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Abstract

Traditional statistical and fuzzy approaches to de-
scribinguncertaintyare continuousin thesensethat we
usea (potentiallyinfinite) setof valuesfromtheinterval� �������

to characterizepossibledegreesof uncertainty. In
reality, expertsdescribetheir degreeof belief by using
oneof thefinitely manywordsfromnatural language; in
this sense, theactualdescriptionof expertuncertaintyis
granular.

In this paper, weshowthat in somereasonablesense,
granularity is theoptimalwayof describinguncertainty.
A similar mathematicalideaexplainssimilar “gr anular-
ity” in such diverseareasas sleep,consumption,traffic
control, andlearning.

1. Intr oduction

In statistical approachto uncertainty, all valuesfr om
[0,1] are needed. In the traditionalstatisticalapproach
to uncertainty, theuncertaintyof anevent � is described
by its probability, which is a numberfrom the interval� �������

. In many physicalsituations,this probabilitygrad-
ually (andcontinuously)changesfrom 0 to 1.

As a result,dueto theknown propertyof continuous
functions,for eachnumberfrom theinterval

� �����	�
, there

is a momentof time whenthis particularnumberrepre-
sentsa probabilityof a real-lifeevent.Thus,all numbers
from theinterval

� �������
areneededto describeprobabilis-

tic uncertainty.

At first glance,it may seemthat in fuzzy approachto
uncertainty, also all valuesfr om [0,1] are needed. In
fuzzyapproach,uncertaintyis alsodescribedby a num-
berfrom theinterval

� ���
�	�
which describesthedegreeto

which the expert believes that a certainpropertyholds.

For many reasonableproperties(like “small”), as the
valueof thecorrespondingphysicalquantityincrease,the
correspondingdegreecontinuouslychangesfrom 1 to 0
(or from 0 to 1). Therefore,similarly to theprobabilistic
case,it looks like we needall (infinitely many) numbers
from theinterval

� ���
�	�
to describefuzzyuncertainty.

In reality, experts’ description of their uncertainty is
granular. Thereis a problemwith this conclusion.One
of the main goalsof fuzzy logic is to formalizeexpert
knowledge (andits uncertainty).Real-lifeexperts,how-
ever, do not useinfinitely many differentvaluesto de-
scribe their degree of certainty. They normally use a
small finite numberof alternatives: namely, one of the
wordsdescribinguncertainty.

Insteadof infinitely many possiblevaluesfrom thein-
terval

� �������
, we only getfinitely many words;eachword

thereforecorrespondsto awholeset(granule)of possible
values. In otherwords, the actualdescriptionof uncer-
tainty is granular.

From the traditional viewpoint, granularity is a crude
approximation. Fromtheviewpoint of traditionalprob-
abilistic or fuzzy approach,this granulardescriptionis
a crudeapproximatedescriptionof the continuousun-
certainty. Onecanexpectsuchanapproximatebehavior
from a simplecrudesystemwhichdoesnot have enough
memoryor computingpower to processtoo many possi-
bledegreesof certainty.

But is it? However, it is unclearwhy a humanbrain,the
resultof billions of yearsof evolution from simpleone-
cell organismsto sophisticatedthinking abilities,would
usesucha low qualitycrudeapproximationscheme.

So maybegranularity is not a crudeapproximation
scheme?Maybegranularityis, vice versa,a high qual-
ity (or evenoptimal)schemefor describinguncertainty?



What weareplanning to do. In thispaper, weshow that
granularityis, indeed,a high quality (andevenoptimal)
schemefor describinguncertainty.

In our derivation,we will usethestandardtechniques
of continuousmathematics,in line with our generalre-
sults from [3] showing that continuousmathematicsis
a very helpful tool in justifying differenttechniquesfor
handlinguncertainty.

2.Towards the Formalization of the Problem

Preliminary idea: experts strife to increasethe cer-
tainty. How can we formalize this problem? We
want to describethe uncertaintyof humanknowledge.
This knowledgeconsistsof several differentstatements�
� �����
��� ���

. Weareconsideringthesituationin whichthe
uncertaintyof eachstatementis characterizedby a num-
berfromtheinterval

� �������
; in otherwords,theuncertainty

of humanknowledgeis describedby assigning� num-
bers � � ���
���	� � � to the statementswhich form a knowl-
edgebase.

Expertsdonotsimplykeeptheknowledgeabouttheir
areaof expertise,they alsostrifeto increasetheamountof
knowledge,eitherby extractingnew piecesof knowledge
fromtheexperimentaldata,or by usinglogicalarguments
to extract new knowledgeandnew statementsfrom the
alreadyknown ones.

