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Abstract

Experts’ uncertainty about their statements S; is described by prob-
abilities p;. The conclusion C of an expert system normally depends
on several statements S;, so to estimate the reliability p(C), we must
estimate the probability of Boolean combinations like S1&S2. We can-
not ask experts about all 2® (> 10'°) such combinations, so we must
estimate p(S1&S-2) based on p; = p(S1) and p2 = p(S2).

One can use the interval p = [max(p1 +p2 — 1, 0), min(p1, p2)] of pos-
sible values of p(S1&S2), but this often leads to p(C) = [0, 1]. A natural
idea is to use a midpoint of p instead; this midpoint is a mathematical
expectation of p(S1&S2) over a uniform (second order) distribution on
all possible probability distributions.

This midpoint operation & is not associative (which fits well with
human reasoning). We show that some properties of this operation,
like semi-associativity and the upper bound (1/9) on the difference
a&z(b&c) — (a&b)&c, can be derived by using interval computations.



1. FORMULATION OF THE PROBLEM

1.1. WE NEED ESTIMATES FOR THE
DEGREES OF CERTAINTY OF S; & S,
AND S,V S,

An expert system contains expert statements Si,...,S,. The ex-
perts’ uncertainty about each statement S; is described by its subjective
probability p;. The conclusion C of an expert system normally depends
on several statements S;: e.g., if C' follows from S7 and from S3, then
p(C) =p(S1V S3).

To know the probability of every Boolean combination, we must know
9" — 1 values p(S5' & ... & S¢), where ¢; € {+,—}, ST ' 5, and §~
=S, For large n, this number is astronomical, so we cannot ask experts
about all of these probabilities. We must thus estimate p(S; & S2) or

p(S1V S2) based only on the values p1 = p(S1) and pa = p(S2).

1.2, INTERVAL ESTIMATES ARE POSSIBLE,
BUT SOMETIMES NOT PERFECT

It is known that for given p; = p(S1) and py = p(Ss):

m possible values of p(S; & S3) form an interval p = [p—,p™], where
p~ = max(p; + p2 — 1,0) and p* = min(py, p2); and

= possible values of p(S; V S3) form an interval p = [p~,p*], where
p~ = max(py,p2) and p* = min(p; + po,1).

(see, e.g., a survey [20] and references therein).

In principle, we can use such interval estimates and get an interval
p(C) of possible values of p(C). Sometimes, this idea leads to meaningful
estimates. Sometimes, however, it leads to a useless p(C) = [0,1] [20,
21]. Then, we need numerical estimates for p(S; & S2) and p(S; V S).

1.3. NATURAL IDEA: SELECTING A
MIDPOINT

It is natural to select a midpoint of each interval:

def 1 1 .
p1&py = 3 max(p1 +p2 — 1,0) + 3 min(p1, p2); (1)
def 1 1 .
pLVpr = 5 max(p1,p2) + 5 min(p; + pa, 1). (2)

This midpoint also has a deeper justification: For n = 2 statements Sy
and Sy, we need 22 = 4 probabilities z1 = p(S1 & S), 2 = p(S1 & —S»),
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z3 = p(—S1 & S2), and z4 = p(—S1 & ~S3). Each corresponding proba-
bility distribution is thus characterized by four real numbers z; > 0 for

which z; + z2 + 3 + 4 = 1; the set of all such vectors (z1,...,z4) is,
therefore, a simplez S.
It is natural to assume that all points (z1,...,%4) from the simplex

are “equally possible”, i.e., that there is a uniform distribution (“second-
order probability”) on this set of probability distributions. Then, as a
natural estimate for the probability p(S; & S2) of S; & So, we can take
the conditional mathematical expectation of this probability under the
condition that the values p(S1) = p1 and p(S3) = pe:

E(p(S1 & S2) | p(S1) = p1 & p(S2) = p2) =

P(zy|z1 + 22 =p1 &z1 + 23 = p2).

(This idea was proposed and described in [1, 6, 7, 8, 9]; see also [2].)

