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Abstract

When we know the subjective probabilities (degrees of belief) p1 and
p2 of two statements S; and S>, and we have no information about the
relationship between these statements, then the probability of Si & S
can take any value from the interval [max(p: + p2 — 1,0), min(p1, p2)].

If we must select a single number from this interval, the natural idea

is to take its midpoint. The corresponding “and” operation pi & po <of

(1/2)- (max(p1 +p2 —1,0)+min(p1, p2)) is not associative. However, since
the largest possible non-associativity degree |(a & b)&c —a & (b&c)| is
equal to 1/9, this non-associativity is negligible if the realistic “granular”
degree of belief have granules of width > 1/9. This may explain why
humans are most comfortable with < 9 items to choose from (the famous
“7 plus minus 2” law).

We also show that the use of interval computations can simplify the (rather
complicated) proofs.



1 In Expert Systems, We Need Estimates for
the Degree of Certainty of S; & .5, and S; V 5o

In many areas (medicine, geophysics, military decision-making, etc.), top quality
experts make good decisions, but they cannot handle all situations. It is there-
fore desirable to incorporate their knowledge into a decision-making computer
system.

Experts describe their knowledge by statements Sy, ..., S, (e.g., by if-then
rules). Experts are often not 100% sure about these statements S;; this un-
certainty is described by the subjective probabilities p; (degrees of belief, etc.)
which experts assign to their statements. The conclusion C' of an expert system
normally depends on several statements S;. For example, if we can deduce C
either from Sy and Ss3, or from Sy, then the validity of C is equivalent to the
validity of a Boolean combination (S2 & S3) V Ss. So, to estimate the reliability
p(C) of the conclusion, we must estimate the probability of Boolean combina-
tions. In this paper, we consider the simplest possible Boolean combinations
are Sl &Sz and Sl \% S2.

In general, the probability p(S; & S2) of a Boolean combination can take
different values depending on whether S; and S, are independent or correlated.
So, to get the precise estimates of probabilities of all possible conclusions, we
must know not only the probabilities p(.S;) of individual statements, but also the
probabilities of all possible Boolean combinations. To get all such probabilities,
it is sufficient to describe 2™ probabilities of the combinations Ef* & ... & E&",
where ¢; € {+,—}, ET means E, and E~ means —E. The only condition on
these probabilities is that their sum should add up to 1, so we need to describe
2" — 1 different values. A typical knowledge base may contain hundreds of
statements; in this case, the value 2™ — 1 is astronomically large. We cannot
ask experts about all 2 such combinations, so in many cases, we must estimate
p(S1 & S3) or p(S1 V S2) based only on the values py = p(S1) and pa = p(S2).

2 Interval Estimates Are Possible, But Some-
times, Numerical Estimates Are Needed

It is known that for given p; = p(S1) and ps = p(S2):

e possible values of p(S; & S2) form an interval p = [p~,p™*], where p~ =
max(p; + p2 — 1,0) and p* = min(p;,p2); and

e possible values of p(S; V Sy) form an interval p = [p~,p*], where p~ =
max(py,p2) and p™ = min(p; + ps, 1)

(see, e.g., a survey [22] and references therein).
So, in principle, we can use such interval estimates and get an interval p(C)
of possible values of p(C). Sometimes, this idea leads to meaningful estimates,



but often, it leads to a useless p(C) = [0,1] [22, 23]. In such situations, it
is reasonable, instead of using the entire interval p, to select a point within
this interval as a reasonable estimate for p(S; & S2) (or, correspondingly, for

p(S1V S2)).

3 Natural Idea: Selecting a Midpoint as the De-
sired Estimate

Since the only information we have, say, about the unknown probability
p(S1 & S2) is that it belongs to the interval [p—,pT], it is natural to select a
midpoint of this interval as the desired estimate. In other words, if we know
the probabilities p; and ps of the statements S; and Ss, then, as estimates for
p(S1 & S2) and p(S; V S2), we can take the values p; & p» and p; V p2, where

def 1 1.
pr&ps = 2 -max(p; +p2 —1,0) + 3 - min(py, p2); (1)

def 1 1 .
p1Vps = 5 -max(p1, p2) + 3 -min(p; + po, 1). (2)

This midpoint selection is not only natural from a common sense viewpoint;
it also has a deeper justification. Namely, in accordance of our above discus-
sion, for n = 2 statements S; and Ss, to describe the probabilities of all possible
Boolean combinations, we need to describe 22 = 4 probabilities 71 = p(S; & S2),
T2 = p(S1& —S2), 3 = p(—=S1 & Ss), and x4 = p(—S; & —S5); these proba-
bilities should add up to 1: zy + 2 + 3 + ©4 = 1. Thus, each probabil-
ity distribution can be represented as a point (z1,...,z4) in a 3-D simplex
S = {(z1,22,23,24) |z; > 0& 21 + ... + z4 = 1}. We know the values of
p1 = p(S1) = x1 + 22 and p2 = p(S2) = x1 + x3, and we are interested in the
values of p(S1 & S2) = x1 and p(S1 V Sa2) = 1 + 22 + x3. It is natural to assume
that a priori, all probability distributions (i.e., all points in a simplex S) are
“equally possible”, i.e., that there is a uniform distribution (“second-order prob-
ability”) on this set of probability distributions. Then, as a natural estimate for
the probability p(S; & S2) of S; & S2, we can take the conditional mathematical
expectation of this probability under the condition that the values p(S1) = p1
and p(Sz) = po:

E(p(S1 & S2) | p(S1) = p1 &p(S2) = p2) = P(z1 |21 + 22 = p1 & 21 + 23 = p2).

(This idea was proposed and described in [1, 6, 7, 8, 9]; see also [2].)

From the geometric viewpoint, the two conditions z; +z2 = p; and 21+ 23 =
p2 select a straight line segment within the simplex S, a segment which can be
parameterized by =1 € [p~,pt] = [max(p1 + p2 — 1,0), min(p1, p2)]; then, 2 =
p1—2Z1, 23 = pa —x1, and x4 = 1 — (21 + 22 +x3). Since we start with a uniform
distribution on &, the conditional probability distribution on this segment is



uniform, i.e., z; is uniformly distributed on the interval [p~,pT]. Thus, the
conditional mathematical expectation of z; with respect to this distribution is
equal to (p~ +p™1)/2, i.e., to the midpoint of this interval. Similarly, for an “or”
operation, we can conclude that

E@(S1 V 52) | p(S1) = pr & p(S:) = pa) = = - max(pr, p») +

5 -min(py + po, 1).

DN | =

4 Problem: Midpoint Operations Are Not As-
sociative

Any “and” operation p; & p2 enables us to produce an estimate for P(S; & Ss)
provided that we know estimates p; for p(Si) and ps for p(S;). If we are
interested in estimating the degree of belief in a conjunction of three statements
S1 & S5 & S3, then we can use the same operation twice:

e first, we apply the “and” operation to p; and p; and get an estimate
p1 & po for the probability of S & Sa;

e then, we apply the “and” operation to this estimate p; & p» and p3, and
get an estimate (p1 & p2) & ps for the probability of (S1 & S») & Ss.