Sincethememorizationabilitiesof eachindividualex-
pertarelimited, anexpert invariableforgetssomeof the
knowledgethat he previously knew. This “forgetting”
is importantbecauseit allows us to clear the memory
for new ideasandnew results. However, while individ-
ual expertsmay forget part of the knowledge,from the
viewpoint of the whole communityof experts,the total
amountof knowledge(normally)increases.

The final goal of expertsas a group is to attain full
knowledgeof a certaindomain,whenwe would beable,
given eachstatement,to decidewhetherthis statement
is true or not. From this viewpoint, the ideal degreeof
certaintyfor eachstatementis either0 or 1.

If thedegreeof certaintyis 0, this meansthat for the
negationof thisstatement,thedegreeof certaintyis equal
to 0. Thus,without losinggenerality, we cansaythatan
expertstrivesto makehisdegreesof certainty��� asclose
to 1 aspossible,i.e.,aslargeaspossible.

Ramification of the preliminary idea: expertsstrife to
increasethe certainty within limited resources. Each
increasein thedegreesof certainty(i.e.,eachdecreasein
uncertainty)requiresa certaineffort, often, a very sub-
stantialeffort. Theexpert’sresourcesareusuallylimited.
So,anoptimalbehavior for anexpertwould be: Within
thegiventotal effort, to maximizetheresultingcertainty.
Let usformalizethis requirement.

First step towards formalization: describing effort.
We are trying to formalize the fact that expertshave a
limited numberof resourcesandthat,therefore,they can
only usea limited amountof effort.

The effort ����� � ��� which is necessaryto achieve a
givenlevel of certainty� for agivenstatement� depends
bothon thelevel � andon thestatement� :

� the largerrequireddegreeof certainty, themoreef-
fortsareneeded,so ����� � ��� is anincreasingfunction
of thedegree� ;

� also, for somestatements,their checkingrequires
muchmore time and effort than for the others,so
thenecessaryamountof effort ����� � ��� dependsnot
only on thedegree� , but alsoon thestatement� .

This functiondescribeswhateffort is necessaryfor a
singlestatement.If two statements� � and ��� arecom-
pletely unrelated,then clarifying one of them doesnot
in any way help us to clarify the secondone. Thus,
for unrelatedstatements,if we want to achieve the de-
greeof certainty � � for the first statementand the de-
greeof certainty � � for the secondstatement,then the
requiredeffort canbe simply computedasa sumof the
efforts correspondingto theseindividual statement,i.e.,
as ����� � � � � � �!����� � � � � � .

In reallife, statementsarerarelyunrelated.

� Sometimes,thestatementsarelogically related;e.g.,� � implies � � . In this case,if we increasethe de-
gree of certainty � � in the statement� � , we au-
tomatically increasethe degreeof certainty in the
statement� � . Therefore, the effort used to in-
creasethe degree of certainty in � � helps in in-
creasingthedegreeof certaintyin ��� . As a result,
the amountof efforts requiredto achieve both the
degrees � � and ��� is (when � �#" ��� ) practically
equal to the effort ����� � � � � � necessaryto achieve
thedegree � � andthus,muchsmallerthanthesum
����� � � � � �
�$������� � ���%� .

� In someothercases,thereis a different(“competi-
tion”) relationbetweenthe statements� � and ��� :
attemptsto confirm the statement� � competefor
thesameresourcesasattemptsto confirmthestate-
ment ��� . For example,if we are interestedin the
effect of a certainmedicineon a raredisease,then
we can test this medicineon patients;we can use
the same(small) populationof patientsto test the
secondmedicine.However, if we want to testboth
medicines,we cannotsimply combine thesetwo
testingsbecausewedonot haveenoughpatientsfor
that. Therefore,if we want to testboth medicines,
we needto usea lot of additionalefforts, e.g., test
themedicineson animals,computermodels,etc. In



thiscase,thetotaleffort requiredto achievebothde-
greesof certaintyis muchlargerthansimplythesum
of theefforts ����� � � � � �
�&����� � � � � � .

In somecases,thetotal effort is smallerthanthesum;in
someothercases,the total effort is muchlargerthanthe
sum. It is reasonableto assumethat for a largenumber
of statementswhich mayberelatedin differentways,on
average,thesepositive andnegative deviationsfrom the
summoreor lesscompensateeachother. In the result-
ing approximation,the total effort of achieving certainty
degree� � for statement� � , certaintydegree� � on state-
ment ��� , . . . , andcertaintydegree� � on a statement� �
canbedescribedasthesumof thecorrespondingindivid-
ualefforts, i.e.,as ����� � � � � �
� �
��� �&����� � � � � � .

