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In geophysics, appropriate subdivision of an area into segments is extremely
important, because it enables us to extrapolate the results obtained in some
locations within the segment (where extensive research was done) to other lo-
cations within the same segment, and thus, get a good understanding of the

Interval Methods in Remote Sensing:
Reliable Sub-Division of Geological Areas

David D. Coblentz, G. Randy Keller, Vladik Kreinovich,
Jan Beck, and Scott A. Starks
NASA Pan-American Center for
Earth and Environmental Studies
University of Texas, El Paso, TX 79968, USA
vladik@cs.utep.edu, sstarks@utep.edu

Abstract

An appropriate subdivision of a geophysical area into segments en-
ables us to extrapolate the results obtained in some locations within the
segment (where extensive research was done) to other locations within the
same segment, and thus, get a good understanding of the locations which
weren’t thoroughly analyzed.

Often, different evidence and different experts’ intuition support dif-
ferent subdivisions schemes. For example, in our area — Rio Grande rift
zone — there is some geochemical evidence that this zone is divided into
three segments, but, in the viewpoint of many researchers, this evidence
is not yet sufficiently convincing.

We show that if we use topographical information (this information,
e.g., comes from satellite photos), then interval methods lead to a reliable
justification for the tripartite subdivision of the Rio Grande rift zone.

Formulation of the Problem

locations which weren’t that thoroughly analyzed.

The subdivision of a geological zone into segments is often a controversial
issue, with different evidence and different experts’ intuition supporting different

subdivisions.

For example, in our area — Rio Grande rift zone — there is some geochemical

evidence that this zone is divided into three segments [9]:

e the southern segment which is located, approximately, between the lati-

tudes y = 29° and y = 34°;



e the central segment — from y = 34.5° to y = 38°; and
e the northern segment — from y = 38° to y = 41°.

However, in the viewpoint of many researchers, this evidence is not yet suffi-
ciently convincing.

It is therefore desirable to develop new techniques for zone sub-division, tech-
niques which would be in the least possible way dependent on the (subjective)
expert opinion and would, thus, be maximally reliable.

2 Main Idea: Using Topographic Information

One reason for subjectivity of the geological subdivision is the fact that the
existing subdivision is often based on the chemical and physical analysis of
several samples collected throughout the area, and often, we do not have a
statistically sufficient amount of thoroughly analyzed geological samples to make
the conclusion about the subdivision statistically convincing.

To make this conclusion more reliable, we can use, instead of the more rare
geological samples, a more abundant topographical information (this information,
e.g., comes from satellite photos). We can characterize each part of the divided
zone by its topography.

3 Preliminary Physical Analysis of Topographic
Information

General idea of symmetry A topographical information is a shape of the
Earth landscape. This landscape is caused by many factors whose contribution
is often only known on a qualitative level; so, we can represents this landscape
as a realization of a random field.

When viewed in geological time, the geophysical forces which form this land-
scape are largely the same all over the Earth. In more precise terms, this means
that these forces are invariant with respect to all possible rotations of the Earth’s
sphere. Therefore, as a reasonable first approximation to the actual landscape,
we can consider a random field which is invariant with respect to all these rota-
tions, i.e., a homogeneous isotropic random field. Such a field is indeed a very
good approximation to the actual landscape, actively used in computer simu-
lations (see, e.g., [8]). This approximation, however, treats all Earth areas as
similar and does not bring us any closer to solving our problem — of sub-dividing
geological zones. To solve this problem, we must therefore use a more accurate
description of the landscape.

This need for a more accurate description is consistent with the more detailed
analysis of the geophysical data, an analysis which shows that the actual land-
scape is not exactly homogeneous and isotropic. From the physical viewpoint,
the resulting anisotropy can be explained by the fact that highly symmetric
distributions are known to be unstable; arbitrarily small perturbations cause



drastic changes in the distribution (in physical terms, we get a spontaneous
symmetry violation).

In principle, it is possible to have a perturbation that changes the initial
highly symmetric state into a state with no symmetries at all, but statistical
physics teaches us that it is much more probable to have a gradual symmetry
violation: first, some of the symmetries are violated, while some still remain;
then, some other symmetries are violated, etc. Similarly, a (highly organized)
solid body normally goes through a (somewhat organized) liquid phase before
it reaches a (completely disorganized) gas phase.