Alternatively, we can get start by combining S; and Ss, and get an estimate
p1 & (p2 & p3) for the same probability p(S; & S & S3). Intuitively, we would
expect these two estimates to coincide: (p1 & p2) & ps = p1 & (p2 & p3), i.e., in
algebraic terms, we expect the operation & to be associative. Unfortunately,
midpoint operations are not associative [2]: e.g., (0.4&0.6) & 0.8 =0.2& 0.8 =
0.1, while 0.4 & (0.6 & 0.8) = 0.4& 0.5 = 0.2 # 0.1.

By itself, a small non-associativity may not be so bad:

e associativity comes from the requirement that our reasoning be rational,
while

e it is well known that our actual handling of uncertainty is not exactly
following rationality requirements; see, e.g., [29].

So, it is desirable to find out how non-associative can these operations be.

5 How Non-Associative Are Natural (Midpoint)
Operations? Main Results and Their Psycho-
logical Interpretation

We know that the midpoint operations are non-associative, i.e., that some-

times, (a&b) & c # a& (b&c). We want to know how big can the difference
(a&b)& c—a& (b&c) can be.



Theorem 1. max |(a&b)&c—a& (b&c)| =1/9.

a,b,c

Theorem 2. max|(aVb)Ve—aV (bVe) =1/9.

a,b,c
(For readers’ convenience, all the proofs are placed in the last section.)

Human experts do not use all the numbers from the interval [0,1] to de-
scribe their possible degrees of belief; they use a few words like “very prob-
able”, “mildly probable”, etc. Each of words is a “granule” covering the en-
tire sub-interval of values. Since the largest possible non-associativity degree
[(a&b) & c—a& (b& c)| is equal to 1/9, this non-associativity is negligible if the
corresponding realistic “granular” degree of belief have granules of width > 1/9.
One can fit no more than 9 granules of such width in the interval [0,1]. This
may explain why humans are most comfortable with < 9 items to choose from
— the famous “7 plus minus 2” law; see, e.g., [19, 20].

This general psychological law has also been confirmed in our specific area
of formalizing expert knowledge: namely, in [5], it was shown that this law
explains why in intelligent control, experts normally use < 9 different degrees
(such as “small”, “medium”, etc.) to describe the value of each characteristic.

6 Pessimism-Optimism As an Alternative to
Midpoint

For each interval [p—,p*], the lower endpoint p~ is the most pessimistic esti-
mate, while the upper bound p™* is the most optimistic one. Selecting as mid-
point means selecting an average of the pessimistic and an optimistic estimates.
Alternatively, we can use Hurwicz pessimism-optimism criterion (originally pro-
posed in [11]): namely, we choose a real number a € [0, 1], and select a value
p=a-p~ + (1 —a)-p". This selection can be justified by the requirement that
the corresponding mapping from intervals to points should not depend neither
on the units in which we measure u (i.e., be scale-invariant), nor on the choice
of the starting point (i.e., be shift-invariant).

Definition. By a choice function, we mean a function s that maps every interval
[u~,ut] into a point from that interval, and that has the following properties
for every interval and for every ¢ and A > 0:

o s([u™ +c,ut +c]) = s([u™,ut]) + ¢ (shift-invariance);
e s((A-u™, A ut]) =X s([u™,ut]) (unit-invariance).
Proposition. [21] Every choice function has the form

s(u ,ut) =a-u” +(1—a)-ut.



Hurwicz’s pessimism-optimism criterion has been successfully used in areas

ranging from submarine detection [3, 4, 24, 25, 26] to petroleum engineering

[28]; see also [12, 13, 14, 18, 27]. (In [31, 32], this approach is applied to second-
order probabilities.)

With this approach, we get the following formulas which generalize (1) and

(2):
def .
pr&p: = a-max(py + p2 — 1,0) + (1 — @) - min(py, p2); 3)
def .
p1Vp2 Z a-max(py,p) + (1 — a) - min(py + ps, 1). (4)

These operations (3) and (4) have the following easy-to-prove properties:
e they are commutative: a&b=b&aand aVb=10>V g;

e they are monotonic in the sense that if a < a’ and b < V', then a& b <
a &b andavb<a VU,

e for classical truth values a,b € {0,1}, these operations coincide with the
corresponding operations of classical two-valued (Boolean) logic;

e the “and”-operation (3) is a convex combination of two t-norms for both
of which a x b < a, hence a & b < a for all a and b; similarly, a < a V b for
all @ and b.

For these new operations, the largest possible degrees of non-associativity are
equal to the following values:

__a (-0
Theorem 3. max|(a&b) &e—ak bo)l = 57—y
Theorem 4 max|(aVb)Vc—aV(ch)|—M
s abe T 2ta (1-a).

7 These Operations Are Semi-Associative

It turns out that in proving Theorems 1-4, it is useful to take into consider-
ation that although the new operations & and V are not associative, i.e., the
values (a & b) & c and a & (b & ¢) are not always equal, these operations are semi-
associative in the sense that instead of equality, we have one-sided inequality.
To be more precise, the following result is true:

Definition 1. We say that a commutative operation x is semi-associative if
a < b < c implies that a* (bxc) > bx* (axc) > c* (ax*b).

Theorem 5. For every a € (0,1), both operations (3) and (4) are semi-
associative.



8 Proofs

8.1 General comment

One can easily see that the operation (2) is dual to the operation (1) in the sense
that avb =1—(1—a) & (1—0). Similarly, for every o € (0,1), the operation (4)
corresponding to this « is dual to the operation (3) corresponding to o' = 1—a,
and vice versa. Because of this duality, we can easily deduce Theorem 2 from
Theorem 1, Theorem 4 from Theorem 3, and the “or” part of Theorem 5 from
its “and” part. Thus, it is sufficient to prove Theorem 1, Theorem 3, and the
“and” part of Theorem 5.

Of these three results, Theorem 1 is a particular case of Theorem 1 which
corresponds to a = 0.5; thus, it is sufficient to prove Theorem 3 and the “and”
part of Theorem 5. Since, as we have mentioned, Theorem 5 is used in the proof
of Theorem 3, we will start by proving Theorem 5.

To make it easier to follow these proofs, the reader is welcome to use the
fact that the traditional fuzzy logic operation min(a,b) corresponds to a = 0
and 1 — a = 1; to make this following even easier, we introduce a new variable
B=1—q;then,a=1-7.

8.2 Proof of Theorem 5
8.2.1 General Idea of the Proof

Let us assume that a, b, and ¢ are three real numbers for which a < b < ¢. For
these real numbers, we want to prove the inequalities between the three terms
a& (b&c), b& (a&c), and c& (a & b). Each of these terms describes the order
in which we apply an “and” operation & to these three numbers: e.g., a & (b& c)
means that we first apply this operation to b and ¢, and then combine the result
with a. To simplify notations, we will denote each of these three terms by the

number which is the last to be combined; to be more precise, we will use the

notations t, = a & b&c), tp Crpg (a&c), and t, ©f ek (a &b):

The formulas for a& b, a& ¢, and b& c depend on the relation between,
correspondingly, a + b, a + ¢, b + ¢, and the number 1. Since we assumed that
a<b<c¢ wehave a+b<a+c<b+c Thus, there are exactly four possible
locations of number 1 in relation to these three sums:

I. the number 1 can be larger than the largest of these three sums; in this
case, all three sums are < 1, i.e.,

a+b<a+c<b+c<];

II. the number 1 can be between a + ¢ and b + ¢; in this case,

a+b<a+c<1l<b+g



ITI. the number 1 can be between a + b and a + ¢; in this case,

a+b<l<a+c<b+g

IV. the number 1 can be smaller than the smallest of these three sums; in this
case, all three sums are > 1, i.e.,

l1<a+b<a+c<b+ec
Let us consider these four cases one by one.