Weareinterestedin largebodiesof knowledge,which
containmany differentstatements� � .
� Someof thesestatementsareeasierto analyzeand

requirefewereffort to attainthegivendegreeof cer-
tainty � .

� Someof thesestatementsaremoredifficult to ana-
lyze andrequiremoreeffort to attainthe givende-
greeof certainty� .

For alargebodyof knowledge,whichcontainsbotheasy-
to-analyzeand difficult-to-analyzestatement,it is rea-
sonable,asa first approximationto thesum ����� � � � � �'����
� �(����� � � � � � , to replaceindividualdependencies�*)����� � ��� with a single“average”dependence������� – i.e.,
by an effort ������� required to achieve a level of cer-
tainty � for an “average”statement.In otherwords,as
afirst approximationto thedesiredsum,wetakethesum����� � �
� ���
� �&����� � � .

Whenwereplace����� � � � � � by ����� � � , then:

� for easy-to-analyzestatements,for which theactual
effort ������� � ��� is smallerthanaverage,this replace-
mentoverestimatestheeffort;

� for difficult-to-analyzestatements,for whichtheac-
tual effort ������� � ��� is larger than average,this re-
placementoverestimatestheeffort.

It is reasonableto expect that on average,theseposi-
tive andnegativecorrectionsto thesumformulamoreor
lesscompensateeachother. Therefore,asa reasonable
first approximationto the total effect neededto achieve
the levels of certainty � � �����
��� � � , we can take the sum
����� � �
� ���
� �&����� � �,+-� .

Secondstep towards formalization: describing satis-
faction. Similarly, the amountof satisfaction .���� � ���
resultingfrom achieving the degreeof certainty � for a
statement� , dependsbothonthestatement� andonthe
degree� .

This functiondescribeswhatsatisfactionwe get from
a single statement. If two statements� � and ��� are
completelyunrelated,thenthe resultingsatisfactioncan
be simply computedas a sum of the satisfaction lev-
els correspondingto theseindividual statement,i.e., as.���� � � � � �'�&.���� � � � � � .

In real life, as we have mentioned,statementsare
rarelyunrelated.

� Sometimes,thestatementsarelogically related;e.g.,
� � implies ��� . In thiscase,if weincreasethedegree
of certainty� � in thestatement� � , weautomatically
increasethedegreeof certaintyin thestatement� � .
Therefore,thesatisfactionthatwe get from achiev-
ing both the degrees� � and � � is (when � � " � � )
practically equal to the satisfaction .���� � � � � � of
achieving the degree � � for the first statement,and
thus,smallerthanthesum .���� � � � � �
�&.������ � ���%� .

� In someothercases,thereis a synergy betweenthe
statements� � and ��� . For example,thesestatement
maycovertwo possiblecasesof somegeneralinter-
estingstatement,andthus, the satisfactionof con-
firming both statement� � with certaindegreesof
certaintymeansthat we have coveredthe general
statementaswell. As a result,in this case,thetotal
amountof satisfactionobtainedfrom achieving both
degreesof certaintyis muchlarger thansimply the
sumof thesatisfactionvalues.���� � � � � �/�0.������ � ���
� .

In somecases,the total satisfaction is smallerthan the
sum; in someothercases,the total satisfactionis much
larger thanthe sum. It is reasonableto assumethat for
a large numberof statementswhich may be relatedin
different ways, on average,thesepositive and negative
deviationsfrom the summoreor lesscompensateeach
other. In the resultingapproximation,the total satisfac-
tion of achieving certaintydegree � � for statement� � ,
certaintydegree ��� on statement��� , . . . , and certainty
degree� � onastatement� � canbedescribedasthesum
of thecorrespondingindividualsatisfactionlevels,i.e.,as.���� � � � � �'� �
��� �!.���� � � � � � .

Weareinterestedin largebodiesof knowledge,which
containmany differentstatements� � .
� Someof thesestatementsaremorerelevantandin-

teresting,andthereforetheir confirmationbringsin
moresatisfaction.

� Someof thesestatementsare more technical,less
relevantandlessinteresting,andthereforetheircon-
firmationbringsin lesssatisfaction.

