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Abstract

Expertsusuallydescribequality by usingwords from
natural languagesuch as“perfect”, “good”, etc. In this
paper, we deducenatural numericalvaluescorrespond-
ing to thesewords, and showthat thesevaluesexplain
empirical dependenciesuncovered in data mining and
in theanalysisof structural integrity of aerospacestruc-
tures.

1. Formulation of the Problem

In mathematicaldescriptions,quality is characterized
by anumericalvalueof anappropriatelychosenobjective
function.

In real-life,however, to describequality, weusewords
suchas“perfect”, “good”, etc.

We thereforeneed to relate numerical values with
wordsdescribingquality.

� If we alreadyhave a numericalvalue, then fuzzy
logic provides us with a reasonabletechniquefor
translatingthisnumericalvalueinto words.

� Often, we facethe oppositeproblem: we have an
expert’s estimateof quality in termsof words,and
we musttranslatethis estimateinto numberssothat
we will beableto combinethis quality information
with otherknowledgewhich is alreadygivenin nu-
mericalform.

Of course,wecanalwaysusethegeneralknowledgeelic-
itation techniquesof fuzzy logic. However, sincequality
wordsappearin variousenvironments,it is desirableto
developgeneralenvironment-independenttechniquesfor
formalizingqualitywords.

2. Historically First Result: Formalization of
the Word “Perfect”

2.1. Main Idea

In this paper, we exploit the ideawhich wasfirst de-
velopedin [8] (seealso[9]). This ideais asfollows:

“perfect” meansthata furtherincreasein intensity
would resultin anoppositeeffect.

2.2. Towards Formalization of This Idea

In [9], this ideais usedto describetheperfecttimeal-
locatedfor cooperativelearning.Cooperationis advanta-
geous,but somelearningis bestdoneindividually. What
portion � of classtimeshouldbeallocatedto cooperative
learningandwhat portion to individual learning? If we
startwith 0 portion ��� �

(no collaborationat all), and
graduallyincreaseit (i.e.,addsomecooperation),wewill
makethelearningmoreefficient.However, afteracertain
value � , wewill geta decreasein efficiency.

Theoptimal(perfect)portion � allocatedfor coopera-
tivelearningcanbedescribedby thefollowingcondition:



furtherincreasein thisdegreeleadsto anoppositeeffect.
We canrewrite thisconditionasfollows:

�
	���
 ������������� �����
To formalize“very” and“not”, it is naturalto usefuzzy
logic (see,e.g.,[6, 12]):

� “very” � is typically interpretedas ��� � , and

� “not” � is usuallyinterpretedas �"!#� .

Comment.Theinterpretationof “very” as �$�%� , originally
proposedby in the pioneerpaper[15], wasexperimen-
tally confirmedin [7].

2.3. Formalization and the Resulting Numerical
Valueof “Perfect"

If we usetheseinterpretationsin the above formula,
wegettheequation�&�'���(�)!*� , whoseonly solutionon
theinterval + �-, ��. is thegoldenproportionnumber

���
/ 0 !1�2 � � � 3-�546�����

2.4. Confirmation of This Numerical Value

Thevalidity of theaboveanalysisis confirmedboth:

� by the generalfact that the golden proportion is
known to beestheticallypleasing,andalso

� by theexperimentalresultsin learningaccordingto
which theoptimalportionof cooperative education
is around60%[4, 5, 9].

3. Natural Next Result: Formalization of the
Word “Good”

3.1. Idea

While formalizingthenotionof “perfect”,wealsodis-
cussedhow to naturallyformalizetheword“very”. Now,
to find the naturalnumericalequivalent 7 of the word
“good”, we canrelatethis word to thewordswhosefor-
malizationwealreadyknow. A naturalcommon-sensere-
lation is that“perfect” canbeinterpretedas“verygood”.

3.2. Formalization and the Resulting Numerical
Valueof “Good"

Sincewe know that “very” � means�8�9� , we thus
concludethat 7*��7��:�;� � � 3-�546����� , i.e., that 7�� / �<�� �>=
=?����� (i.e., 7 is approximatelyequalto 0.8).

3.3. Confirmation of This Numerical Value

This value is also in goodaccordancewith common
sense,namely, with the20-80“Pareto”law, accordingto
which:

� 20%of thepeopledrink 80%of thebeer,

� 20%of theresearcherswrite 80%of all papersetc.

All these“20-80” descriptionscan be reformulated,in
common-senseterms,by statementslike“peoplewhoare
not very good to their healthdrink a good amountof
beer”,etc.

4. Applications to Data Mining

4.1. First Application: Idea

In data mining, we take the data (e.g., a big sales
database),andtry to find new rulesin theseeminglyrule-
lessdata.An interestingandsomewhatunexpectedprac-
tical resultof usingdataminingtechniquesis thatagood
numberof theseautomaticallydiscoveredrulesturnsout
to bealreadyknown by experts.

