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Abstract

If we know the degrees of certainty (subjective prob-
abilities) ��������� and �����
	�� in two statements ��� and�
	 , then possible values of ��������
��
	�� form an interval����� �����
����������	��! #"%$&�'"(�*),+-������".�/	0�21 . As a numer-
ical estimate, it is natural to use a midpoint � of this
interval; this midpoint is a mathematical expectation of����� � 
�� 	 � over a uniform (second order) distribution
on all possible probability distributions.

This midpoint operation & is not associative. We show
that the upper bound on the difference 3 
4��5�
76��8�� 3 
�59�:
76 is 1/9, so if the size of the corresponding
granules is ;  =<�> , we will not notice this associativity.
This may explain the famous ?A@CB law, according to
which we use no more than 9 granules.

1. In Expert Systems, We Need Es-
timates for the Degree of Cer-
tainty of D  8E D B and D  GF D B

In many areas (medicine, geophysics, military decision-
making, etc.), top quality experts make good decisions,
but they cannot handle all situations. It is therefore de-
sirable to incorporate their knowledge into a decision-
making computer system.

Experts describe their knowledge by statements�H�I"�J�J0J9"%�-K (e.g., by if-then rules). Experts are often not
100% sure about these statements �HL ; this uncertainty
is described by the subjective probabilities �-L (degrees
of belief, etc.) which experts assign to their statements.
The conclusion M of an expert system normally depends
on several statements � L . For example, if we can deduce

M either from �-	 and �
N , or from �
O , then the validity
of M is equivalent to the validity of a Boolean combi-
nation ���-	-
��
N��QP��
O . So, to estimate the reliability��� M � of the conclusion, we must estimate the probabil-
ity of Boolean combinations. In this paper, we consider
the simplest possible Boolean combinations are � � 
�� 	
and � � PR� 	 .
In general, the probability ����� � 
�� 	 � of a Boolean
combination can take different values depending on
whether � � and � 	 are independent or correlated. So, to
get the precise estimates of probabilities of all possible
conclusions, we must know not only the probabilities�����-L�� of individual statements, but also the probabili-
ties of all possible Boolean combinations. To get all
such probabilities, it is sufficient to describe B K prob-
abilities of the combinations SAT%U� 
VJ�J0JW
 S TYXK , whereZILA[]\ �^"0�`_ , SAa means S , and S�b means cdS . The
only condition on these probabilities is that their sum
should add up to 1, so we need to describe B K �e dif-
ferent values. A typical knowledge base may contain
hundreds of statements; in this case, the value B K �C 
is astronomically large. We cannot ask experts about all
B K such combinations, so in many cases, we must esti-
mate ����� � 
�� 	 � or ����� � Pf� 	 � based only on the values���g���������9� and �/	h�������
	0� .

2. Interval Estimates Are Possible,
But Sometimes, Numerical Esti-
mates Are Needed

It is known that for given �-�g�������H�9� and ��	h�������
	�� :
i possible values of ����� � 
�� 	 � form an interval j �� � b ".� a 1 , where � b �k��������� � �l� 	 �m #"%$&� and



� a �e� ) +���� � ".� 	 � ; and

i possible values of �������^P!�
	0� form an interval
j � � � b "�� a 1 , where � b � �*���-� ���I".��	0� and� a �e� ) +������ � �/	#"� ��

(see, e.g., a survey [12] and references therein).

So, in principle, we can use such interval estimates and
get an interval j � M � of possible values of ��� M � . Some-
times, this idea leads to meaningful estimates, but often,
it leads to a useless j � M �f��� $W"0 91 (see, e.g., [12, 13]).
In such situations, it is reasonable, instead of using the
entire interval j , to select a point within this interval as
a reasonable estimate for ��������
��
	�� (or, correspond-
ingly, for ����� � PR� 	 � ).

