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Abstract

Traditional statistical and fuzzy approachesto de-
scribing uncertaintyare continuousn the sensehat we
usea (potentiallyinfinite) setof valuesfromtheinterval
[0, 1] to characterizepossibledegreesof uncertainty In
reality, expertsdescribetheir degree of belief by using
oneof thefinitely manywordsfrom natural language; in
this sensethe actual descriptionof expertuncertaintyis
granular

In this paper we showthatin somereasonablesense
granularity is the optimalway of describinguncertainty
A similar mathematicaldeaexplainssimilar “gr anular
ity” in sud diverseareasas sleep,consumptiontraffic
contmol, andlearning

1. Intr oduction

In statistical approachto uncertainty, all valuesfrom
[0,1] are needed. In the traditional statisticalapproach
to uncertaintythe uncertaintyof aneventE is described
by its probability, which is a numberfrom the intenal
[0,1]. In mary physicalsituationsthis probability grad-
ually (andcontinuously)hangedgrom O to 1.

As aresult,dueto the known propertyof continuous
functions,for eachnumberfrom theinterval [0, 1], there
is a momentof time whenthis particularnumberrepre-
sentsa probability of areal-life event. Thus,all numbers
from theinterval [0, 1] areneededo describeprobabilis-
tic uncertainty

At first glance,it may seemthat in fuzzy approachto
uncertainty, also all valuesfrom [0,1] are needed. In
fuzzyapproachuncertaintyis alsodescribedoy a num-
berfrom theinterval [0, 1] which describeshe degreeto
which the expert believesthat a certainpropertyholds.
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For mary reasonableproperties(like “small”), as the

valueof thecorrespondinghysicalquantityincreasethe

correspondinglegreecontinuouslychangedrom 1 to O

(or from O to 1). Thereforesimilarly to the probabilistic
case,t lookslike we needall (infinitely mary) numbers
from theinterval [0, 1] to describduzzy uncertainty

In reality, experts’ description of their uncertainty is
granular. Thereis a problemwith this conclusion.One
of the main goalsof fuzzy logic is to formalize expert
knowledg (andits uncertainty).Real-life experts,how-
ever, do not useinfinitely mary differentvaluesto de-
scribe their degree of certainty They normally usea
small finite numberof alternatves: namely one of the
wordsdescribinguncertainty

Insteadof infinitely mary possiblevaluesfrom thein-
tenal [0, 1], we only getfinitely mary words;eachword
thereforecorrespondgo awholeset(granule)of possible
values. In otherwords, the actualdescriptionof uncer
taintyis granular

Fromthetraditional viewpoint, granularity is acrude
approximation. Fromthe viewpoint of traditionalprob-
abilistic or fuzzy approachthis granulardescriptionis
a crude approximatedescriptionof the continuousun-
certainty Onecanexpectsuchan approximatebehaior
from a simplecrudesystemwhich doesnot have enough
memoryor computingpower to procesgoo mary possi-
ble degreesof certainty

But is it? However, it is unclearwhy a humanbrain,the
resultof billions of yearsof evolution from simpleone-
cell organismgo sophisticatedhinking abilities, would
usesuchalow quality crudeapproximatiorscheme.

So maybegranularityis not a crude approximation
scheme?Maybe granularityis, vice versa,a high qual-
ity (or evenoptimal) schemdor describinguncertainty?



What we are planning to do. In thispaperwe show that
granularityis, indeed,a high quality (andeven optimal)
schemdor describinguncertainty

In our derivation,we will usethe standardechniques
of continuousmathematicsin line with our generalre-
sults from [3] shawving that continuousmathematicss
a very helpful tool in justifying differenttechniquedor
handlinguncertainty

2. Towards the Formalization of the Problem

Preliminary idea: experts strife to increasethe cer-
tainty. How can we formalize this problem? We
want to describethe uncertaintyof humanknowledge.
This knowledge consistsof several differentstatements
S1,...,S,. Weareconsideringhesituationin whichthe
uncertaintyof eachstatements characterizethy a num-
berfrom theinterval [0, 1]; in otherwords,theuncertainty
of humanknowledgeis describedby assigningn. num-
bersds,...,d, to the statementsvhich form a knowl-
edgebase.

Expertsdo not simply keepthe knowledgeabouttheir
areaof expertise they alsostrifetoincreaseheamountof
knowledge eitherby extractingnew piecesof knowledge
fromtheexperimentablata,or by usinglogicalarguments
to extractnew knowledgeand new statementgrom the
alreadyknown ones.