From the geometric viewpoint, the two conditions z; + 2 = p; and
1 + 3 = po select a straight line segment within the simplex S, a
segment which can be parameterized by a parameter

HANS [p_ap+] = [ma,x(pl +p2 — 150)’min(p1ap2)];

then, zo = p; — x1, ©3 = p — 1, and ©4 = 1 — (z1 + 72 + z3). Since
we start with a uniform distribution on &, the conditional probability
distribution on this segment is uniform, i.e., z; is uniformly distributed
on the interval [p—, p*]. Thus, the conditional mathematical expectation
of z1 with respect to this distribution is equal to (p~ + p™)/2, i.e., to
the midpoint of this interval. Similarly, for an “or” operation, we can
conclude that

E(p(S1V S2) | p(S1) = p1&p(S2) = p2) =

1 1 .
3 max(p1,p2) + 3 min(p; + po, 1).

1.4. MIDPOINT OPERATIONS: PROBLEM

The choice of a midpoint, however, comes with a problem. Intuitively,
(S1& S2) & S3 means the same as S & (S2 & S3), so it is thus natural
to require that the “and”-operation be associative: (p; & p2)&p3 =
p1 & (p2 & p3). Alas, midpoint operations are not associative [2]: e.g.,
(0.4&0.6) & 0.8 = 0.2& 0.8 = 0.1, while 0.4& (0.6 &0.8) = 0.4& 0.5 =
0.2 # 0.1.

By itself, a small non-associativity may not be so bad: associativity
comes from the requirement that our reasoning be rational, while it
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is well known that our actual handling of uncertainty is not exactly
following rationality requirements (see, e.g., [27]). So, it is desirable to
find out how non-associative can these operations be.

2. MAIN RESULTS AND THEIR
INTERPRETATION

Theorem 1. m?x|(a&b)&c—a&(b&c)\ =1/9.

Theorem 2. max [(avb)Ve—aV(bVe)|=1/9.
a,b,c

Interpretation. Human experts do not use all the numbers from [0, 1] to
describe their possible degrees of belief. They use a few words like “very
probable” etc. Each of words is a “granule” covering the entire sub-
interval of values. Since the largest possible non-associativity degree is
1/9, non-associativity is negligible if the “granules” are of size > 1/9. No
more than 9 such granules fit into [0, 1]. This may explain why humans
are most comfortable with < 9 items to choose from — the famous “7+2"
law; see, e.g., [17, 18].

This general psychological law has also been confirmed in our specific
area of formalizing expert knowledge: namely, in [5], it was shown that
this law explains why in intelligent control, experts normally use < 9
different degrees (such as “small”, “medium”, etc.) to describe the value
of each characteristic.

3. PROOFS: MAIN IDEA AND HOW
INTERVAL COMPUTATIONS SIMPLIFY
IT

One can easily see that the operation V is dual to the operation & in
the sense that a Vb =1 — (1 — a) & (1 — b). Because of this duality, we
can easily deduce Theorem 2 from Theorem 1. Thus, it is sufficient to
prove Theorem 1.

Every triple can be sorted: a < b < c¢. For these sorted real numbers,

we want to know the relation between %, e & (b&c), tp e g (a&c),

and %, el g (a &b). The formulas for a & b, a & ¢, and b & ¢ depend on
the relation between a + b, a + ¢, b+ ¢, and 1. Since a < b < ¢, we have
a+b<a+c<b+c Thus, there are exactly 4 possible locations of
number 1 in relation to these three sums:
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La+b<a+c<b+c<1;
II.a+b<a+c<1 < b+
IIIL a+b<1<a+c<b+g
IV.1<a+b<a+c<b+c

We prove by considering these cases one by one. In each case, we get
expressions for a & b, a & ¢, and b & ¢ which do not contain min and max.

We can subdivide each of these cases into subcases depending on which
of the maximized and minimized terms in the expressions for a & (b & ¢),
b& (a&c), and c& (a & b) are larger.

For example, in case IV, all three sums a + b, a + ¢, and b+ ¢ are
greater than 1, s0o a&b=a+0.5:-b—0.5,a&c=a+0.5-c— 0.5, and
b&c=b+0.5-c—0.5.

» The value of t, = (b& ¢) & a depends on whether (b&c) +a < 1,
i.e., whether b4+ 0.5-¢c— 0.5+ a < 1. If we move terms which
do not contain a, b, or ¢ to the right hand-side, and rearrange
terms which do contain a, b, or ¢, in alphabetic order, we get an
equivalent inequality a + b+ 0.5 - ¢ < 1.5.

= Similarly, the value of t;, = (a & ¢) & b depends on whether (a & ¢)+
b <1, i.e., whether a+0.5-c—(1—8)+b < 1, which is also equivalent
to the same inequality a + b+ 0.5 - ¢ < 1.5.