4.2. First Application: Conclusion

If weusetheaboveformalizationof theword “good”,
thenweconcludethatabout80%of theautomaticallydis-
coveredrulesarealreadyknown to experts.

4.3. First Application: Experimental Confirma-
tion

The above conclusionis in good accordancewith
the experimentalfact that from each25 rules typically
discoveredby a system,approximately20 are already
known (see,e.g.,[11]).

4.4. SecondApplication: Idea

The above experimentalfact doesnot meanthat the
remaining5 rules are immediatelyacceptedby the ex-
perts: these“rules” are often accidentalcoincidences
whichhappento occurin thisparticularbatchof databut
which will probablynot be confirmedby the follow-up
data.

This is oneof the reasonswhy, in spiteof a lot of
computerefforts, therearenotsomany successsto-
riesin dataminingasonecouldexpect,andthesame
impressive storiesmove from onepopulararticleto
theother.



For a rule to beacceptedby experts,it hasto appearcon-
sistently;at least,it hasto appearagainin thenew batch
of data.

A commonsensedescriptionof this phenomenonis
thata goodnumberof new rulesdonotappearagain.

4.5. SecondApplication: Conclusion

If weusetheaboveinterpretationof theword “good”,
we concludethat only 20% of the new rules are con-
firmed.Sincenew rulesform 20%of thetotalnumberof
rulesuncoveredby a datamining software,we canthus
concludethatonly 20% � 20%= 4% of therulesdiscov-
eredby this softwareturnsout to be real new rules,i.e.,
ruleswhich are: not only previously unknown, but also
acceptableto experts(andthususeful in future applica-
tions).

4.6. SecondApplication: Experimental Confir-
mation

This numberis again in good accordancewith the
statisticsgiven in [11] who saythat, on average,our of
every 25 un-coveredrules,only oneturn out to bea use-
ful new rule.

4.7. Data Mining: Conclusion

Thus,our formalizationof quality wordsexplainsthe
empiricalphenomenafromdataminingdescribedin [11].

5. Applications to Structural Integrity of
AerospaceStructures

5.1. Formulation of the Problem

As a secondcase study, we consideredthe non-
destructive analysisof structuralintegrity of aerospace
structures. This is an important practical problem, in
which, dueto a largeuncertainty, methodsof soft com-
putinghavebeenveryuseful(see,e.g.,[2]). Thesemeth-
odsarenot perfect,they canerroneouslyoverlooksome
faults.Theseerrorscomefrom two sources:

� Part of theseerrorsare causedby the uncertainty
of theproblem:we arerestrictingourselvesto non-
destructivetesting,whichis inevitably imprecisefor
innerfaults).

� Part of theseerrorsarecausedby theimperfections
of themethods.

To avoid a uselessperfectingof an imperfectsituation,
it is desirableto have a rule-of-thumbexpectationof

how many errorswe shouldexpect; then, if a process-
ing methodreachesthis errorrate,it meansthatwe have
achievedourgoal,andfurtherperfectingis ratheruseless.

5.2. First Application: Idea

The expert estimatesof theseratesuse the quality
words: that a goodnumberof faultscanbe thusidenti-
fied.

5.3. First Application: Conclusion

If weusetheaboveinterpretationof theword “good”,
thenwecanconcludethatweshouldexpectupto 77%of
thefaultsto beidentifiableby thesetechniques.

5.4. First Application: Experimental Confirma-
tion

Currentnon-destructiveestimationtechniqueshaveal-
mostreachedthatlevel: they un-covermorethan70%of
thefaults(see,e.g.,[1, 10], andreferencestherein).

5.5. Additional Conclusion: Only Data Fusion
Can Drastically Decreasethe Err or Rate

At first glance,this result doesnot seemto be very
encouraging:even when we perfectour methods,they
will still misseveryfifth fault. However, this resultis not
asbadasit seems:

� Thisestimateis aboutusinga singlemethod.

� However, thereexist several differentsoft comput-
ing techniques,eachof which hasits own problems
andsuccesses.

It is thereforenaturalto usedatafusion, i.e., to combine
severaldifferenttechniquestogether.

5.6. SecondApplication: Idea

What is the expectederror ratefor datafusion meth-
ods?

Underthecombinationof two methods,weexpectthat
a goodnumberof faultsoverlookedby oneof themeth-
odswill belocatedby thesecondone.

5.7. SecondApplication: Conclusion

If weusetheaboveformalizationof theword “good”,
then,similarly to datamining,wecanmakethefollowing
conclusion: With two methods,we expect to overlook
only 20% � 20%= 4%of thefaults– i.e.,correctlydetect
96%of them.



5.8. SecondApplication: Experimental Confir-
mation

Generalconclusion.Ourpreliminaryresultshaveshown
thatwhile, say, fine-tuningfuzzy methodsdoesnot lead
to a seriousperformanceimprovement,datafusion can
indeeddrastically improve the performance;see,e.g.,
[13].

Let usdescribethedetailsof our experimentis some
detail.

