which:

e 20%of thepeopledrink 80% of thebeer
o 20%of theresearcherarite 80%of all papersetc.

All these"20-80" descriptionscan be reformulated,in
common-sensterms by statementtik e “peoplewhoare
not very good to their healthdrink a good amountof
beer” etc.

4. Applications to Data Mining
4.1 First Application: Idea

In datamining, we take the data (e.g., a big sales
databasegndtry to find new rulesin theseeminglyrule-
lessdata.An interestingandsomeavhatunexpectedorac-
tical resultof usingdatamining techniquess thatagood
numberof theseautomaticallydiscoseredrulesturnsout
to be alreadyknown by experts

4.2 First Application: Conclusion

If we usethe above formalizationof theword “good”,
thenwe concludahatabout80%of theautomaticallydis-
coveredrulesarealreadyknown to experts.

4.3 First Application: Experimental Confirma-
tion

The above conclusionis in good accordancewith
the experimentalfact that from each25 rules typically
discovered by a system,approximately20 are already
known (seeg.g.,[11]).

4.4. SecondApplication: Idea

The above experimentalfact doesnot meanthat the
remaining5 rules areimmediatelyacceptedy the ex-
perts: these‘“rules” are often accidentalcoincidences
which happerto occurin this particularbatchof databut
which will probablynot be confirmedby the follow-up
data.

This is one of the reasonswhy, in spite of a lot of

computerefforts, therearenot somary successto-
riesin dataminingasonecouldexpect,andthesame
impressie storiesmove from onepopulararticleto

theother



For aruleto beacceptedy experts,it hasto appeaicon-
sistently;at least,it hasto appearagainin the new batch
of data.

A commonsensedescriptionof this phenomenorns
thata goodnumberof new rulesdo not appeaiagain

4.5. SecondApplication: Conclusion

If we usetheabove interpretatiorof theword “good”,
we concludethat only 20% of the new rules are con-
firmed. Sincenew rulesform 20% of thetotal numberof
rulesuncoveredby a datamining software,we canthus
concludethatonly 20%- 20% = 4% of the rulesdiscov-
eredby this softwareturnsout to bereal new rules,i.e.,
ruleswhich are: not only previously unknown, but also
acceptableo experts(andthususefulin future applica-
tions).

4.6. SecondApplication: Experimental Confir-
mation

This numberis againin good accordancewith the
statisticsgivenin [11] who saythat, on average,our of
every 25 un-coveredrules,only oneturn outto bea use-
ful new rule.

4.7. Data Mining: Conclusion

Thus,our formalizationof quality wordsexplainsthe
empiricalphenomen&om dataminingdescribedn [11].

5. Applications to Structural Integrity of
AerospaceStructures

5.1 Formulation of the Problem

As a secondcase study we consideredthe non-
destructve analysisof structuralintegrity of aerospace
structures. This is an important practical problem, in
which, dueto a large uncertainty methodsof soft com-
putinghave beenvery useful(seee.g.,[2]). Thesemeth-
odsarenot perfect,they canerroneoushoverlooksome
faults. Theseerrorscomefrom two sources:

e Part of theseerrorsare causedby the uncertainty
of the problem:we arerestrictingoursehesto non-
destructve testing,whichis inevitably imprecisefor
innerfaults).

o Part of theseerrorsarecausedy theimperfections
of themethods.

To avoid a uselesgerfectingof an imperfectsituation,
it is desirableto have a rule-of-thumb expectationof

how mary errorswe shouldexpect; then, if a process-
ing methodreacheghis errorrate,it meanghatwe have
achievedourgoal,andfurtherperfectings ratheruseless.

5.2 First Application: Idea

The expert estimatesof theseratesuse the quality
words: that a good numberof faults canbe thusidenti-
fied

5.3 First Application: Conclusion

If we usetheabove interpretatiorof theword “good”,
thenwe canconcludehatwe shouldexpectupto 77%of
thefaultsto beidentifiableby thesetechniques.

5.4. First Application: Experimental Confirma-
tion

Currentnon-destructieestimatiortechnique$iave al-
mostreachedahatlevel: they un-corermorethan70% of
thefaults(see.g.,[1, 10], andreferencesherein).

5.5. Additional Conclusion: Only Data Fusion
Can Drastically Decreasethe Err or Rate

At first glance,this result doesnot seemto be very
encouraging:even whenwe perfectour methods,they
will still misseveryfifth fault. However, thisresultis not
asbadasit seems:

¢ Thisestimatds aboutusinga singlemethod.

o However, thereexist several differentsoft comput-
ing techniqueseachof which hasits own problems
andsuccesses.

It is thereforenaturalto usedatafusion i.e., to combine
severaldifferenttechniquesogether

5.6. SecondApplication: Idea

Whatis the expectederror ratefor datafusion meth-
ods?

Underthecombinatiorof two methodsyve expectthat
a goodnumberof faultsoverlookedby oneof the meth-
odswill belocatedby the seconcbne

5.7. SecondApplication: Conclusion

If we usethe above formalizationof theword “good”,
then,similarly to datamining, we canmake thefollowing
conclusion: With two methods,we expectto overlook
only 20%- 20%= 4% of thefaults—i.e., correctlydetect
96%of them.