Thus, it is reasonable to expect that the resulting random field is not com-
pletely asymmetric, but is invariant w.r.t. some subgroup G' of the initial
group G. The original 3-dimensional symmetry group G consists of all rota-
tions around the center. The only non-trivial continuous subgroups of this
groups are subgroups formed by rotations around a line. Thus, we can conclude
that the random field corresponding to a landscape should be invariant with
respect to rotations around a certain axis. A (3-D) rotation around a polar
axis corresponds to a horizontal shift in a (2-D) map. Similarly, a vertical map
shift corresponds to a 3-D rotation around an appropriate axis. Thus, we can
conclude that the statistical characteristics of the map should be invariant with
respect to shift.

This conclusion works well for the Rio Grande rift zone, where the empirical
statistical characteristics drastically change with latitude y and change much
smaller with longitude z. So, as a good description for the actual landscape,
we can consider a random field all characteristics of which are invariant with
respect to longitude x.

The desired sub-division must be invariant with respect to the same symme-
try, so for each latitude y, all the points located on this latitude should belong
to the same zone. So, to get the desired classification, we must decide, for each
horizontal line y = const, whether this line belongs to a certain region or not.

Comment. Similar symmetry ideas have been successfully used to describe other
geometric shapes:

e shapes of celestial objects [2, 3, 4];

e shapes in fracture theory: for a symmetric body, each fault (crack, etc.)
is a spontaneous symmetry violation [16]; this fact not only exzplains the
shapes of the faults [16], it enables us to describe the best sensor locations
for detecting these faults [12, 13, 14], etc.

(A general symmetry approach, with possibly non-geometric symmetries, en-
ables us to explain the empirical optimality of different heuristic techniques
such as fuzzy, neural, genetic, etc. [10].)

From general symmetry to spectrum Within each line y = const, the
landscape  — h(x,y) is described by a shift-invariant random process; in prob-
ability theory, random functions of one variable are usually functions of time,



so shift-invariant processes are also called stationary. Since the exact shape of
a landscape is the result of many independent factors contribution of each of
which is relatively small, we can apply the central limit theorem and conclude
that this process can be reasonably described as Gaussian; see, e.g., [15, 18].
(The empirical analysis of topographical data supports this conclusion.)

It is known that a stationary Gaussian process can be uniquely characterized
by its average and its spectrum, i.e., the absolute value |H(w,y)| of its Fourier
transform. For the landscape, the average practically does not change with y,
so we should only consider the spectrum.

Since we are interested only in the large-scale classification, it makes sense
to only use the spectrum values corresponding to relatively large spatial wave-
lengths, i.e., wavelengths L for which L > Ly for some appropriate value L.
In particular, for the sub-division of the Rio Grande rift, it makes sense to use
only wavelengths of Ly = 1000 km or larger.

Since, for the Rio Grande rift, we are interested in the classification of hori-
zontal zones, it makes sense to do the following:

e divide the Rio Grande rift into small (e.g., 1°) zones [y, y*] (with y from
y~ = 30 to y* = 31, from y~— = 31 to y* = 32, ..., from y~ = 40 to
yt =41);

e for each of these zones, take the topographic data, i.e., the height h(z,y)
described as a function of longitude x and latitude y;

e for each zone and for each y, compute the Fourier transform H(w,y) with
respect to x;

e for each zone, combine all the spectral values which correspond to large
wavelength (i.e., for which w < 1/Ly), and compute the resulting spectral
value

yt 1/Lg
Sy) = / / |H (w0, 9)]? dwdy.
y=y~ Jw=0

We are interested in comparing the spectral values S(y) corresponding to dif-
ferent latitudes y, so we are not interested in the absolute values of S(y), only
in relative values. Thus, to simplify the data, we can normalize them by, e.g.,
dividing each value S(y~) by the largest Spax of these values. In particular, for
the Rio Grande rift, the resulting values of y~ = y1,9s, . -. and s; = S(¥;)/Smax
are as follows:

yi | 29 30 31 32 33 34 35
s; 1028024021016 0.20| 0.29 | 0.31

yi | 36 37 38 39 40 41
s; [ 035|046 | 1.00 | 0.80 | 0.96 | 0.74

Based only on these spectral values s;, we will try to classify locations into
several clusters (“segments”).