Techniquesused.To testdifferentfusiontechniques,we
took a platewith severalknown faultsof differentsizes,
andapplieddifferentnon-destructivetechniques(suchas
pulseecho,Eddy current,and resonance)to this plate.
For eachof thesetechniques,we got, for eachpoint on
theplate,thecorrespondingsignalvalues.

General idea of non-destructive testing. The general
ideaof non-destructivefaultdetectionis asfollows:

� If oneof thesetechniquesleadsto theunusualsignal
value(verydifferentfrom thenormalvalues),thena
fault is probablylocatedat thispoint.

� Thelargerthedifference,thelargeris thefault.

How to implement this idea: casewhen we know the
pre-flight inspection results. Let’s show how this idea
canbe formalized. First, we mustdetectthe faults. In
accordancewith theaboveidea,in orderto detecta fault,
we must know the normal valuesof the signaland the
allowabledeviationfrom thesenormalvalues.

In somecases,we have theresultsof the initial (pre-
flight) inspection, in whichno faultswerefound. In such
cases,for eachtypeof thesignal,wecancompute:

� the(arithmetic)average @ of all thevalues,and

� themeansquare(standard)deviation A of thesignal
� from its average@ .

In accordancewith the standardstatistical techniques
(see,e.g.,[14]), wecanthenconsidervalues� whichare
outsideof the“threesigma” interval + @*!CB
A , @ED:B
AF. as
possiblefaults.

Problemwith the abovestraightforward implementa-
tion. Theproblemwith this (seeminglystraightforward)
approachis thatfor all theabovemethods,unusualvalues
occurnotonly at thefault locations,but alsoat theedges
of theplate.

Therelationbetweenfaultsandedgesis very natural,
since,e.g.,a typical fault is a hole in the plate, i.e., an
extraedge.

As a resultof this relation,thecomputationof thethe
average@ andof thestandarddeviation A involvetheedge

points,in which the valueof the signalis very different
from theexpectednormalvalue.Hence,thecomputedA
is much larger than for the normalpoints. As a result,
sometrue faults – which would have beendetectedby
a correct(smaller) A – go undetectedwhenwe usethis
largervalue.

Solution to this problem: casewhenweknow the pre-
flight inspection results. If we know the resultsof the
initial inspection,then we can ignore the edgeswhen
computingtheaverageand A , andgetcorrectresults.

This solution doesnot work in other cases. In many
practicalsituations,we do not have theseinitial inspec-
tion results(e.g.,if whatwearedoingin exactly thispre-
flight inspection). In suchsituations,we mustestimate
thevalues@ and A basedon theplatewith faults.

In this case,even if we eliminatethe edges,we may
still have faults,and the signalscorrespondingto these
faults“spoil” thevalues@ and A andpreventusfrom de-
tectingall thefaults.

A new solution to the above problem: idea. To elimi-
nateall thefaults,wecan:

� first, mark the worst faults(which canbe detected
evenwhenweusetheenlarged A );

� then,re-calculate@ and A by omittingknown faults,

� checkfor new faultsby usingthesebetterestimates
for @ and A ,

andcontinuetheseiterationsuntil all thefaultsareuncov-
ered.

A newsolution to the aboveproblem: algorithm. As a
result,we arrive at the following iterative algorithm. At
eachstepGH�(� ,�2-, ���5� of thisalgorithm:

� new approximations@�IKJML and ANIKJML arecomputedfor
thedesiredvaluesof @ and A ; and

� somepointson theplatearemarkedaseitheredge
pointsor possiblefault locations.

In thebeginning,wedonotknow wherethefaultsare,so
nopointsaremarked.Eachstep G consistsof thefollow-
ing two operations:

� first, we computetheaverage@�IKJML andthestandard
deviation ANIOJML basedon all un-markedpointsof the
plate;

� then,we checkeachun-markedpoint, andmarkall
thepointsfor which P ��!Q@�IKJML P-R1B
ANIOJML .

Theprocessstopswhenthesubsequentvaluesof @�IKJML and
ANIKJML becomecloseto eachother(thisusuallyhappenson
the 3rd or 4th steps).The correspondingfinal valuesof



@�IKJML and ANIKJML are then taken as the desiredvaluesof @
and A .

Resulting data fusion: preparation. For eachmarked
point, we then estimatethe deviation ST�U�'�Q!V@9�XW�A .
Basedon the platewith known faults,we calibrate the
dependenceSF�'Y�� of the deviation S on the size Y of the
fault; then, basedon the observed deviation S , we can
estimateits size Y by solvingtheequationSF�'Y��Z�[S .

Data fusion itself. Fromseveraldifferenttestingsignals,
wegetseveralestimatesfrom thesizeandlocationof the
fault. Wecanthencombinetheseestimates,e.g.,by using
standardstatisticalaveraging[14].

5.9. Structural Integrity: Conclusion

The above optimistic estimateencouragesus to put
all theefforts not into perfectingoneof theknown tech-
niques,but ratherinto combiningseveral existing ones
into a singlefusedapproach.
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