8.2.2 Casel

In thiscase, a +b<a+c<b+c<1,s0a+b<1andb+c <1 Hence,
b&c=p0-b,a&c=0 a,and a& b= 3 -a. Let us find the values of all three
terms t,, tp, and t.:

te: Since a& b < a (by the properties of the new operation), and a < ¢ (by
our assumption), we conclude that a& b < ¢. Also, (a&b)+c= f-a+c <
a+c<1,so

(a&b)&c=pF-(a&bd)=p-(B-a)=F*-a.

tp: Similarly, (a&c¢) <a<b,and (a&c)+b=0-a+b<a+b<1,s0

(a&c)&b=pB (a&ec)=8-(8-a)=3*-a.

to: Finally, (b&c)+a=8-b+a<a+b<1,s0

(b&c)& a = -min(B-b,a) = min(3*-b,5 - a).

Now we are ready to prove the desired inequalities:

t. < tp: We have shown even that t, = (a& c) & b= (a&b) & c = t..

ty < to: Since b > a, we have 82 -b > 2 - a; clearly, since 8 < 1, we have
B> 32, hence B -a > 3% - a. Hence, min(B%-b,3-a) > - a.

Thus, for Case I, the inequalities are proven.

8.2.3 Casell

In thiscase,a+b<a+c<1,s0a&c=pF-aand a& b= F-a. On the other
hand, since b+c¢>1and b<c¢,wehaveb&c=0-b+(1-03)-(b+c—1)>3-b.
Let us find the values of the three terms t,, tp, and t.:



t.: Here, (a&b) <a<cand (a&b)+c=F-a+c<a+c<1,s0
(a&b)&c=F-(a&bd) = 5>-a.

tp: Similarly, (a&c) <a<band (a&c)+b=8-a+b<a+b<1,s0
(a&c)&b=p-(a&c)=F%-a.

to: Finally, since b& ¢ > 3-b, and & is a monotonic operation, we can conclude
that (b&c)&a > (B-b)&a. Wehave f-b+a<a+b<1,s0

(8-b)&a=B-min(8-b,a) = min(8” - b, 3 - )

and
(b&c)&a > (B-b) & a=min(F*-b,3- a).

Now we are ready to prove the desired inequalities:

t. < tp: We have shown that (a&c) & b= (a&b)&ec.

tp < t,: In proving Case I, we have already shown that min(32-b, 3-a) > -a,
hence t, > min(8%-b,8-a) > %-a=t, and t; < t,.

Thus, for Case II, the inequalities are proven as well.

8.2.4 Case II1

Here,a+b<1,s0a&b=0-a. Sincea+c>1and b+ c> 1, we have
a&kc=F-a+(1-08)-(a+c—1)=

Brat+t(1=p)-a+(1-p)-c—(1-B)=a+(1-p)-c-(1-7)

and similarly, b& ¢ =b+ (1 —0)-¢— (1 —3). Let us find the values of the three
terms t,, tp, and t.:

t.: Here, (a&b)&c = (8 -a)&c. Since a < ¢, we have 8 -a < ¢. Hence, the
expression for this term depends on whether f-a+c<lorfB-a+c¢> 1:

a) If B-a+c<1,then (a&b)&c=(B-a)&c=3a.
b) If B-a+c > 1,then (a&b)&c= (B-a)&c=F-a+(1-0)-c—(1-70).

tp: We have a&c<a<band (a&c)+b<a+b<1, hence
(a&kc)&b=pF (a&kc)=B-a+B-(1-p)-c—F-(1-7).

t,: Finally, since b& ¢ < b, we have (b&c) + a < b+ a < 1. Therefore, the
expression for this third term depends on whether b&c=b+(1—-0) -c—
1-B)<aorb+(1-0)-c—(1-0)>a



a) b+ (1—p4) c—(1—f) <a, then
(b&)&a=B-(b&e)=B-b+B-(1—B)-c—B-(1—B).
b) b+ (1—fB)-c—(1—B) > a, then (b&c)&a=pa.
Let us now prove the inequalities.

t. < tp: First, we will prove that (a & b) & ¢ < (a & ¢) & b. We will prove this
inequality for both possible expression for (a & b) & c:

a) If B-a+c <1, then (a&b)&c = 2 - a. On the other hand,
(a&c)&b= (- (a&c) and since

a&e=B-a+(1-p) (a+c—1)>fa,
and B8 > (32, we conclude that
(a&c)&b=pF (a&kc)>B-a>p% a=(a&b)&e.
b) If B-a+c> 1, then
(a&b)&c=(B-a)&kc=0-a+(1-0)-c—(1-0)=
Bra=(1-p)-(1-0).
On the other hand,
(a&c)&b=p-a+p-(1-)-c—=B-(1-p) = f-a—B-(1-8)-(1—c¢).
Since 0 < B <1, wehave 8- (1 =) -c<(1—p)-c. Thus,
Bra=(1=pB)-(1-c)<B-a=B-(1=p)-(1-0),
ie, (a&b)&c< (a&e)&b.

So, this inequality is proven for both cases.

ty < t,: Let us now prove the second inequality (a&c) &b < (b&c) & a. To
prove this inequality, we will also consider two possible expressions
for (b&c) & a:

a) fb&e=b+(1-0)-c—(1—p) <a, then
b&c)&a=p0-(b&e)=8-0+p-1=0)-c=3-(1-0).

Since b > a, we have
(b&c)&a=4-b+8-1-P)-c=B-1-0) 2>
B-a+pB-1—-08)-c—B-(1-0)=(a&kc)&b.

10



b) f b&c=b+(1—-8)-c—(1—p8) > a, then (b&c)&a = - a,
and

(a&kc)&b=p-a+p-(1-p)-c—p-(1-p)=
Bra=p-(1-p8)-(1-0).
Since ¢ < 1, we have
b&c)&a=8-a>8-a—F-1-8)-(1—c)=(a&c)&b.

So, this inequality is also proven for both possible cases.

8.2.5 CaselIV

In this case, all three sums a + b, a + ¢, and b + ¢ are greater than 1, so a &b =
a+(1-08)-b—(1-0),a& c=a+(1-8)-c—(1-08),and b& c = b+(1—3)-c—(1-3).
Before we start computing the values of the terms t,, t;, and t., we want to
make some preliminary analysis:

e The value of t, = (b&¢) & a depends on whether (b&c) +a < 1, ie.,
whether b+ (1 - 8) -¢c— (1 — f) + a < 1. If we move terms which do
not contain a, b, or ¢ to the right hand-side, and rearrange terms which
do contain a, b, or ¢, in alphabetic order, we get an equivalent inequality
a+b+(1-0)-c<2-0.

e Similarly, the value of ¢, = (a & ¢) & b depends on whether (a & ¢)+b < 1,
i.e., whether a + (1 — ) -¢— (1 — B) + b < 1, which is also equivalent to
the same inequality a + b+ (1 - §) -¢ <2 - 6.