Traditional probabilistic and fuzzy clustering techniques do not lead
to reliable classification Most existing clustering methods (see, e.g., [6])
assume that we have some information about the probability distributions of
the measurement errors. In real-life topographical analysis, we do not have
enough data to uniquely determine these distributions, and different possible
distributions lead to drastically different conclusions about the subdivision of a
geological zone.

Similarly, fuzzy clustering techniques (see, e.g., [5]) depend on the subjective
fuzzy estimates, and different expert estimates often lead to drastically different
subdivisions.

Therefore, we need a new, less subjective clustering method.

4 Interval Approach

Segments as monotonicity regions How can we detect the segments based
on these values s;7 In order to answer this question, let us first plot the depen-
dence of s; on y; and see if there is any visible feature of this plot which can be
associated with a subdivision of the area into geophysical segments.

If we plot the dependence of s; on y;, we will see that at first, the function
s(y) is (approximately) decreasing, then it is (approximately) increasing, and
then it is (approximately) decreasing again. Interestingly, these “monotonicity
regions” seem to be in good accordance with the empirical subdivision of the
rift into segments [9]. In view of this observation, we will identify geophysical
segments with the monotonicity regions of the (unknown) function s(y).

Let’s use intervals The heights are measured pretty accurately, so the errors
in the values s; come mostly from discretization. In other words, we would like
to know the values of the function s(y) = S(y)/Smax for all y, but we only know
the values s; = s(y1), -- ., $n = 8(yn) of this function for the points y1, .. ., Yn-
For each y which is different from y;, it is reasonable to estimate s(y) as the value
s; = s(y;) at the point y; which is the closest to y (and, ideally, which belongs
to the same segment as y;). For each point y;, what is the largest possible error
A; of the corresponding approximation?

When y > y;, the point y; is still the closest until we reach the midpoint
Ymid = (¥i + Yir1)/2 between y; and y; 1. It is reasonable to assume that the
largest possible approximation error |s(y) — s;| for such points is attained when
the distance between y and y; is the largest, i.e., when y is this midpoint; in
this case, the approximation error is equal to |$(ymia) — si|-

If the points y; and y;4+1 belong to the same segment, then the dependence
of s(y) on y should be reasonably smooth for y € [y;,yir1]. Therefore, on a
narrow interval [y;,y;1+1], we can, with reasonable accuracy, ignore quadratic
and higher terms in the expansion of s(y; + Ay) and thus, approximate s(y)
by a linear function. For a linear function s(y), the difference s(ymiq) — s(y;) is
equal to the half of the difference s(y;11) — s(y;) = sip1 — s;; thus, for y > y;,
the approximation error is bounded by 0.5 - |s;11 — s;]-



If the points y; and y; 1 belong to different segments, then the dependence
s(y) should exhibit some non-smoothness, and it is reasonable to expect that
the difference |s;41 — s;| is much higher than the approximation error.

In both cases, the approximation error is bounded by 0.5 - |s;+1 — s;]-

Similarly, for y < y;, the approximation error is bounded by
0.5 - |s; — s;_1| if the points y; and y;_; belong to the same segment, and is
much smaller if they don’t. In both cases, the approximation error is bounded
by 0.5- |8i - Si_1|.

We have two bounds on the approximation error and we can therefore con-
clude that the approximation error cannot exceed the smallest A; of these two
bounds, i.e., the value

Az' =0.5- min(|s,~ - Sz'fll; |Sz'+1 — Szl)

As a result, instead of the ezact values s;, for each i, we get the interval s; =

[s7, 5] of possible values of s(y), where s; = s; — A; and 57 = 5; + A;. In

particular, for the Rio Grande rift, the corresponding intervals are as follows:

Yi y1 =29 ya = 30 ys = 31
si=1[s;,s/] | [0-26,0.30] | [0.225,0.255] | [0.195,0.225]
Yo =32 ys = 33 ys = 34 yr =35
[0.14,0.18] | [0.18,0.22] | [0.28,0.30] | [0.30,0.32]
Ys = 36 Yg = 37 Y10 = 38 Y11 = 39
[0.33,0.37] | [0.405,0.515] | [0.80,1.10] [0.72,0.88]
Y12 = 40 Y13 =41
[0.88,1.04] | [0.63,0.85]

How to find monotonicity regions of a function defined with interval
uncertainty: idea We want to find regions of monotonicity of a function
s(y), but we do not know the exact form of this function; all we know is that
for every i, s(y;) € s; for known intervals s;. How can we find the monotonicity
regions in the situation with such interval uncertainty?