For alargebodyof knowledge,whichcontainsbothmore
interestingand lessinterestingstatements,it is reason-
able, as a first approximationto the sum .���� � � � � �1�



���
� �$.���� � � � � � , to replaceindividualdependencies�*).���� � ��� with a single“average”dependence.������ – i.e.,
by a satisfaction .������ comingfrom achieving a level of
certainty� for an“average”statement.In otherwords,as
afirst approximationto thedesiredsum,wetakethesum.���� � � � ���
� �!.���� � � .

Whenwereplace.���� � � � � � by .���� � � , then:

� for moreinterestingstatements,for whichtheactual
satisfactionlevel .���� � � ��� is largerthanaverage,this
replacementunderestimatesthesatisfactionlevel;

� for lessinterestingstatements,for which theactual
satisfaction level .������ � ��� is smaller than average,
thisreplacementoverestimatesthesatisfactionlevel.

It is reasonableto expectthat on average,thesepositive
andnegativecorrectionsto thesumformulamoreor less
compensateeachother. Therefore,asa reasonablefirst
approximationto the total satisfactioncorrespondingto
the levels of certainty � � �����
��� � � , we can take the sum.���� � � � ���
� �!.���� � � .
Final formalization. In this formalization,in order to
find theoptimalchoiceof degreesof certainty� � �
�����
� � � ,
wemustsolvethefollowingconditional(constrained)op-
timizationproblem:

.���� � �'� �
��� �!.���� � �,)325476 � � �
underthecondition(constraint)

����� � �
� ����� �$����� � �8+-� � ��9��
3. Solution of the Formalized Problem Ex-

plains Granularity

Analytical solution to the above problem. The above
conditionaloptimizationproblemcanbeeasilysolvedby
usingthe standardcalculustechniqueof Lagrangemul-
tipliers, accordingto which the above conditionalopti-
mizationproblemcanbereducedto anunconditionalone

.���� � �
� �
��� �:.���� � ���:;=< � ����� � ��� ����� �>����� � �/?@� � )3254A6 �
where ; is aconstant(Lagrangemultiplier).

For thisunconditionaloptimizationproblem,themax-
imum canbecomputedby simply differentiatingtheob-
jectivefunctionwith respectto ��� andequatingtheresult-
ing partialderivative to 0. As a result,we getthefollow-
ing equation:.%BC�����C�'�&;D<��/BC�����C�8+ �

. So,all thedegrees��� correspondingto the optimal degreesselectionmust
bethesolutionsto theequationE5�����F+ �

, wherewe de-
notedE5�����G+H;D?$. B �����JI7� B ����� . In otherwords,all these
degreesmustbetherootsof a function E5����� .
This analytical solution explains granularity . Intu-
itively, small changesin the certaintydegree � should

not drasticallyaffect neitherthe averageeffort ������� re-
quiredto achievethisdegree,nor theaveragesatisfaction.������ resultingfrom achieving this degree. Therefore,it
is reasonableto assumethat the functions ������� and .������
aresmoothandprobablyevenanalytical(i.e., canbeex-
pandedin Taylor series).In this case,thefunction E5�����
is alsoananalyticalfunctiondefinedontheinterval

� �����	�
.

It is known thatananlyticalfunctionwhich is not identi-
cally 0 canonly have finitely many rootson an interval.
Thus,all theoptimaldegreesof certainty��� mustbelong
to thefinite setof thesesolutions.

For usualanalyticalfunctions,this setof solutionsis
small. Indeed,an arbitraryanalyticalfunction, by defi-
nition, is equalto its Taylor seriesandtherefore,canbe
approximated,with an arbitraryaccuracy, by a polyno-
mial. A polynomialof degree� canhavenomorethan �
roots;so,e.g.,if a cubicpolynomialis a reasonableap-
proximationfor the function E5����� , then,in this approx-
imation, the function E5����� hasno morethan3 roots,so
weusenomorethanthreedifferentlevelsof certainty. A
moreaccurateapproximation,e.g.,by a 7-th orderpoly-
nomial(which is usuallyenoughto visually coincidefor
mostknownanalyticalfunctionson

� ���
�	�
suchasKMLON , P	Q�K ,

etc.), would reveal no more than 7 differentdegreesof
certainty, etc.

In otherwords,nomatterhow many statementwecon-
sider, for eachof thesestatements,theoptimaldegreeof
certainty ��� shouldbelongto thesame(small)set.Thus,
even if we start with the degreeswhich can, in princi-
ple, take arbitraryvaluesfrom the interval

� �����	�
, we end

upshowing thatin theoptimalassignment,only a few of
thesevalueswill beactuallyused.