¢ Finally, the value of t. = (a & b) & ¢ depends on whether (a&b) + ¢ < 1,
i.e., whether a + (1 — 3) - b — (1 — 8) + ¢ < 1, which is equivalent to the
inequality a+ (1 — 8) - b+c¢ < 2— 4.

So, to find the expressions for t,, tp, and ., we must know where 2 — 8 stands
in comparison with a+b+ (1 —f8)-cand a+ (1 — ) - b+ ¢. Since b < ¢, we
have 8-b< - ¢, hence

a+b+(1—-08)-c=(a+b+c)—pB-c<(a+b+c)—F-b=a+(1-0)-b+ec.
Due to this inequality, we have exactly three possibilities:

A. the number 2 — 3 can be larger than the largest of the above two expres-
sions; in this case, both expressions are < 2 — 3, i.e.,

a+b+(1-p)-c<a+(1-p)-b+c<2-0;

11



B. the number 2 — 3 is in between the above two expressions; in this case,
a+b+(1-08)-c<2—-0<a+1=-0)-b+c¢

C. the number 2— (3 is smaller than the smallest of the above two expressions;
in this case, both expressions are > 2 — 3, i.e.,

2-p0<a+b+(1-0)-c<a+(1-0)-b+c.

We will prove the inequalities by analyzing these three cases one by one.

8.2.6 Case IV, Subcase A

In this case,a+b+ (1—08)-c<a+(1—08)-b+¢ <2—3, hence, (a&b)+c<1,
(a&c)+b<1,and (b&c)+a <1.

t.: Since a& b < a (by the properties of the new operation), and a < ¢ (by
our assumption), we conclude that a& b < ¢. Since (a&b) + ¢ < 1, we
conclude that

(a&b)&e=pB-(a&b)=B-a+B-(1-F)-b—p-(1-B).
ty: Since a& c < a <b, and (a&c) +b < 1, we have
(a&c)&b=F-(a&e)=f-a+B-(1-f)-c—f-(1-f).
to: Since (b&c) +a < 1, we have
(b&c)&a =B min(b&c,a) =B -min(b+ (1 — ) -c— (1 — ), a).
Let us now prove the desired inequalities:
t. < tp: Since b < ¢, we have
(a&b)&e=F-a+B-(1-F)-b-p-(1-p) <
B-a+pB-1—p8)-c—B-(1-8)=(a&ec)&D.

ty < t,: By the properties of the operation &, we have a & ¢ < a; also, from
a < b and monotonicity of &, we conclude that a & ¢ < b& c¢. Since
a & ¢ does not exceed the two numbers a and b & ¢, it therefore cannot
exceed the smallest of these two numbers, i.e., a & b < min(b, & ¢), a).
Multiplying both sides of this inequality by 3, we conclude that

B-(a&c) < B-min(b&c,a),
hence

(a&c)&b=p0-(a&c) < B -min(b&c,a) = (b&c) & a.
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8.2.7 Case IV, Subcase B

In this case, a+b+(1—3)-c<2—-8<a+(1—-8)-b+c, hence, (a&b)+c > 1,
(a&c)+b<1,and (b&c)+a < 1.

te: Since a& b < a < cand (a&b) +c > 1, we conclude that
(a&b)bcc=(akb)+(1—B)-c—(1—-p) =
+(1=8)-b+(1=pB)-c=2-(1-7).
tp: Since a&c < a < b, and (a&c)+b < 1, we have
(a&)&b=B-(a&e)=f-a+B-(1=f)-c—B-(1-f).
ta: Since (b&c) +a < 1, we have
(b&c)&a =B -min(b&c,a) = B-min(b+ (1 — ) -c— (1 — f),a).
Let us now prove the desired inequalities:
to <t Indeed,
te—ty=(a+(1-8)-b+(1—-p)-c—2-(1-7))—
B-a+B-1=p)-c=p-(1-05)) =
(1= -a+(1=08)-b+(1-p)°c—(2-0)-1-p) =

(1-p8)-(a+b+(1-p)-c—(2-7)).

We know that 8 < 1,s01— 8 > 0. Also, in this case IV.B, we have
a+b+(1—=08)-¢c—(2—p0) <0; hence, t, —t, <0, i.e., t. < tp.

ty < to: This inequality is proven exactly as in the case IV.A.
8.2.8 Case IV, Subcase C

In this case,2— < a+b+(1-0)-c<a+(1—08)-b+c, hence, (a&b)+c > 1,
(a&c)+b>1,and (b&c)+a > 1.

t.: Since a& b < a <cand (a&b)+ ¢ > 1, we conclude that
(a&b)&c=(a&b)+(1—p)-c—(1-0)=

+(1=B) b+ (1=p)-c=2-(1-B),

ty: Since a& c < a < band (a&c)+b> 1, we conclude that
(a&c)&b=(a&c)+(1-8)-b—(1-p) =

+(1=B) b+ (1=p)-c=2-(1-B),

13



tq: Since (b& c¢) + a > 1, the expression for ¢, depends on whether b& ¢ < a,
i.e., on whether b+ (1 -0)-¢c—(1-0) <a:

a) fb&e=b+(1—p)-c—(1-p) <a, then
(b&c)&a=(b&c)+(1—p)-a—(1—p) =

1=B)-a+b+(1—p)-c—2-(1-f).

b) fb&c=b+(1—p) -c—(1—f) > a, then
(b&c)&a=a+(1—B)- (b&c)— (1 —p) =
+(1=8)b+(1=8)2c—(1-5)7*-(01-0).

Let us now prove the desired inequalities:

t. < tp: Indeed, in this case, t, = t..
tp < to: We will prove that this inequality holds in both cases a) and b):

a) In this case,
ta—ty=(1=PF)c-a+b+(1-p)-c=2-(1-70))—
(a+(1=f) b+ (1-p)-c—2- (1)) =
—B-a+p-b=p-(b—a)>0,
SO ty > tp.
b) In this case,
ta—ty=(a+(1-0)-b+1-p)* c—(1-p5)"~-(1-0)-
(a+(1=B)-b+(1-p)-c=2-(1-f) =
—B-1=p)-c+B8-0-0)=6-(1-5)-1-¢) 20,
so also t, > t3.

The theorem is proven.

8.3 Proof of Theorem 3
8.3.1 General Idea of the Proof

We want to prove that the maximum (over all real numbers a, b, and ¢) of the
absolute value |(a & b) & ¢ — a & (b& ¢)| of the difference (a & b) & c—a& (b& )
between different “and”-combinations of these numbers, is equal to

def a-(1—a)  B-(1-p0)

M= 24a-(1-a) 2+B8-(1-54)

14



From Theorem 5, we know that for arbitrary three numbers, the possible com-
binations always appear in a certain order: namely, if we order the original
numbers in the increasing order a < b < ¢, then we have

to =a& (b&c) >ty =b&(a&c) >t =c& (a&b).

Thus, the largest possible difference between the possible “and”-combinations

is equal to
to—te=a& (b&c) —c& (a&b).

Thus, to prove Theorem 3, it is sufficient to prove that the maximum of the
difference t. — t, over all possible values a < b < ¢ is equal to M.