= Finally, the value of ¢, = (a & b) & ¢ depends on whether (a & b) +
c <1, i.e., whether a +0.5-b— 0.5 + ¢ < 1, which is equivalent to
the inequality a + 0.5 - b+ ¢ < 1.5.

So, to find the expressions for %, t;, and t., we must know where 1.5
stands in comparison with a +b+ 0.5-c and a +0.5- b+ ¢. Since b < ¢,
we have 0.5 -5 < 0.5 - ¢, hence

a+b+05-c=(a+b+c)—05-¢c<

(a+b+¢c)—05-b=a+05-b+c.

Due to this inequality, we have exactly three possibilities:



A. the number 1.5 can be larger than the largest of the above two
expressions; in this case, both expressions are < 1.5, i.e.,

a+b4+05-c<a+05-b4+c< 1.5

B. the number 1.5 is in between the above two expressions; in this
case,
a+b+05-¢<15<a+05-b+c¢

C. the number 1.5 is smaller than the smallest of the above two ex-
pressions; in this case, both expressions are > 1.5, i.e.,

1.5<a+b+4+05-c<a+05-b+c

These subcases can be further subdivided, etc. For each of the resulting
final subcases, all three combinations t,, t, and . are described by linear
expressions.
There are many such subcases, so the proof is possible but very
lengthy. It turns out that interval computations can reduce this length.
Indeed, we want to find the maximum of the expression

[(a&b)&c—a& (b&c)|

when a,b,c € [0,1]. To help with the proof, we divided each interval
[0,1] into 100 subintervals of length 0.01, thus generating 100® = 106
sub-boxes. We use interval arithmetic with additional operations

min([a”,a™],[b7,b"]) = [min(a™,b”), min(a™, b")]

and
max([a”,a],[b7,b7]) = [max(a”,b"), max(a™, b7)].

For each subbox, we applied the “naive” interval computations technique
to get the estimate [m;, M;] for the range of the desired function on this
subbox. Then, we eliminated all subboxes for which M; < 1/9.

As a result, out of the original 10 boxes, we have only 80 possible
locations of the global maximum. For these 80 boxes, b € [0.54,0.58],
and:

» either a € [0.43,0.46] and ¢ € [0.75,0.79];
m ora € [0.75,0.79] and c € [0.43,0.46].

When we sort a, b, and ¢, we get a € [0.43,0.46], b € [0.54,0.58], and
¢ € [0.75,0.79]. Hence, a+ ¢ > 1, and we only need proofs for half of the
cases: Cases IIT and TV.
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Some subcases of Case IV were also eliminated. Indeed, within the
above interval bounds for a, b, and ¢, the upper bound for a +b+0.5-¢
is equal to 0.46 +0.58 +0.5-0.79 = 1.435 < 1.5. Thus, to check that the
value of the desired function cannot exceed 1/9, we only need to consider
cases when a + b+ 0.5 ¢ < 1.5. Hence, we can dismiss Subcase C when
this inequality is not satisfied, and only consider Subcases A and B in
our proof.

For each final subcase, the difference (a & b) & c—a & (b& ¢) is a linear
function, and the constraints describing this subcase are linear inequali-
ties. Thus, for each subcase, we have a linear programming problem with
rational coefficients. We can analytically solve each of these problems
by computing the vertices of the corresponding polytope, and finding
the vertex on which the objective function attains the largest value. As
a result, we get the desired proof.

4. AUXILIARY RESULTS: ALTERNATIVE
TO MIDPOINT

Instead of selecting a midpoint, we can make a more general selection
of a value in the interval p.

By a choice function, we mean a function s that maps every interval
u=[u",u"] into a point s(u) € u so that for every ¢ and A > 0:

n s([u” +c,ut +c]) = s([u,uT]) + ¢ (shift-invariance);

m s((Aum, A ut])) = A s([um,ut]) (unit-invariance).
Proposition. [19] Every choice function has the form s(ju,u*]) =
a-u” 4+ (1—a)-ut for some a €0,1].

The combination p = a-p~+(1—a)-p™ (first proposed by Hurwicz [10])
has been successfully used in areas ranging from submarine detection
[3, 4, 22, 23, 24] to petroleum engineering [26]; see also [11, 12, 13, 16, 25].
(In [28, 29], this approach is applied to second-order probabilities.)