Hence,granularityis indeedoptimal.

4. Similar Ideas Can Be Applied to Sleep,
Consumption,Traffic Control, Learning

Application to sleep. We canapplysimilar ideasto the
descriptionof otherbiological processes.For example,
every biological creaturehasa certainlevel of activity.
It cannotmaintainthe highestpossiblelevel of activity
all the time, becauseits resourcesare limited. There-
fore, it mustdistributetheseresourcesin sucha way that
the overall efficiency is the largest. Let � � �
������� � � de-
notelevelsof activity atdifferentconsequentmomentsof
time. Let .������ denotetheproductivity of theactivity with
level � , andlet ������� denotetheeffort neededto maintain
thisactivity level.

Then,theoptimallevelsof activity canbedetermined
by solvingtheoptimizationproblem(1), (2). We already
know, from the solutionto this problem,that in the op-
timal solution,the levels � � cannottake arbitraryvalues,
they shouldall belongto a small setof values. There-
fore, theoptimalactivity scheduleconsistsnot of slowly



changingactivity fromonelevel toanother, butof switch-
ing betweenseveraldiscretelevelsof activity.

This conclusionexplainswhy, insteadof a slow tran-
sitionbetweenhighandlow activity, mostliving creature
haveanabrupttransitionbetweenactivity andsleep.

If we take subtlerdetailsinto consideration,thenwe
can say that the above conclusionexplains why living
creatureshave an abrupttransitionbetweenactivity and
severallevelsof sleepsuchasaREM phaseandanormal
sleep.

Similarity with “bang-bang” control in control theory.
The above conclusionis consistentwith the fact that in
control theory, theoptimalcontroloften involvesabrupt
changesfrom oneregimeto another. For example,when
driving a car, stability means,in particular, thatoncethe
car swerved, it shouldreturn to the original trajectory.
Thefasterit returns,themorestableis thesystem.There-
fore, from theviewpointof stabilityonly, theideal(opti-
mal)controlwouldbetheonethatbringsthecarbackon
track in the shortestpossibletime (i.e., with the largest
possibleacceleration).

Thenon-smoothnessof theoptimalcontrolis notape-
culiar featureof thecarexample:in controltheory, there
aregeneraltheoremsthatshow thatundercertain(reason-
ablygeneral)conditions,theoptimalcontrolis indeedof
theabove-described“bang-bang”type(see,e.g.,[2]; not
incidentally, theword “bang-bang”is an“official”, well-
definedandwidely usedtermin controltheory).

Application to consumption. Similarly, for a person
with limited resources,theconsumptionschedulewhich
leadsto the largest satisfaction is not the schedulein
which theseresourcesareequallydistributed,but rather
the schedulein which periodsof higher consumption
(“feasts”)areabruptlychangingto periodsof lower con-
sumptions(“f asts”). This conclusionis in good accor-
dancewith the resultsobtainedby economistswho an-
alyzed more complicatedeconomicmodels (see, e.g.,
[1, 4]).

Application to traffic control. In traffic, similar idea
explainswhy theoptimal traffic arrangementmeansthat
wefix asmallnumberof speedlevels,andassign(maybe
dynamically)eachroadto oneof theselevels.In reallife,
suchlevelsarefreeway, city limits, schoolzone,etc.

Application to learning. In learning,the optimal dis-
tribution in learningactivity is not a steadfaststudy, but
ratherperiodsof intensestudy separatedby periodsof
relativerest.

Similarly, if weanalyzethedistributionof learningac-
tivity in thepopulation,sothat � � describedtheamountof
effort usedto educateR -th person,wecometo theconclu-
sionthat theoptimalarrangementis not whentheteach-
ing efforts areuniformly distributedamongstudentsor
whenthereis a continuouschangefrom onestudentto

another, but ratherwhentherearea few levelsandeach
studentis assignedto acertainlevel of studying.

Thisresultis in goodaccordancewith thediscretesys-
temof universityeducation,wherethepossiblelevelsof
educationin a givendomainaredescribedin termsof a
smalllist of degrees(e.g.,BSc,MSc,Ph.D.).

5. PossibleFuture Work

So far, all we got wasa justificationof granularityasa
high-qualityapproachto the descriptionof uncertainty.
However, sincewe know wherethis granularitycomes
from, for new problems,wecannotonly justifygranular-
ity, but we canalsofind theoptimal level of granularity.
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