The fact that the difference ¢, — t. can take the value M can be easily shown
by the following example:

adéf—l ; bdéfl—az—l—i_'g'(l_ﬂ)'

* T 2+pa-py " T 2+8-(1-p)
def _ . 2-p
A S R ()

(In particular, for « = 0.5 and 8 =1 —a = 0.5, we have M = 1/9 and
a =4, b =3 ¢ -7
0_97 0 — 97 0 — 9

Let us show that for these values, t, —t. = M. Indeed, here, ag < 0.5 hence
b1 =1—ag > 0.5,s0 ag < byg. Also, since 8 <1, we have co =1—-ag > by =
1 —ag, S0 ap < by < ¢q.

Since ag + by = 1, and ag < by < ¢g, we have a9 + co > 1 and by + co > 1.
Thus, ag & by = 3 - ag and

bodco=bo+(1=p)-co-(1-p)=1-ao+(1-0)-(1-0-a)—(1-0)=

l—ap+(1-=B)-B-1=P)rao—(1-B)=1-a—B-(1-p)-a—(1-5) =
148-(1-5) _ 1
24+6-(1-8) 2+8-(1-0)

Now we can compute the values ¢, and ¢, and the difference between them:

= qaq-

t.: Here, ag & co < ag < bg. Since (ao &b()) = - ag, we have (Clo &bo) + co
B-ag+co=1,s0

te = (a0 & bo) & co = B - (ao & bo) = B - ap.

tq: Here, (bo & o) = ag, s0 ag < bg & co, and (bo & ¢p) + ap = 2ap < 1, hence

tazao&(bo&CO)Zﬂ'ao.

15



Hence,

_ B-QQ=-8 _
_2+ﬂ-u—ﬂ)_A[

To complete the proof, it is therefore sufficient to prove that the difference
t, — t. cannot exceed M. We will prove this by reduction to a contradiction by
assuming that t, — t. > M and by getting a contradiction. This contradiction
will be different for the four cases I-IV considered in the proof of Theorem 5.

ta—th/B'ao—/32'a0=/3'(1—ﬂ)'a0

8.3.2 Casel

In this case, as we have shown in the proof of Theorem 5, t, = min(32-b, 3 - a)
and t, = #2 - a. Thus, from the assumption that t, — t. > M, we can conclude
that B2-8—0%-a> M and that 8-a— 3% -a > M.

The second of these inequalities is equivalent to 8- (1 — 8) -a > M, i.e., to

o> M
B-(1-8)
By definition of M, we have
M 1
= = aO)
B-1-8) 2+pB-(1-7)
so this inequality leads to
a>ag = 1 (5)
T 248-(1-5).
The first inequality 82 -b— 32 -a = 2. (b—a) > M is equivalent to
M 1-—
b—a>— = s . (6)

g B-(2+8-(1-5)
From (5) and (6), we conclude that

o 1-3 2
atb=0-a) 20> g a=p) T2 s =P

W+(1-p) _ 148

B-2+6-1-0) B-Q+6-(1-0))

Since in Case I, a + b < 1, we conclude that

1+
B-2+p8-(1-0))

<1,

16



i.e., that
1+8<B-2+8-(1-0)=28+p8 -7

If we move 3 to the right-hand side and 32 to the left-hand side, we get a simpler
equivalent inequality
1+ 8 < B+p5%

This inequality can be further simplified if we divide its both sides by 1+ 8 > 0,
resulting in the following:

1-8+p8%<8.
If we move 3 from the right-hand side to the left, we get 1—28+ 4% = (1-)% <
0, which is impossible.
The contradiction shows that in Case I, we cannot have t, — t. > M.

8.3.3 CaselIl

In this case, as we have shown, t, = 3% -a. To get the desired contradiction, we
must deduce the expression for t, = (b&c) & a. Here, b&c=b+ (1 —-f)-c—
(1 —B). From b& ¢ < b, we can conclude that (b&c) +a <b+a<1,so

to =0 -min(b&c,a) =B -min(b+ (1 - 8) - ¢ — (1 — 8),a).
Thus, from the assumption that ¢, — t. > M, we can conclude that
B-(b+(1=-B)-c=(1-p)—F-a>M (7)

and
B-a—pB-a*> M. (8)

From (8), similarly to Case I, we can conclude that a > ag. Since in Case II, we
have a+c¢ < 1, we conclude that ¢ < 1—a; due toa > ag, wehave 1 —a < 1—aqg
and therefore,

1+48-(1-5)

2+p-(1-8)
From b < ¢, we can now deduce that b < bg.
From the inequality (7), by dividing its both sides by 8, we conclude that

M 1-p3
bt (L=p)e=(1=P)=fra> g =5g i 0. 9)

On the other hand, since b < by, ¢ < by, and a > ag, we conclude that
b+(1-B)-c—=(1-B)=P-a<bp+(1—78)-bo—(1-75)—p-ao.
Substituting by = 1 — ag into this inequality, we get

b+(1=pB)-c—(1-pf)-B-a<l—a+(1-B) (1—a))—(1-p)=5-ao.

c<l—ag=0by=
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Combining together terms which contain ag and terms which do not contain ay,
and substituting the expression for ag, we conclude that

b+(1-B)-c—(1—B)—B-a < (1+1—B—148)+ag-(-1—14+8—8) = 1—2ay =

R B
24B-(1=-8) 2+p5-(1-5)
Comparing (9) and (10), we conclude that
1-p
2+p-(1-0)

hence

(10)

B-(1-5)
<b+(1=-0)c—(1-p8)-p-a< ———7—"—,
(1-5) (1-7) 518 (-7
1= _ B-(0-P)
2+8-(1-8) 2+p8-(1-75)
Multiplying both sides by the common denominator and dividing both sides by
the common factor 1 — 8 of both numerators, we conclude that 8 > 1, which

contradicts to our assumption that 8 < 1.
The contradiction shows that in Case II, we cannot have t, — t. > M.

8.3.4 Case III
In this case, as we have shown in the proof of Theorem 5, (b& ¢) + a < 1, hence
to=(b&c)&a= L0 -min(b&c,a) =3 -min(b+ (1 —5)-c— (1 —B),a).
For t., we had two possible expressions:
a) If B-a+c<1,then (a&b)&c=3?-a.
b) If -a+¢>1, then (a&b)&c=0-a+(1—-08) -c— (1 -70).

Let us show that in both cases, the assumption ¢, — t. > M leads to a contra-
diction.

8.3.5 Case III, Subcase a)

In this case, from t, —t. = t, —3%-a > M, we can conclude that 3-a—32%-a > M
— from which, as we have shown in Case II, we can deduce a > ag — and that

Bb+B-(1=B)-c—B-(1-f)—Fa>M.

Dividing both sides of this inequality by £, and taking into consideration that
M =p-(1-p)-ag, we conclude that

b+(1-p)-c—(1=-p) =B -a>(1-p)-ao. (11)
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Since in Case III, a + b < 1, we conclude that b < 1 — a, so from a > ag, we can
deduce that b<1—a < 1—ag = bo.

In subcase a), we have 8-a+¢ < 1, hence ¢ < 1—3-a. So, from a > ag, we
can deduce that c<1—-08-a<1—-08-a9g =c¢p. So, a > ag, b < by, and ¢ < ¢p.
Hence,

B-b+B-(1=B)-c=B-(1=B)=F*-a< B-bo+B-(1=B)-co—B-(1-B) = 5-aq.