Sincethememorizatiorabilitiesof eachindividual ex-
pertarelimited, an expertinvariableforgetssomeof the
knowledgethat he previously knew. This “forgetting”
is importantbecauset allows us to clearthe memory
for new ideasand new results. However, while individ-
ual expertsmay forget part of the knowledge,from the
viewpoint of the whole communityof experts,the total
amountof knowledge(normally)increases.

The final goal of expertsasa groupis to attain full
knowledgeof a certaindomain,whenwe would be able,
given eachstatementto decidewhetherthis statement
is true or not. Fromthis viewpoint, the ideal degree of
certaintyfor eachstatements eitherO or 1.

If the degreeof certaintyis 0, this meanghatfor the
negationof this statementhedegreeof certaintyis equal
to 0. Thus,withoutlosing generality we cansaythatan
expertstrivesto make his degreesof certaintyd; asclose
to 1 aspossiblej.e., aslargeaspossible.

Ramification of the preliminary idea: expertsstrife to
increasethe certainty within limited resources. Each
increasan the degreesof certainty(i.e., eachdecreasén
uncertainty)requiresa certaineffort, often, a very sub-
stantialeffort. Theexpert'sresourcesreusuallylimited.
So, anoptimal behaior for an expertwould be: Within
the giventotal effort, to maximizethe resultingcertainty
Let usformalizethis requirement.

First step towards formalization: describing effort.
We aretrying to formalize the fact that expertshave a
limited numberof resourcesindthat, thereforethey can
only usealimited amountof effort.

The effort e(E,d) which is necessaryto achieve a
givenlevel of certaintyd for agivenstatemenf depends
bothonthelevel d andonthe statemeng:

¢ thelargerrequireddegreeof certainty the moreef-

fortsareneededsoe(E, d) is anincreasingunction
of thedegreed,;

¢ also, for somestatementstheir checkingrequires

much more time and effort thanfor the others,so
the necessaramountof effort e(E, d) dependsot
only onthedegreed, but alsoonthe statemeng.

This functiondescribesvhateffort is necessaryor a
singlestatement.If two statements; and E> arecom-
pletely unrelated then clarifying one of them doesnot
in ary way help us to clarify the secondone. Thus,
for unrelatedstatementsif we wantto achieze the de-
greeof certaintyd; for the first statementand the de-
greeof certaintyd, for the secondstatementthenthe
requiredeffort canbe simply computedasa sumof the
efforts correspondindo theseindividual statementij.e.,
aSe(El, dl) + G(EQ, dz)

In reallife, statementarerarelyunrelated.

e Sometimesthestatementarelogicallyrelatede.g.,

E, implies E». In this case|if we increasehe de-
gree of certaintyd; in the statementE;, we au-
tomatically increasethe degree of certaintyin the
statementF,. Therefore,the effort usedto in-
creasethe degree of certaintyin E; helpsin in-
creasinghe degreeof certaintyin E,. As aresult,
the amountof efforts requiredto achieve both the
degreesd; andd, is (whend; = d») practically
equalto the effort e(Ey,d;) necessaryo achiere
thedegreed; andthus,muchsmallerthanthe sum
€(E1, dl) + e(Eg, dg)

In someothercasesthereis a different(“competi-
tion”) relation betweenthe statements; and Es:
attemptsto confirm the statementE; competefor
the sameresourcessattemptgo confirmthe state-
ment E,. For example,if we areinterestedn the
effect of a certainmedicineon a rarediseasethen
we cantestthis medicineon patients;we canuse
the same(small) populationof patientsto testthe
secondmedicine. However, if we wantto testboth
medicines,we cannotsimply combinethesetwo
testingshbecauseve do not have enoughpatientsfor
that. Therefore,if we wantto testboth medicines,
we needto usea lot of additionalefforts, e.g.,test
the medicineson animals,computermodels,etc. In



thiscasethetotal effort requiredio achiesze bothde-
greesof certaintyis muchlargerthansimplythesum
of theeffortse(E, d1) + e(F2,ds).