Of course, since we only know the values of the function s(y) in finitely
many points y;, this function can have many monotonicity regions between y;
and y; 1. What we are interested in is funding the subdivision into monotonicity
regions which can be deduced from the data. The first natural question is: can
we explain the data by assuming that the dependence s(y) is monotonic? If not,
then we can ask for the possibility of having a function s(y) with exactly two
monotonicity regions:

e if such a function is possible, then we are interested in possible locations
of such regions;

e if such a function is not possible, then we will try to find a function s(y)
which is consistent with our interval data and which has three monotonic-
ity regions, etc.



This problem was first formalized and solved in [17]. The corresponding algo-
rithm is based on the following idea.

If the function s(y) is non-decreasing, then, for i < j, we have s(y;) < s(y;);
therefore, s; < s(y;) < s(y;) < sj and s; < sj. It turns out that, vice
versa, if the inequality s; < sI holds for every i < j, then there is a non-
decreasing function s(y) for which s(y;) € s; for all ¢ (e.g., we can take s(y;) =
max(sy,...,s; ) for all i and use linear interpolation to define the values s(y) for
y # y;.) Thus, to check monotonicity, it is sufficient to check these inequalities.

If we have already checked these inequalities for the intervals s1,..., s, and
we add the new interval siy1, then, to confirm that it is still possible for a
function s(z) to be non-decreasing, it is sufficient to check that s; < s},
for all # = 1,...,k. These k inequalities are equivalent to a single inequality
my < s;;rl, where we denoted m = max(sy,...,s; ).

Similarly, in order to check that a function s(y) can be non-increasing, it is
sufficient to check that sj > s; for all pairs ¢ < j. If we have already checked
these inequalities for the intervals sq,...,sg, and we add the new interval sg41,
then, to confirm that it is still possible for a function s(z) to be non-increasing, it
is sufficient, to check that M} > s, |, where we denoted My = min(sf,...,s}).

The values m; and M} needed for these comparisons do not to be re-
computed for every k; if we have already computed My_; = min(s{,...,s{ ),
then we can compute M, as M = min(Mk_l,s;g) (and my as myp =
max(mg—1, 5}, ))-

How to find monotonicity regions of a function defined with interval
uncertainty: algorithm Thus, to find the monotonicity segments, we can
use the following algorithm. In this algorithm, we process the intervals sy, ..., s,
one by one.

When we have the 1-st interval, then the only information that we have
about the function s(y) is that s(y;) € s;. This information is consistent with
the function s(y) being a constant, i.e., both non-decreasing and non-increasing.
Thus, we are still consistent with monotonicity. To start the process of comput-
ing my, and My, we assign my := s; and M := s].

If the first k intervals sy are consistent with the assumption that the function
s(y) is non-decreasing, then when we get the new interval sy, we check whether
my < s;rﬂ. Then:

o If my < sf,,, then the new point yji is still within the same mono-
tonicity region. To prepare for the next interval, we compute mygy; =
min(my, s;_1)-

o If my > 3;:+1> this means that the new point yp41 cannot be within
the same monotonicity region, and so the monotonicity region must end
before yi+1. The point yry; itself belongs to a different monotonicity
region which may expand both to the previous values yg, yx_1, - .., and
to the following values ygy2, ...; this new region can be traced in the
same manner.



Similarly, if the first k intervals sy are consistent with the assumption that
the function s(y) is non-increasing, then when we get the new interval sg41, we
check whether My, > s, ;. Then:

o If M} > s, ,, then the new point yji1 is still within the same mono-
tonicity region. To prepare for the next interval, we compute Mpi1 =
maX(Mk,s;c"H).

o If My < s, this means that the new point yx41 cannot be within
the same monotonicity region, and so the monotonicity region must end
before yr41. The point yiy; itself belongs to a different monotonicity
region which may expand both to the previous values yg, yx_1, ---, and
to the following values yjya, ...; this new region can be traced in the
same manner.

How to find monotonicity regions of a function defined with inter-
val uncertainty: example Let us illustrate the above algorithm on the Rio
Grande rift example.