Substituting into this inequality the expressions by = 1 —ag and ¢g =1 — 3 - ay,
and combining terms together with ay and without ag, we get

b+(1=p)-c—(1=-p)—B-a<bp+(1-F)-co—(1-8)—B-a0=
(1-a))+(1—=p)-(1-P-a)—-(1—-p)—pB-a =
(A +1-B=148) +ao-(-1-f-(1-B)— ) = 1 +ao- (~1-28+ ). (12)
From (11) and (12), we can conclude that
(1-p)-a<b+(1-p)-c=(1-p)~F-a<l+ao (-1-28+0%);

hence,
(1-8)-ag<1l+ag-(-1-28+5%).

Moving terms containing ag to the left-hand side, we conclude that
ao-(1-B+1+28-0%) <1,
ie.,
ag-(2+8-(1-p5)) < 1. (13)

We know that 1

T214-(1-58)

so (13) leads to 1 < 1 — a contradiction.

ao

8.3.6 Case III, Subcase b)

In this case, from t, —t. =t, — (8-a+ (1 —F)-c—(1—f)) > M, and from the
fact that ¢, is the minimum of two expressions:

tazmln(ﬂb—i‘ﬂ(l—ﬂ)C—ﬂ(l_ﬂ)aﬂa)a

we can conclude that the following two inequalities hold:
B-b+pB-(1=P)-c=B-1=B)—=(B-a+(1—=p8)-c—(1-0))>M; (14)
Bra=(B-a+(1=p)-c—(1-70)>M. (15)
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The inequality (15) leads to
—(1-=08)-c+(1-p)>M.

Dividing both sides of this inequality by 1 — 8 and taking into consideration
that M = 3-(1-)-ag, we conclude that —c+1 > -ay, i.e., that ¢ < 1—3-ao.
Since ¢g was defined as 1 — 3 - ag, we conclude that ¢ < ¢p.

Subcase b) corresponds to the inequality 8-a+c¢ > 1,80 8-a > 1 —¢; since
c<cy,wehave -a>1—c>1—c¢y=[f-ag, hence a > ag.

In Case IIl, a+b<1,s0b<1—a,henceb<1—a<1—ag = by So,
a > ag, b< by, and ¢ < ¢p-

The inequality (14) leads to

B-b—(1-B)2-c—B-a+(1-5)2>M. (16)
If we replace, in (16), ¢ by a smaller value 1 — 3 - a, we get a valid inequality
B-b-1-0)-(1-B-a)=f-a+(1-p)°"=
B-b—1-0°+8-1-0)a-f-a+(1-8)*=p-b-F-(2-p)-a> M,

ie.,

B-b—p3%-(2-p)-a> M.

Dividing both sides of the resulting inequality by £ and taking into consideration
that M = - (1 — ) - ag, we conclude that

b— (26— 4% -a>(1-p)-ao (17)
On the other hand, since b < by =1 — ag and a > ag, we conclude that
b—(28-0%)-a<by—(26—0%) a0 =

l—ag—(26—-0%)-a0 =1+ (6>-28-1)-ao. (18)
By definition of ag, we have 1 = (14 8- (1 — ) - ao, hence

1+(8°~26-1)-a0= 2+~ ) a0+ (8 =28~ 1) a0 = (1~ f) - ao,

so (18) implies that

b—(20~4%)-a<(1-5) a.

This inequality contradicts to the previously proven inequality (17).
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8.3.7 Case IV, Subcase A

Case IV means that

a+b>1, (19)
and therefore, that
at+ec>1 (20)
and
b+c>1. (21)
Subcase A means that
a+(1-08)-b+c<2-46. (22)

In the proof of Theorem 5, we have shown that in Case TV, Subcase A,

te=p-a+p-(1-0)-b—-5-(1-0), (23)
and that ¢, is the minimum of two expressions:
te=min(f-b+8-(1-p0)-c—B-(1-0),8-a). (24)

Thus, the inequality t, — t. > M is equivalent to the following two inequalities:
B-b+B-(1=B)-c=pB-1=-B)—(B-a+B-(1-8)-b—-8-(1-75)) > M; (25)

Bra—(B-a+B-(1=p)-b—pB-(1-7))>M. (26)
The inequality (26) leads to

—f-(1=0)-b+8-(1-8)> M.

Dividing both sides of this inequality by 3- (1 — ) and taking into consideration
that M = 8- (1—f)-ag, we conclude that —b+1 > ag, i.e., that b < 1—ag = by
and b < by.

Since in Case IV, a + b > 1, we conclude that a > 1 — b, and since b < by,
we havea >1—b>1— by = ag, i.e., a > ap.

Subtracting (19) from (22), we conclude that —3-b+c¢ <1 — . Moving the
term —f - b to the right-hand side, we get ¢ <1 — 3+ -b. We have already
shown that b < bg, hence c<1—-84+08-b<1— [+ 3-by. By definition of by
asl—ag,wegetc<1—0F+8-bp =1—0-ag.- The right-hand side of this
equality is exactly the definition of ¢g, so we conclude that

c <. (27)
Now, the inequality (25) leads to

—B-a+p-b+B-(1=0)-c> M.
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Dividing both sides of this inequality by 8 and taking into consideration that
M =p-(1-p)-ao, we get

—a+8-b+(1—-8)-¢>(1-70)-ao-

Moving all the terms except for the term proportional to ¢ to the right-hand
side, we get
1-8)-c>a—B-b+(1—p)-ao. (28)

We know that a > a¢ and that b < by = 1 — ag. Therefore, from (28), we can
conclude that

(1=8)-c>ag—B-(1-ap)+(1-8)-a0 = (1+p+1-8)-a0—B = 2a0— 3. (29)

From the definition of ag¢ as

1
“T2rB-1-p
we conclude that
4 2 L 2-28-p-(1-8) _(1-5)-(2=-5%)
S By (T R A oy Y P R T N )

From the definition of ¢, we can now conclude that 2ag — 8 = (1— ) - cp. Thus,
the inequality (29) is equivalent to (1 — ) -¢ > (1 — ) - ¢, i-e., to ¢ > ¢g, which
contradicts to (27).

8.3.8 Case IV, Subcase B

Case IV means the inequalities (19), (20), and (21) are all true, and Subcase B
means that
a+b+(1-p)-c<2-8 (29a)

and
+(1=p)-b+c>2-0. (29b)

In the proof of Theorem 5, we have shown that in Case IV, Subcase B,

te=a+(1=f)-b+(1-)-c—2-(1-p),

and that ¢, is the minimum of two expressions:
to=min(8-b+4-(1-3)-c—p3-(1-7),8-a).

Thus, the inequality t, — t. > M is equivalent to the following two inequalities:

B-b+pB-(1=P)-c=B-(1-f)—a—(1=5)-b—(1-p)-c+2-(1-F) > M; (30)
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B-a—a—(1-B)-b—(1—=B)-c+2-(1—p8)> M. (31)

By combining together terms proportional to a, we can simplify the inequality
(31) into the following equivalent form:

—(1=f)-a=(1=) b= (1=f)-c+2:(1=F) > M.

Dividing both sides of this inequality by 1 — 8 and taking into consideration
that M = 3-(1— () -ag, we get —a—b—c+2 > §-ap. Moving terms a, b, and
¢ to the right-hand side and 3 - ag to the left-hand side, we get

a+b+c<2—-p"ao. (32)

Subtracting (19) from (31), we conclude that ¢ < 1 — - ag, i.e., by definition of
co, that ¢ < ¢g-

Subtracting (29b) from (32), we get -b< B —B-a90 = 8- (1 —ag). By
definition of by as 1 — ap, we thus get 3-b < - by, hence b < by.