3. Natural Idea: Selecting a Mid-
point as the Desired Estimate

Since the only information we have, say, about the un-
known probability ����� � 
�� 	 � is that it belongs to the
interval � � b "�� a 1 , it is natural to select a midpoint of
this interval as the desired estimate. In other words,
if we know the probabilities � � and � 	 of the state-
ments ��� and �
	 , then, as estimates for ��������
��
	�� and�����H�-P��-	0� , we can take the values �-��
R�/	 and �
�-P8��	 ,
where

� � 
R� 	 ������  
B � ��������� � � � 	 �l #"%$&�
�

 
B � �*) +�� � � "�� 	 ���

�
�dPA��	 ������  
B � ���I�-� �
�="��/	0���

 
B � �*) +H� �
� � �/	�"0 ��9J

This midpoint selection is not only natural from a com-
mon sense viewpoint; it also has a deeper justifica-
tion. Namely, in accordance of our above discussion,
for � � B statements � � and � 	 , to describe the proba-
bilities of all possible Boolean combinations, we need
to describe B 	 �
	 probabilities � � � ����� � 
7� 	 � ,
� 	 � ����� � 
 c � 	 � , � N � ��� c � � 
�� 	 � , and � O ���� c � � 
 c � 	 � ; these probabilities should add up to 1:
� � � � 	 � � N � � O �m . Thus, each probability distribu-
tion can be represented as a point � � � "0J�J0J9" � O � in a 3-D
simplex

� � \ � � � " � 	 " � N " � O ��
 � L ; $ 
 � � �eJ0J�J�� � O �m �_ J
We know the values of � � �k����� � � � � � � � 	 and� 	 ������� 	 � � � � � � N , and we are interested in the val-
ues of ��������
��
	�� � � � and �����H� P8�
	0� � � �:� � 	 � � N#J
It is natural to assume that a priori, all probability distri-
butions (i.e., all points in a simplex

�
) are “equally pos-

sible”, i.e., that there is a uniform distribution (“second-
order probability”) on this set of probability distribu-
tions. Then, as a natural estimate for the probabil-
ity ����� � 
7� 	 � of � � 
�� 	 , we can take the conditional

mathematical expectation of this probability under the
condition that the values ����� � � �7� � and ����� 	 � ��� 	 :

S � ����� � 
�� 	 ��
 ����� � � ��� � 
R����� 	 � ��� 	 � �
� � � � 
 � � � � 	 ��� � 
 � � � � N ��� 	 �'J

(This idea was proposed and described in [1, 4]; see also
[2].)

From the geometric viewpoint, the two conditions � � �
� 	������ and � �/� � N����/	 select a straight line segment
within the simplex

�
, a segment which can be parame-

terized by

� � [ � � b "�� a 1�� � �*���-� ��� � �/	 �  &"($&�9"Y�*) +-� ����".��	��21��
then, � 	 � � � � � � , � N � � 	 � � � , and � O � � � � �Q� � 	 � � N=� . Since we start with a uniform dis-
tribution on

�
, the conditional probability distribution

on this segment is uniform, i.e., � � is uniformly dis-
tributed on the interval � � b "�� a 1 . Thus, the conditional
mathematical expectation of � � with respect to this dis-
tribution is equal to � � b ��� a �%< B , i.e., to the midpoint
of this interval. Similarly, for an “or” operation, we can
conclude that

S � ����� � P � 	 ��
 ����� � � ��� � 
R����� 	 � ��� 	 � � 
B � ���I�
� � � "�� 	 �-�

 
B � �*) +H� � � � � 	 "0 ��9J

4. Problem: Midpoint Operations
Are Not Associative

Any “and” operation � � 
R� 	 enables us to produce an
estimate for

� ��� � 
�� 	 � provided that we know esti-
mates � � for ����� � � and � 	 for ����� 	 � . If we are inter-
ested in estimating the degree of belief in a conjunction
of three statements ���

7�-	

7�-N , then we can use the
same operation twice:

i first, we apply the “and” operation to �H� and ��	
and get an estimate �
�

 ��	 for the probability of�H��
��
	 ;

i then, we apply the “and” operation to this estimate� � 
R� 	 and � N , and get an estimate � � � 
R� 	 �W
 � N
for the probability of ��� � 
�� 	 �:
�� N .