In somecasesthetotal effort is smallerthanthe sum;in
someothercasesthetotal effort is muchlargerthanthe
sum. It is reasonabléo assumehatfor a large number
of statementsvhich may berelatedin differentways,on
average thesepositive and negative deviationsfrom the
summoreor lesscompensateachother In the result-
ing approximationthe total effort of achieving certainty
degreed, for statemenf, certaintydegreed, on state-
mentEs,, ..., andcertaintydegreed,, on astatemeng,,
canbedescribedsthe sumof thecorrespondingndivid-
ualefforts,i.e.,ase(E1,d1) + ... + e(En,dy).

We areinterestedn largebodiesof knowledge which
containmary differentstatement$;.

e Someof thesestatementsire easierto analyzeand
requirefewer effort to attainthe givendegreeof cer
tainty d.

e Someof thesestatementsre moredifficult to ana-
lyze andrequiremore effort to attainthe given de-
greeof certaintyd.

For alargebodyof knowledge whichcontaindbotheasy-
to-analyzeand difficult-to-analyzestatement,t is rea-
sonablepasa first approximatiorto thesume(E1,d; ) +

...+ e(En,dy), toreplaceindividual dependencied —

e(E,d) with a single“average”dependence(d) —i.e.,

by an effort e(d) requiredto achieve a level of cer

tainty d for an “average”statement.In otherwords, as
afirst approximatiorto thedesiredsum,we take thesum
e(dy) + ...+ e(dy).

Whenwe replacee(E;, d;) by e(d;), then:

o for easy-to-analyzstatementsfor which theactual
effort e(E;, d) is smallerthanaverage this replace-
mentoverestimatetheeffort;

o for difficult-to-analyzestatementspr whichtheac-
tual effort e(E;,d) is larger than average,this re-
placemenbverestimatetheeffort.

It is reasonablgo expectthat on average,theseposi-
tive andnegative correctiongo the sumformulamoreor

lesscompensateachother Therefore,asa reasonable

first approximationto the total effect neededo achieve
the levels of certaintyd,, ..., d,, we cantake the sum
e(dl) +...+ e(dn) =F.

Secondstep towards formalization: describing satis-
faction. Similarly, the amountof satishction s(E, d)
resultingfrom achieving the degreeof certaintyd for a
statemenf¥, dependbothonthestatemenf andonthe
degreed.

This functiondescribesvhatsatishctionwe getfrom
a single statement. If two statementsE; and E, are
completelyunrelatedthenthe resultingsatishctioncan
be simply computedas a sum of the satishction lev-
els correspondingo theseindividual statementj.e., as
S(El, dl) + S(Ez, d2)

In real life, as we have mentioned,statementsare
rarelyunrelated.

e Sometimesthestatementarelogically relatede.g.,
E, impliesEs. Inthiscasejf weincrease¢hedegree
of certaintyd; in thestatemenf; , we automatically
increaseghedegreeof certaintyin the statemenis.
Therefore the satishctionthatwe getfrom achies-
ing boththe degreesd; andds is (whend; =~ ds)
practically equal to the satiskction s(E;,d;) of
achieving the degreed; for the first statementand
thus,smallerthanthesums(E;, d;) + s(Ez, ds).

¢ In someothercasesthereis a synegy betweerthe
statement®; andE,. For example thesestatement
may covertwo possiblecasef somegenerainter-
estingstatementand thus, the satishction of con-
firming both statementE; with certain degreesof
certainty meansthat we have coveredthe general
statemenaswell. As aresult,in this casethetotal
amountof satishctionobtainedrom achieving both
degreesof certaintyis muchlargerthansimply the
sumof thesatishctionvaluess(Es , dq )+ s(E2, ds).

In somecasesthe total satishctionis smallerthanthe
sum;in someothercasesthe total satishctionis much
larger thanthe sum. It is reasonabléo assumehat for
a large numberof statementsvhich may be relatedin
differentways, on average,thesepositive and negative
deviationsfrom the summore or lesscompensateach
other In the resultingapproximationthe total satishc-
tion of achieving certaintydegreed, for statement®,,
certaintydegreeds on statementfs, ..., and certainty
degreed,, onastatemenft,, canbedescribedasthesum
of thecorrespondingndividual satishctionlevels,i.e.,as
S(El,dl) +...+ S(En,dn)

We areinterestedn large bodiesof knowledge which
containmary differentstatement#;.

o Someof thesestatementare morerelevantandin-
teresting,andthereforetheir confirmationbringsin
moresatisfction.

e Someof thesestatementare more technical,less
relevantandlessinterestingandthereforeheircon-
firmationbringsin lesssatisaction.