From a + b > 1, we can now conclude that a > 1 — b and since b < by, that
a>1-—b>1-by, hence (by definition of by = 1 — ag), that a > ao.

From (30), we conclude that

—a+(26-1)-b— (1= -c+2-5)-(1-0) > M,

i.e., that
a<(2f-1)-b-(1-0)%-c+(2-0)-(1-8)-M. (33)
On the other hand, from (29b), it follows that
a>—(1-p)-b—c+(2-B). (34)

The lower bound for a coming from the inequality (34) should be smaller than
the upper bound for a which comes from the inequality (33), i.e., we should
have

—(1=B)b=c+(2=-8)<(28-1)-b=(1=B)*-c+(2-5)-(1-8) - M.

Moving the terms containing b and c¢ to the right-hand side and all the other
terms to the left-hand side, we conclude that

2-8)-B+M<B-b+3-2-5)-c. (35)

Dividing both sides of this inequality by 8 and taking into consideration that
M =3-(1-p)-ag, we conclude that

b+(2—-08)-¢c>2-0+(1-7)-ao. (36)
On the other hand, we have already proven that b > by =1 —ag and ¢ < ¢g =

1— (- ag, hence
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b+(2-0)-c<bo+(2-p)-co=1-as+(2-8)-(1-p-a0) =

A+2-3+(-1-28+8%)-a0=0B-8)+(-1-28+0%) -a0. (37)

The lower bound for b+ (2 — ) - ¢ coming from the inequality (36) should be
smaller than the upper bound for this quantity which comes from the inequality
(37), i-e., we should have

2=B)+1~=p) a0 < (3=p)+(-1-28+ ) ap.

Moving all the terms proportional to ag to the left-hand side and all other terms
to the right-hand side, we conclude that

(2+B-p8%)-a<1. (38)

However, by the definition of ag, (2+ 8 — 3?)-ag = 1, which contradicts to (38).

8.3.9 Case IV, Subcase C

Case IV means the inequalities (19), (20), and (21) are all true, and Subcase C
means that
a+b+(1—-08)-c>2-0. (39)

In the proof of Theorem 5, we have shown that in Case IV, Subcase C,
fe=a+(1=0) b+ (1-)c—2 (1-5)

and

to =08 -min(b&c,a)+(1—-0) - (b&c)+a—1)=
min(b&c,+(1-)-a—(1-0),a+(1-0) - (b&c)—(1-0)) =
min((1-B)-a-+b+(1—B)-c=2-(1=B), a+(1-B)-b+(1— ) -c— (1= B)*= (1-B)).
Thus, the inequality t, — t. > M leads to the following two inequalities:

(1=B)-atb+(1=p) c=2-(1=f)-

a=(1=8)-b-Q1-p)-c+2-1-7p)>M; (40)
+A=8)b+1=8)2c—(1-p)°-1-p5)-
a—(1=8)-b—(1=8)-c+2-(1-5) > M. (41)

The inequality (41) is equivalent to

—-B-(1=pB)-c+p-(1-5)> M.
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Dividing both sides of this inequality by 8 and taking into consideration that
M =g8-(1-0)-ag, we conclude that —c + 1 > ay, i.e., that ¢ < 1 —ap. By
definition of by, this means that ¢ < bg.

Since b < ¢, from ¢ > by, we can also conclude that b > bg.

From a+b > 1 (inequality (19)), we conclude that a > 1 —b. Since b < by =
1 — ag, we thus conclude that a > 1 —by =1 — (1 — ag) = ag, i.e., that a > ao.

The inequality (40) leads to

—B-a+pB-b> M.

Dividing both sides of this inequality by § - (1 — 3), we conclude that b —a >
(1-0) - ap, i-e., that
a<b—(1-p)-a.

Since we have shown that b < by = 1 — ag, we can therefore conclude that
a<l—ag—(1-27)-ae,
ie.,
a<l—(2-7)-ao. (42)
On the other hand, from (39), we conclude that
a>-b—(1-08)-¢c+(2-0).

Since we have proven that b < by = 1 —ag and ¢ < by = 1 — ag, we can conclude
that
a>-bp—(1—-08)-b+(2-0)=
—2-8)b+(2-8)=02-8)-1-b)=(2-0)-ao,
ie.,
a>(2-0)-ao. (43)

The lower bound for a coming from the inequality (43) should be smaller than
the upper bound for a which comes from the inequality (42), i.e., we should
have

(2=0)-a0<1=(2-0)-ao.
Moving the negative term to the right-hand side, we get
(4—25)'00 < 1.

Multiplying both sides of this inequality by 2 + 3 — 3% and taking into con-
sideration that (by definition of ag) (2 4+ 8 — %) - ap = 1, we conclude that
4 —28 < 2+ 3— % By moving all the terms to the left-hand side, we get the
equivalent inequality 8% — 38 +2 < 0, i.e.,

B-1)-(8-2)<0. (44)

Since 8 <1, wehave 8 —1 < 0and 8 —2 <0, hence (6—1)-(8—2)>0-a
contradiction.
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8.3.10 Conclusion

So, in all cases, the assumption that |(a&b) & c— a& (b&c)| > M leads to a
contradiction. Thus, the theorem is proven.

9 For Midpoint Operations, the Proof Can Be
Simplified If We Use Interval Computations

9.1 What Are Interval Computations

For a = 0.5, we can simplify this proof by using interval computations (see,
e.g., [10, 15, 16, 30]). Namely, our goal is to find the maximum of the function
|(a&b)&c—a& (b&c)| when a € [0,1], b € [0,1], and ¢ € [0,1]. We know that
the minimum of this function is 0: it is attained, e.g., if a = b = ¢ = 0. Thus,
what we are looking for is the range of the above function of three real variables.

Interval computations is a technique which allows us, given a function y =
f(x1,...,2,) of several real variables and a “box” B = x; X ... X X, where
X = [z; ,a:;r], to compute either the range of the given function on the given
box:

y=f(x1,.. %0 = {f(@1,.--,2n) |21 € [2],27],-- ., 20 € [z, 2]}]},

or an interval Y which is guaranteed to contain the desired range, i.e., for
which y C Y (We cannot always compute the ezact range because computing
this exact range is intractable even for quadratic functions f(z1,...,z,): see,

e.g., [17].)

This technique is based on the fact that in the computer, the computation
of a function f consists of several elementary steps. For example, a compiler
will translate the computation of the midpoint “and” operation

1 1 .
f(p1,p2) = 3 -max(p; +p2 — 1,0) + 3 - min(py, pa)

into the following sequence of elementary steps (r1, 72, etc. denote the prelimi-
nary computation results):

o first, we compute r1 := p1 + p2;
e then, we compute ry := 7 — 1;
e compute r3 := min(rz,0);

e compute 4 := (1/2) - r3;

e compute r5 := min(py, p2);

e compute r¢ := (1/2) - r5;
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¢ finally, compute the result as y := r4 + r4.