Alternatively, we can get start by combining � 	
and � N , and get an estimate � � 
4��� 	 
R� N � for
the same probability ����� � 
�� 	 
�� N � . Intuitively,
we would expect these two estimates to coincide:� ���-
R�/	��:
R��N � �
��
 ���/	-
R��N�� , i.e., in algebraic
terms, we expect the operation 
 to be associative.
Unfortunately, midpoint operations are not associative
[2]: e.g., ��$WJ 	 
7$WJ �&�:
7$ J ��� $WJ B 
7$WJ ��� $WJ  , while$WJ 	 
4�.$WJ � 
7$WJ �&���e$ J 	 
7$ J �`� $ J B��� $WJ  .
By itself, a small non-associativity may not be so bad:



i associativity comes from the requirement that our
reasoning be rational, while

i it is well known that our actual handling of uncer-
tainty is not exactly following rationality require-
ments; see, e.g., [14].

So, it is desirable to find out how non-associative can
these operations be.

5. How Non-Associative Are Natural
(Midpoint) Operations? Main
Results and Their Psychological
Interpretation

We know that the midpoint operations are non-
associative, i.e., that sometimes, � 3 
75��:
76 ��3 
 ��5�
76�� . We want to know how big can the differ-
ence � 3 
�59�:
76Q� 3 
4��5�
76�� can be.

Theorem 1. �������� ��� � 
�� 3 
�59�:
76Q� 3 
4��5�
76�� 
��] =<�>WJ
Theorem 2. �������� ��� � 
�� 3 P 59�
PR6 � 3 P���5 P 6���
 �] =<�>WJ
(The proof of these two theorems use interval computa-
tions; for readers’ convenience, the proofs are placed in
the special proofs section.)

Human experts do not use all the numbers from the
interval � $W"0 91 to describe their possible degrees of be-
lief; they use a few words like “very probable”, “mildly
probable”, etc. Each of words is a “granule” covering
the entire sub-interval of values. Since the largest possi-
ble non-associativity degree 
,� 3 
75��:
76g� 3 
 ��5�
76���

is equal to 1/9, this non-associativity is negligible if the
corresponding realistic “granular” degree of belief have
granules of width ;  I<I> . One can fit no more than 9
granules of such width in the interval � $W"0 91 . This may
explain why humans are most comfortable with

� >
items to choose from – the famous “7 plus minus 2”
law; see, e.g., [9, 10].

This general psychological law has also been confirmed
in our specific area of formalizing expert knowledge:
namely, in [3], it was shown that this law explains why
in intelligent control, experts normally use

� > different
degrees (such as “small”, “medium”, etc.) to describe
the value of each characteristic.

6. Interval Computations: A Tool
Used in Our Proof

To prove our results, we use a technique called interval
computations (see, e.g., [6, 7, 15]). Namely, our goal

is to find the maximum of the function 
,� 3 
�59�:
768�
3 
4��5�
76�� 
 when 3 [ � $W"� �1 , 5 [ � $W"0 91 , and 6 [ � $W"� �1 .
We know that the minimum of this function is 0: it is
attained, e.g., if 3 �k5 � 6 � $ . Thus, what we are
looking for is the range of the above function of three
real variables.

Interval computations is a technique which allows us,
given a function � �	�d� � � "0J�J0J�" � K � of several real
variables and a “box” 
 ��� ��
 J0J�J 
 � K , where� L �m� � bL " � aL 1 , to compute either the range of the given
function on the given box:

� ���d�����I"0J�J�J�"��-K � �
\ �d� � � "�J0J�J9" � K ��
 � �`[ � � b� " � a � 12"�J0J�J0" � K [ � � bK " � aK 1�_&"

or an interval � which is guaranteed to contain the
desired range, i.e., for which ��� � (We cannot al-
ways compute the exact range because computing this
exact range is intractable even for quadratic functions�d� � ��"�J0J�J0" � KW� : see, e.g., [8].)