5.8 SecondApplication: Experimental Confir-
mation

Generalconclusion.Ourpreliminaryresultshave showvn
thatwhile, say fine-tuningfuzzy methodsdoesnot lead
to a seriousperformancamprovement,datafusion can
indeeddrastically improve the performance;see, e.g.,
[13].

Let usdescribethe detailsof our experimentis some
detail.

Techniquesused. To testdifferentfusiontechniquesywe
took a platewith severalknown faultsof differentsizes,
andapplieddifferentnon-destructie techniquegsuchas
pulseecho, Eddy current,and resonancejo this plate.
For eachof thesetechniquesye got, for eachpoint on
theplate,the correspondingignalvalues.

General idea of non-destructive testing. The geneal
ideaof non-destructiefault detectionis asfollows:

¢ If oneof theseechniqueseadsto theunusuakignal
value(verydifferentfrom thenormalvalues) thena
faultis probablylocatedat this point.

e Thelargerthedifferencethelargeris thefault.

How to implement this idea: casewhen we know the
pre-flight inspectionresults. Let's shav how this idea
canbe formalized. First, we mustdetectthe faults. In
accordancevith theaboveidea,in orderto detectafault,
we mustknow the normal valuesof the signaland the
allowabledeviationfrom thesenormalvalues.

In somecaseswe have the resultsof theinitial (pre-
flight) inspectionin which no faultswerefound. In such
casesfor eachtype of thesignal,we cancompute:

¢ the(arithmetic)average a of all thevaluesand

¢ themeansquargstandardieviation o of thesignal
z from its averageua.

In accordancewith the standardstatistical techniques
(seee.q.,[14]), we canthenconsidewaluesz whichare

outsideof the “threesigma”intenal [a — 30, a + 30] as

possiblefaults.

Problemwith the above straightforward implementa-
tion. Theproblemwith this (seeminglystraightforvard)
approachs thatfor all theabose methodsunusualalues
occurnotonly atthefaultlocations but alsoattheedges
of theplate.

Therelationbetweerfaultsandedgesds very natural,
since,e.g.,a typical fault is a hole in the plate,i.e., an
extraedge.

As aresultof this relation,the computatiorof thethe
averagesr andof thestandardleviationo involvetheedge

points,in which the value of the signalis very different
from the expectednormalvalue. Hence the computeds
is muchlargerthanfor the normal points. As a result,
sometrue faults— which would have beendetectedby
a correct(smaller)o — go undetectedvhenwe usethis
largervalue.

Solution to this problem: casewhenwe know the pre-
flight inspectionresults. If we know the resultsof the
initial inspection,then we can ignore the edgeswhen
computingthe averageando, andgetcorrectresults.

This solution doesnot work in other cases.In mary

practicalsituations,we do not have theseinitial inspec-
tion results(e.qg.,if whatwe aredoingin exactly this pre-

flight inspection). In suchsituations,we mustestimate
thevaluesa ande basedn the platewith faults.

In this case,evenif we eliminatethe edgeswe may
still have faults, and the signalscorrespondindo these
faults“spoil” thevaluesa ande andpreventusfrom de-
tectingall thefaults.

A new solution to the above problem: idea. To elimi-
nateall thefaults,we can:

o first, mark the worst faults (which canbe detected
evenwhenwe usetheenlagedo);

¢ then,re-calculatex ande by omitting known faults,

e checkfor new faultsby usingthesebetterestimates
for a ando,

andcontinuethesdterationsuntil all thefaultsareuncov-
ered.

A new solution to the above problem: algorithm. Asa
result,we arrive at the following iterative algorithm. At
eachsteps = 1, 2,. .. of thisalgorithm:

¢ new approximations(*) ands(®) arecomputedor
thedesiredvaluesof a ando; and

e somepointson the platearemarked aseitheredge
pointsor possiblefaultlocations.

In thebeginning,we do notknow wherethefaultsare,so
no pointsaremarked. Eachsteps consistf the follow-
ing two operations:

o first, we computethe averagea(*) andthe standard
deviation o(*) basedon all un-marlkedpointsof the
plate;

¢ then,we checkeachun-marledpoint, andmarkall
the pointsfor which |z — a(®)| > 30(%).

Theprocesstopswhenthesubsequentaluesof a(®) and
o(#) becomecloseto eachother(this usuallyhappenn
the 3rd or 4th steps). The correspondindinal valuesof



a'® and¢(®) arethentaken asthe desiredvaluesof a
ando.

Resulting data fusion: preparation. For eachmarked
point, we then estimatethe deviationd = (z — a)/o.
Basedon the plate with known faults, we calibrate the
dependencé(r) of the deviation d on the sizer of the
fault; then, basedon the obsered deviation d, we can
estimatets sizer by solvingtheequationd(r) = d.

Data fusion itself. Fromsereraldifferenttestingsignals,
we getseveralestimategrom the sizeandlocationof the
fault. We canthencombinetheseestimatese.g.,by using
standardstatisticalaveraging[14].

5.9 Structural Integrity: Conclusion

The above optimistic estimateencouragesis to put
all the efforts not into perfectingoneof the known tech-
nigues,but ratherinto combining several existing ones
into a singlefusedapproach.
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