In this example, we have two input variables 1 = p; and z2 = p,. In general,
for each input variable z;, we know the interval x; = [z , 2] ] of possible values.
For each elementary step h(a,b), if we know the intervals a = [a™,a*] and
b = [b—,b"] of possible values for each of the input, then we can compute the
interval h(a,b) of possible values of the results:

o [a,at]+[b ,bF]=[a +b ,at +b"];
o [a,at]—[b bt =[a —bt,at —b7);
e [a=,a™]-[b™,b"] =[c,ct], where:
e ¢"min(a -b ,a -bT,at-b ,at-bT,
e ¢t =max(a” -b",a” -bT,at -b7,at - bT);
e min([a~,a*],[b7,b"]) = [min(a™, b ), min(a™,b™)];
e max([a”,a™],[b~,b"]) = [max(a~,b”), max(a™,b")].

These formulas are called formulas of interval arithmetic.

So, to find an interval that contains the desired range, we follow the original
algorithm step-by-step, on each step replacing the original elementary operation
with real numbers by the corresponding operation of interval arithmetic.

In particular, if we want to know the range of the values of the function
f(p1,p2) = p1 &p2 when p; € p; and ps € pa, we do the following:

e first, we compute r; := p1 + p2;

e then, we compute ry :=r; — [1,1];

e compute r3 := min(rsy, [0,0]);

e compute ry := [0.5,0.5] - r3;

e compute r5 := min(p1, p2);

e compute rg := [0.5,0.5] - r5;

¢ finally, compute the result as Y :=rg + rg.

It is easy to prove (by induction) that at any given moment of time, the result
of this procedure is guaranteed to contain the result of the interval of possible
values of the corresponding quantity.

It is also easy to show that this “naive” interval computation procedure
sometimes overestimates. For example, for a function f(z1) = 21 - (1 — 1)
on the interval [0, 1], the computational procedure consists of the following two
steps:
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o ry:=1—1x;
® Yy =TT,
so we get the following estimate:
er :=[1,1]—x; =[1,1]-[0,1]=[1-1,1-0] = [0,1];

e Y :=x;-r; = [0,1]:[0,1] = [min(0-0,0-1,1-0, 1-1), max(0-0,0-1,1-0, 1-1)] =
[0,1],

while the actual range is y = [0,0.25] C Y = [0, 1].

To decrease the overestimation, we can use the following methodology of
interval computations: we divide each interval x; into several sub-intervals,
thus dividing the original box into many sub-boxes; then, we estimate the range
of the function over each of the subintervals, and then take the union of the
resulting ranges as an estimate for the range over the whole original box.

If we are interested not only in the actual value of the maximum, but if
we also want to know where exactly this maximum is attained, then we can
use this sub-boxes as follows: if we have two subboxes B; and Bs with range
estimates [my, M1] and [m2, M), and M; < my, then we are guaranteed that
an arbitrary value f(z1,...,zy) for (z1,...,T,) from the first subbox is smaller
than every value from the second subbox. Thus, we can safely claim that the
(global) maximum of the given function cannot be attained in the first subbox —
hence, this first subbox can be safely removed from the list of possible location
of the global maximum.

We used this idea to simplify our proof.

9.2 How We Used Interval Computations to Simplify the
Proof for Midpoint Operation

In our proof, we considered four different cases I, II, ITI, and IV, which depended
on the relation between 1 and the sums a+b, a+c, and b+c. In the above proof,
for each of these four cases, we showed that the value of the desired function
cannot exceed the bound described by the theorem (for & = 8 = 0.5, this upper
bound is M = 1/9).

To check whether the corresponding four parts of the proof are really neces-
sary, we divided each original interval [0, 1] into 100 subintervals of length 0.01:
[0,0.01], [0.01,0.02], etc. As aresult of this subdivision, we get 100x100x 1000 =
108 sub-boxes. (At first, we started with dividing each interval [0, 1] into 10 sub-
intervals, but this did not lead to any simplification of the proof.) For each of
these subboxes, we applied the naive interval computations technique to esti-
mate the range [m;, M;] of the desired function |(a & b) & ¢ —a & (b& c)| on this
subbox. Then, we eliminated all subboxes for which M; < 1/9. (Thus, if a
subbox has been discarded, this means that for each combination (a, b, ¢) from
this subbox, the value of the desired function is < 1/9.)
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As a result, out of the original million subboxes, we were left with only 80
possible locations of the global maximum. These subboxes were located in the
following places:

e For b, the only possible subintervals turned out to be are [0.54,0.55],
[0.55,0.56], [0.56,0.57], and [0.57,0.58], i.e., we can conclude that b €
[0.54,0.58].

e For a, the possible subintervals are:

e cither from the interval a € [0.43,0.46], in which case ¢ € [0.75,0.79];
¢ or from the interval a € [0.75,0.79], in which case ¢ € [0.43,0.46].

If we sort these values in the increasing order, then we conclude that for the
sorted variables, a € [0.43,0.46], b € [0.54,0.58], and ¢ € [0.75,0.79].

Since a € [0.43,0.46] and ¢ € [0.75,0.79], the sum a + ¢ is guaranteed to
belong to the interval [0.43,0.46] + [0.75,0.79] = [1.18,1.25], i.e., is guaranteed
to be larger than 1. Thus, if for some values a, b, and ¢, we have a +c¢ < 1, then
we already know that for these values, the desired function cannot take a value
> 1/9 (since this triple (a, b, ¢) belongs to the discarded subboxes, for which we
have already shown that the value of the function is < 1/9).

To check that the desired function cannot take the values > 1/9, it is suffi-
cient only to check 80 remaining subboxes. Since for these remaining subboxes,
a + ¢ > 1, there is no need to consider Cases I and II for which a + ¢ < 1. So,
we only have to prove the result for Cases III and IV.

Interval computations not only reduces the number of cases in half, it also
simplified the proof of at least one of the cases — Case IV. Indeed, in the above
proof, to prove the theorem for Case IV, we separately considered three subcases
(A, B, and C) which correspond to the possible relation between 2 — 3 (= 1.5
for midpoint operations) and the expressions a+ (1—8)-b+¢ (=a+0.5-b+c¢)
and a+b+ (1—-0)-¢ (= a+b+0.5-¢). By using the above-described guaranteed
intervals, we can eliminate the need to consider some of these subcases in our
proof. Indeed, within the above interval bounds for a, b, and ¢, the upper bound
for a+b+(1—0)-¢c = 1+b+0.5-cis equal to 0.46+0.584+0.5-0.79 = 1.435 < 1.5.
Thus, to check that the value of the desired function cannot exceed 1/9, we only
need to consider cases when a + b+ 0.5 - ¢ < 1.5. Thus, we can dismiss Subcase
C when this inequality is not satisfied, and only consider Subcases A and B in
our proof.

Thus, for the midpoint operations, the use of interval computations indeed
eliminates more than half of the cases and thus, simplifies the proof. (We expect
the same simplification to occur for other operations as well, when a # 0.5.)

A further simplification emerges from observing that for each subcase, the
problem of maximizing the difference t, —t. is a problem of optimizing a linear
function under constraints which are linear inequalities; in other words, this
problem is a linear programming problem. It is known that for such problems,

29



the optimum is always attained at one of the vertices. Each vertex can be
obtained as follows: if we have n variables, then we need to select n inequalities,
make them equalities, solve the corresponding system of n linear equations with
n unknowns, and check that the remaining inequalities are still satisfied. This
checking can be done automatically. Then, all we have to do is compute the
values of the optimized function at different vertices and make sure that all
these values do not exceed our bound M.
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