This technique is based on the fact that in the computer,
the computation of a function � consists of several el-
ementary steps. For example, a compiler will translate
the computation of the midpoint “and” operation

�d� � � ".� 	 � �  
B � ���I�
� � � �R� 	 �� &"($&���

 
B � � ) +H��� � ".� 	 �

into the following sequence of elementary steps ( � � , � 	 ,
etc. denote the preliminary computation results):

i first, we compute � ��� ����� � �/	 ;
i then, we compute � 	 � � � � �  ;
i compute � N � � �*),+�� � 	 "($ � ;
i compute � O�� � �  I< B � � � N ;
i compute ��� � � �*),+�� � � ".� 	 � ;
i compute ��� � � �  I< B � � � � ;
i finally, compute the result as � � � � O � � � .

In this example, we have two input variables � �G� �
�
and � 	l� ��	 . In general, for each input variable � L ,
we know the interval � L � � � b� " � a � 1 of possible values.
For each elementary step � � 3 "%59� , if we know the inter-
vals � � � 3 b " 3 a 1 and � �V� 5 b " 5 a 1 of possible values
for each of the input, then we can compute the interval
� � � " � � of possible values of the results:

i � 3/b " 3 a 1:� � 5 b "%5 a 1�� � 3/b � 5 b " 3 a �l5 a 1 �
i � 3/b " 3 a 1/�4� 5 b "%5 a 1�� � 3/b ��5 a " 3 a �75 b 1 �
i � 3/b " 3 a 1 � � 5 b " 5 a 1��m� 6 b "(6 a 12" where6 b �e�*) +H� 3/b � 5 b " 3/b � 5 a " 3 a � 5 b " 3 a � 5 a � ,6 a �4���I�-� 3 b � 5 b " 3/b � 5 a " 3 a � 5 b " 3 a � 5 a ���



i��*) +H�Y� 3/b " 3 a 12"0� 5 b "%5 a 1 � �� �*),+H� 3/b "%5 b �'"Y�*) +H� 3 a " 5 a �21��
i����I�
�Y� 3/b " 3 a 12"0� 5 b " 5 a 1 � �� ���I�
� 3/b "%5 b �'"(�*���-� 3 a "%5 a � 1�J

These formulas are called formulas of interval arith-
metic.

So, to find an interval that contains the desired range,
we follow the original algorithm step-by-step, on each
step replacing the original elementary operation with
real numbers by the corresponding operation of interval
arithmetic.

In particular, if we want to know the range of the values
of the function �d� �-�=".��	0�h� �
��
��/	 when ��� [ j � and�/	 [ j 	 , we do the following:

i first, we compute �&� � � j � � j 	 ;
i then, we compute � 	 � ��� � �4�� &"� 91 ;
i compute � N � � � ) +H��� 	 "0� $W"%$I1 � ;
i compute �=O�� � � $ J �W"($WJ �=1 � �=N ;
i compute � � � � � ) +H� j � " j 	 � ;
i compute � � � � � $ J �W"($WJ �=1 � � � ;
i finally, compute the result as � � ����O ��� � .

It is easy to prove (by induction) that at any given mo-
ment of time, the result of this procedure is guaranteed
to contain the result of the interval of possible values of
the corresponding quantity.

It is also easy to show that this “naive” interval compu-
tation procedure sometimes overestimates. For exam-
ple, for a function �d� � � � � � � � �  Q� � � � on the interval� $W"� �1 , the computational procedure consists of the fol-
lowing two steps:

i � � � �  g� � � ;
i � � � � � � � � ,

so we get the following estimate:

i�� � � � �, #"0 91�� � � � �, #"0 91�� � $ "� �1 � �� 
�R #"0 
� $�1/�
� $W"0 91 ;

i � � � ��� � �#�g� � $ "� �1 � � $W"� �1�� � $W"0 91 ,
while the actual range is � � � $ "($WJ B �I1�� � � � $W"0 91 .
To decrease the overestimation, we can use the follow-
ing methodology of interval computations: we divide
each interval � L into several sub-intervals, thus dividing
the original box into many sub-boxes; then, we estimate

the range of the function over each of the subintervals,
and then take the union of the resulting ranges as an es-
timate for the range over the whole original box.