For alargebodyof knowledge which containsbothmore
interestingand lessinterestingstatementsit is reason-
able, as a first approximationto the sum s(E;,d;) +



...+ s(En,dy), toreplaceindividual dependencied —
s(E,d) with a single “average”dependence(d) — i.e.,
by a satishctions(d) comingfrom achieving a level of
certaintyd for an“average”statementin otherwords,as
afirst approximatiorto thedesiredsum,we take thesum
s(dy) + ...+ s(dy).

Whenwe replaces(E;, d;) by s(d;), then:

o for moreinterestingstatementspr whichtheactual
satishctionlevel s( E;, d) is largerthanaveragethis
replacementinderestimatethe satishctionlevel,

o for lessinterestingstatementsfor which the actual
satishction level s(E;,d) is smallerthan average,
thisreplacementverestimatethesatistctionlevel.

It is reasonabléo expectthat on average thesepositive
andnegative correctiongo the sumformulamoreor less
compensateachother Therefore,asa reasonabldirst
approximationto the total satishction correspondingo
the levels of certaintyd, ..., d,, we cantake the sum
s(dy) + ...+ s(dy).

Final formalization. In this formalization,in orderto
find theoptimalchoiceof degreesof certaintyd;, . . . , d,,
wemustsolvethefollowing conditional(constrainedpp-
timizationproblem:

s(di) + ...+ s(d,) = max (1)
underthe condition(constraint)
e(di)+...+e(dy) =E. (2)

3. Solution of the Formalized Problem Ex-
plains Granularity

Analytical solution to the above problem. The above
conditionaloptimizationproblemcanbeeasilysolvedby
usingthe standardcalculustechniqueof Lagrangemul-
tipliers, accordingto which the above conditionalopti-
mizationproblemcanbereducedo anunconditionabne

s(d1)+...+s(dn)+C-[e(d1)+. . .+e(d,)— E] — max,

whereC' is aconstan{Lagrangemultiplier).

For thisunconditionabptimizationproblem themax-
imum canbe computedoy simply differentiatingthe ob-
jectivefunctionwith respecto d; andequatingheresult-
ing partialderivative to 0. As aresult,we getthefollow-
ing equation:s’'(d;) + C - €'(d;) = 0. So,all thedegrees
d; correspondingo the optimal degreesselectionmust
be the solutionsto the equationF'(d) = 0, wherewe de-
notedF(d) = C — s'(d)/e'(d). In otherwords,all these
degreesmustbetherootsof afunction F'(d).

This analytical solution explains granularity. Intu-
itively, small changesin the certaintydegreed should

not drasticallyaffect neitherthe averageeffort e(d) re-
quiredto achieve this degree northe averagesatisaction
s(d) resultingfrom achiesing this degree. Therefore,it
is reasonabléo assumehatthe functionse(d) ands(d)
aresmoothandprobablyevenanalytical(i.e., canbe ex-
pandedn Taylor series).In this case thefunction F'(d)
is alsoananalyticalfunctiondefinedontheinterval [0, 1].
It is known thatananlyticalfunctionwhichis notidenti-
cally 0 canonly have finitely mary rootson aninterval.
Thus,all the optimal degreesof certaintyd; mustbelong
to thefinite setof thesesolutions.

For usualanalyticalfunctions,this setof solutionsis
small. Indeed,an arbitrary analyticalfunction, by defi-
nition, is equalto its Taylor seriesandtherefore,canbe
approximatedwith an arbitrary accurag, by a polyno-
mial. A polynomialof degreen canhave no morethann
roots; so, e.g.,if a cubic polynomialis a reasonablep-
proximationfor the function F'(d), then,in this approx-
imation, the function F'(d) hasno morethan3 roots,so
we useno morethanthreedifferentlevelsof certainty A
moreaccurateapproximationg.g.,by a 7-th orderpoly-
nomial (whichis usuallyenoughto visually coincidefor
mostknown analyticalfunctionson [0, 1] suchassin, cos,
etc.), would reveal no more than 7 different degreesof
certainty etc.

In otherwords,nomatterhow mary statemenive con-
sider, for eachof thesestatementsthe optimal degreeof
certaintyd; shouldbelongto the same(small) set. Thus,
evenif we startwith the degreeswhich can, in princi-
ple, take arbitraryvaluesfrom theinterval [0, 1], we end
up shaving thatin the optimalassignmentonly a few of
thesevalueswill beactuallyused.