We start with the 1-st interval, for which m; := s; = 0.26 and M; := sf =
0.30.

For the 2-nd interval, we check the inequalities 0.225 = s; < M; = 0.30
and 0.255 = si > m; = 0.26. The first inequality holds, but the second
does not hold, so we are in a non-increasing region. Thus, we compute My =
min(Mi, s§) = min(0.30, 0.255) = 0.255.

For the 3-rd interval, the inequality 0.195 = 557 < My = 0.255 still holds, so
we are still in the non-increasing region. To prepare for the next interval, we
compute Mz = min(M>, s3) = min(0.255,0.225) = 0.225.

For the 4-th interval, the inequality 0.14 = s; < M3 = 0.225 still holds, so
we compute My = min(Ms, s]) = min(0.225,0.18) = 0.18.

For the 5-th interval, the inequality 0.18 = s, < M, = (.18 still holds, so
we compute Mz = min(My, s§) = min(0.18,0.22) = 0.18.

For the 6-th interval, the inequality 0.28 = s;” < M5 = 0.18 no longer holds,
so the first monotonicity region cannot continue past yg = 34. Thus, the first
monotonicity region must be within [29, 34].

The point yg must belong to the new monotonicity region, where the function
s(y) is non-decreasing instead of non-increasing. Before we go forward and start
checking on the points y7, etc., we must go back and check which points ys, y4,
..., can belong to this new region. If we have already checked that s, ..,y
belong to this region, this means that s; < sj for all such ¢ < j. To check
whether y;_; belongs to this same region, we must check whether s, , < sj
for all such i, i.e., whether s,_, < My = min(sg,...,s}).

We start with Mg = s¢" = 0.30. Since the inequality 0.16 = s; < Mg = 0.30
holds, ys also belongs to this region, so we compute ]\75 = min(Mg,sgL) =
min(0.30,0.22) = 0.22.



For the 4-th value, the inequality 0.14 = s; < My = 0.22 holds, so y4 also
belongs to this region, and we compute M; = min(Ms, s7) = min(0.22,0.18) =
0.18.

For the 3-rd value, the inequality 0.195 = s; < J\74 = (.18 is not true, so
the new region must stop before y3 = 31. Thus, the new region start at 31.

Now, we can move forward and check whether points yz, ..., belong to the
new monotonicity region.

We start with mg := s;; = 0.28. On the next step, we check whether
0.32 = 57+ > mg = 0.28, and since this inequality holds, we compute m,; =
max(meg, s; ) = max(0.28,0.30) = 0.30. Similarly, we compute mg = 0.33,
mg = 0.405, myo = 0.80, my; = 0.80, and m12 = 0.88. For the 13-th interval,
the inequality 0.85 = sf3 > mqy2 = 0.88 is no longer true, so y13 cannot belong to
the second (non-decreasing) monotonicity region. Thus, the second region must
stop before y13 = 41, and the point ;3 must belong to the third monotonicity

region.
To find out which other points belong to this third region, we must go back
and check which points y12, y11, ..., can belong to this new region. If we

have already checked that y;3,...,y; belong to this region, this means that

s;” > s for all such i < j. To check whether y;_; belongs to this same region,

we must check whether s} | > s, for all such 4, i.e., whether s{ | > m; =

max(syg,.--,5)-
We start with mi3 = s;; = 0.63. Since the inequality 1.04 = sf, >
mi13 = 0.63 holds, yi2 also belongs to this region, so we compute mis =

max(fMas, $35) = max(0.63,0.88) = 0.88.

For the 11-th value, the inequality 0.88 = s, > 12 = 0.88 holds, s
y11 also belongs to this region, and we compute mi; = max(mi2,57;)
max(0.88,0.72) = 0.88.

For the 10-th value, the inequality 1.10 = sfo > my; = 0.88 holds, so
y10 also belongs to this region, and we compute mig = max(Mi1,87) =
max(0.88,0.80) = 0.88.

For the 9-th value, the inequality 0.515 = s;r > myo = 0.88 is not true, so
the new region must stop before yg = 37. Thus, the new region starts at 37.

=}

Conclusion Thus, we have three monotonicity regions: [29,34], [31,41], and
[37,41]. The fact that we have discovered exactly three monotonicity regions is
in good accordance with the geochemical data from [9].
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