If we are interested not only in the actual value of the
maximum, but if we also want to know where exactly
this maximum is attained, then we can use this sub-
boxes as follows: if we have two subboxes 
 � and

 	 with range estimates � � � "
	 � 1 and � � 	 "�	 	 1 , and
	 �
� � 	 , then we are guaranteed that an arbitrary
value �d� � � "0J�J�J0" � K � for � � � "0J�J0J9" � K � from the first sub-
box is smaller than every value from the second subbox.
Thus, we can safely claim that the (global) maximum of
the given function cannot be attained in the first subbox
– hence, this first subbox can be safely removed from
the list of possible location of the global maximum.

7. Proof Itself

One can easily see that the operation P is dual to the op-
eration 
 in the sense that 3 Pf5g�  H� �  �� 3 �:
4�  H�G5�� .
Because of this duality, we can easily deduce Theorem
2 from Theorem 1. Thus, it is sufficient to prove Theo-
rem 1.

Every triple can be sorted: 3 � 5 � 6 . For these
sorted real numbers, we want to know the relation be-
tween � �

������ 3 
4��5�
�60� , � � ������ 5�
4� 3 
76�� , and � �
������6

 � 3 
�59� . The formulas for 3 
�5 , 3 
76 , and 5�
�6 de-

pend on the relation between 3 � 5 , 3 � 6 , 5g� 6 , and
1. Since 3 � 5 � 6 , we have 3 �e5 � 3 �46 � 5 �46 .
Thus, there are exactly 4 possible locations of number 1
in relation to these three sums:

I. 3 � 5 � 3 �l6 � 5 �l6 �
� �
II. 3 � 5 � 3 �l6 �
� � 5 ��6 �

III. 3 � 5 ��� � 3 �l6 � 5 ��6 �
IV.

� � 3 �l5 � 3 �l6 � 5 ��6�J

We prove by considering these cases one by one. In
each case, we get expressions for 3 
�5 , 3 
�6 , and 5�
76
which do not contain �*) + and ���I� .

We can subdivide each of these cases into subcases
depending on which of the maximized and minimized
terms in the expressions for 3 
 ��5�
76�� , 5�
4� 3 
76�� , and6

 � 3 
�59� are larger.

For example, in case IV, all three sums 3 ��5 , 3 � 6 , and5 � 6 are greater than 1, so 3 
�5^� 3 �e$ J � � 5g� $WJ � ,3 
76 � 3 ��$WJ � � 6Q� $ J � , and 5�
76g� 5���$WJ � � 6 � $ J � .
i The value of � � � ��5�
76��:
 3 depends on whether��5�
76�� � 3 �  , i.e., whether 5��`$WJ � � 6#�h$WJ � � 3 �  .

If we move terms which do not contain 3 , 5 , or 6



to the right hand-side, and rearrange terms which
do contain 3 , 5 , or 6 , in alphabetic order, we get an
equivalent inequality 3 � 5d�l$WJ � � 6 �  #J � .

i Similarly, the value of � � � � 3 
76��:
�5 depends on
whether � 3 
76��W� 5 �  , i.e., whether 3 � $WJ � � 6���Y f� � � �!5 �  , which is also equivalent to the
same inequality 3 � 5 ��$ J � � 6 �  #J � .

i Finally, the value of � � � � 3 
�59�:
76 depends on
whether � 3 
�59�W� 6 �  , i.e., whether 3 � $WJ � � 5��$ J �8� 6 �  , which is equivalent to the inequality
3 ��$ J � � 5 �l6 �  &J � .