With this approach, we get the following formulas which generalize
(1) and (2):

f .
p1 & po def . max(p; + p2 — 1,0) + (1 — @) - min(p1, p2); (3)

def )
p1Vp2 S a-max(py,p2) + (1 — @) -min(py + po, 1). (4)
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Theorem 3.

 a-(I-a
 a-(l1-a
121‘51’.3:(|(avb)Vc—aV(ch)\ 3 ra-(-a)

Comment. This non-associativity degree is the smallest (= 0) when a =
0 or a = 1, and the largest (= 1/9) for midpoint operations (a = 0.5).

In our proof, it was useful to first show that the new operations have
some properties of associativity:

Definition. We say that a commutative operation * is semi-associative
if a < b < ¢ implies that

a*x(bxc)>bx(a*xc)>cx*(axb).

Theorem 4. For every a € (0,1), both operations (3) and (4) are
semi-associative.

Proofs: main idea. To make it easier to follow the proofs, the reader
is welcome to use the fact that the traditional fuzzy logic operation
min(a, b) corresponds to & = 0 and 1 — a = 1; to make this following
even easier, we introduce a new variable 8 =1 — a; then, a =1 — (.

Let us describe the proof of Theorems 3 and 4 for Case I of &. For
Theorem 4, in this case, a + b <a+c<b+c<1,s0a+b<1and
b+c<1. Hence, b&c=0-b,a&c=0-a,and a&b = (3-a. Let us
find the values of all three terms %,, 5, and t.:

t.: Since a&b < a (by the properties of the new operation), and
a < ¢ (by our assumption), we conclude that a& b < c. Also,
(a&b)+c=p-a+c<a+c<1,s0

(a&b)&c=0 (a&b)=8-(8-a)=p-a.

tp: Similarly, (a&c) <a <b,and (a&c)+b=0F-a+b<a+b<1,
S0

(a&c)&b=0 (a&c)=B-(8-a)=p*-a.
te: Finally, (b&c)+a=p-b+a<a+b<1,s0

(b&c)&a = B min(B - b,a) = min(3* - b, - a).
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Now we are ready to prove the desired inequalities:

tc < tp: We have shown even that t, = (a&c) &b = (a & b) & ¢ = ..

ty < tq: Since b > a, we have $%-b > (32-a; clearly, since 8 < 1, we have
B> 32, hence B-a > % -a. Hence, min(3?-b,3-a) > ?-a.

Thus, for Case I, the desired inequalities are proven.

To prove Case I of Theorem 3, it is therefore sufficient to prove that
the difference t, —t. cannot exceed the desired bound M. We will prove
this by reduction to a contradiction by assuming that ¢, —t. > M and
by getting a contradiction.

In Case I, as we have shown in the proof of Theorem 4,

t, = min(8% - b,8-a) and t. = (2 -a. Thus, from the assumption
that t, — t. > M, we can conclude that 5% -8 — ?-a > M and that
B-a—p%a>M.

The second of these inequalities is equivalent to 8- (1 — ) -a > M,

ie., to
M

SR O)
By definition of M, we have
M B 1
B-(1-8) 2+6-(1-5)

so this inequality leads to

= ao,

1
>00=—F5—F—5 5
Y R () ©)
The first inequality 82 -b— 32 -a = 82 - (b—a) > M is equivalent to
M _
b—a>— = p . (6)

g B-2+8-(1-p))
From (5) and (6), we conclude that

atb=0-a)t2e> T T 0=a) 248 -1=5)

26+ (1-7) 1+4

B-2+p-1-p) B-2+8-(1-8)

Since in Case I, a + b < 1, we conclude that
1+

B-(2+p4-(1-0)

<1,
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i.e., that
1+B<B-(2+6-(1-0)=20+p" -4

If we move £ to the right-hand side and 32 to the left-hand side, we get
a simpler equivalent inequality 1 4+ 8% < 3 + 2. This inequality can be
further simplified if we divide its both sides by 1 + 8 > 0, resulting in
the following: 1 — 3+ 2 < 3. If we move 3 from the right-hand side to
the left, we get 1 — 28 + 32 = (1 — 8)? < 0, which is impossible.

The contradiction shows that in Case I, we cannot have t, —t. > M;
thus, for Case I, Theorem 3 is proven.

Other cases are treated similarly.
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