Hence granularityis indeedoptimal.

4. Similar Ideas Can Be Applied to Sleep,
Consumption, Traffic Control, Learning

Application to sleep. We canapply similar ideasto the
descriptionof otherbiological processesFor example,
every biological creaturehasa certainlevel of actiity.
It cannotmaintainthe highestpossiblelevel of activity
all the time, becauséts resourcesare limited. There-
fore, it mustdistribute theseresourcesn suchaway that
the overall efficiengy is the largest. Let dy,...,d, de-
notelevelsof actiity atdifferentconsequennomentof
time. Let s(d) denotetheproductiity of theactiity with
level d, andlet e(d) denotethe effort neededo maintain
this actwity level.

Then,theoptimallevelsof actvity canbedetermined
by solvingthe optimizationproblem(1), (2). We already
know, from the solutionto this problem,thatin the op-
timal solution,thelevelsd; cannottake arbitraryvalues,
they shouldall belongto a small setof values. There-
fore, the optimal actiity scheduleconsistanot of slowvly



changingactiity from onelevel to anotherbut of switch-
ing betweerseveraldiscretdevelsof actiity.

This conclusionexplainswhy, insteadof a slow tran-
sition betweerhigh andlow activity, mostliving creature
have anabrupttransitionbetweeractiity andsleep.

If we take subtlerdetailsinto considerationthenwe
can say that the above conclusionexplains why living
creatureshave an abrupttransitionbetweenactiity and
severallevelsof sleepsuchasa REM phaseandanormal
sleep.

Similarity with “bang-bang” control in control theory.
The above conclusionis consistentwith the factthatin
controltheory the optimal control ofteninvolvesabrupt
changegrom oneregimeto another For example,when
driving a car, stability meansjn particular thatoncethe
car swened, it shouldreturnto the original trajectory
Thefastetit returnsthemorestables thesystem.There-
fore, from the viewpoint of stability only, theideal (opti-
mal) controlwould bethe onethatbringsthe carbackon
track in the shortestpossibletime (i.e., with the largest
possibleacceleration).

Thenon-smoothnessf theoptimalcontrolis notape-
culiar featureof the carexample:in controltheory there
aregeneratheoremshatshav thatundercertain(reason-
ably general)conditions the optimal controlis indeedof
theabove-describedbang-bang'type (see.e.g.,[2]; not
incidentally theword “bang-bang’is an*“official”, well-
definedandwidely usedtermin controltheory).

Application to consumption. Similarly, for a person
with limited resourcesthe consumptiorschedulevhich

leadsto the largest satishction is not the schedulein

which theseresourcesare equallydistributed, but rather
the schedulein which periodsof higher consumption
(“feasts”)areabruptlychangingo periodsof lower con-
sumptions(“fasts”). This conclusionis in good accor

dancewith the resultsobtainedby economistavho an-
alyzed more complicatedeconomicmodels (see, e.g.,
[1, 4)).

Application to traffic control. In traffic, similar idea
explainswhy the optimaltraffic arrangementeansghat
wefix asmallnumberof speedevels,andassignmaybe
dynamically)eachroadto oneof thesdevels. In reallife,
suchlevelsarefreaeway; city limits, schoolzone,etc.

Application to learning. In learning,the optimal dis-
tribution in learningactvity is not a steadéststudy but
ratherperiodsof intensestudy separatedy periodsof
relative rest.

Similarly, if we analyzethedistribution of learningac-
tivity in thepopulation sothatd; describedheamountof
effort usedto educate-th personwe cometo theconclu-
sionthatthe optimalarrangemenis not whentheteach-
ing efforts are uniformly distributed amongstudentsor
whenthereis a continuouschangefrom one studentto

another but ratherwhentherearea few levelsandeach
students assignedo acertainlevel of studying.

Thisresultisin goodaccordancwvith thediscretesys-
tem of university educationwherethe possiblelevels of
educationin a givendomainaredescribedn termsof a
smalllist of degreeqe.g.,BSc,MSc,Ph.D.).

5. PossibleFutur e Work

Sofar, all we got wasa justificationof granularityasa
high-quality approachto the descriptionof uncertainty
However, sincewe know wherethis granularitycomes
from, for new problemswe cannotonly justify granular
ity, but we canalsofind the optimallevel of granularity
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