So, to find the expressions for � � , � � , and � � , we must
know where  #J � stands in comparison with 3 � 5:� $ J � � 6
and 3 � $WJ � � 5/� 6 . Since 5 � 6 , we have $ J � � 5 � $WJ � � 6 ,
hence

3 �l5 �l$WJ � � 6 �m� 3 � 5 ��6�� ��$ J � � 6 �
� 3 �l5 � 6����7$WJ � � 5g� 3 ��$ J � � 5 �l6IJ

Due to this inequality, we have exactly three possibili-
ties:

A. the number  #J � can be larger than the largest of the
above two expressions; in this case, both expres-
sions are

�  #J � , i.e.,

3 � 5 ��$ J � � 6 � 3 �l$WJ � � 5 �l6 �  #J � �

B. the number  #J � is in between the above two expres-
sions; in this case,

3 � 5 ��$ J � � 6 �  #J � � 3 ��$ J � � 5d�l6 �

C. the number  &J � is smaller than the smallest of the
above two expressions; in this case, both expres-
sions are ;  #J � , i.e.,

 #J � � 3 �l5 �l$WJ � � 6 � 3 ��$ J � � 5d�l6IJ

These subcases can be further subdivided, etc. For each
of the resulting final subcases, all three combinations � � ,
� � , and � � are described by linear expressions.

There are many such subcases, so the proof is possible
but very lengthy. It turns out that interval computations
can reduce this length.

Indeed, we want to find the maximum of the expression


�� 3 
�59�:
76Q� 3 
4��5�
76�� 

when 3 "%5="%6 [ � $ "� 91 . To help with the proof, we di-
vided each interval � $W"0 91 into 100 subintervals of length$WJ $W , thus generating  �$#$ N �  0$ � sub-boxes. We use
the above interval arithmetic (with additional operations
for �*) + and ����� ). For each subbox, we applied the

“naive” interval computations technique to get the es-
timate � � L "�	 L 1 for the range of the desired function
on this subbox. Then, we eliminated all subboxes for
which 	�L �  I<I> .
As a result, out of the original  0$ � boxes, we have only
80 possible locations of the global maximum. For these
80 boxes, 5 [ � $ J � 	 "%$WJ � �I1 , and:

i either 3 [ � $ J 	��W"($ J 	 �I1 and 6 [ � $ J ? �:"%$WJ ? >I1 ;
i or 3 [ � $ J ? �:"%$WJ ? >I1 and 6 [ � $WJ 	��W"%$WJ 	 ��1 .

When we sort 3 , 5 , and 6 , we get 3 [ � $ J 	��W"($ J 	 �I1 , 5 [� $ J � 	 "($ J � �I1 , and 6 [ � $ J ? �:"($ J ? >I1 . Hence, 3 � 6��  ,
and we only need proofs for half of the cases: Cases III
and IV.

Some subcases of Case IV were also eliminated. In-
deed, within the above interval bounds for 3 , 5 , and6 , the upper bound for 3 � 5 � $WJ � � 6 is equal to$WJ 	 � ��$ J � �Q��$WJ � � $WJ ? > �  #J 	�� � �  #J � . Thus, to check
that the value of the desired function cannot exceed 1/9,
we only need to consider cases when 3 �A5�� $WJ � � 6 �  #J � .
Hence, we can dismiss Subcase C when this inequality
is not satisfied, and only consider Subcases A and B in
our proof.

For each final subcase, the difference

� 3 
�59�:
76 � 3 
 ��5�
76��
is a linear function, and the constraints describing this
subcase are linear inequalities. Thus, for each subcase,
we have a linear programming problem with rational
coefficients. We can analytically solve each of these
problems by computing the vertices of the correspond-
ing polytope, and finding the vertex on which the objec-
tive function attains the largest value. As a result, we
get the desired proof.

8. Auxiliary Results: Alternatives to
Midpoint

Instead of selecting a midpoint, we can make a more
general selection of a value in the interval j .

By a choice function, we mean a function � that maps
every interval � � � � b "	� a 1 into a point � � � � [ � so
that for every 6 and 
 �4$ :
i � �Y� � b �l6I"	� a ��6 1 � � � �(� � b "	� a 1 �H��6

(shift-invariance);

i � �Y� 
 � � b " 
 � � a 1 � � 
 � � �(� � b "�� a 1 �
(unit-invariance).



Proposition. [11] Every choice function has the form
� �Y� � b "�� a 1 � ��� � � b ���  H���d� � � a for some � [ � $W"0 91 .
The combination � ��� � � b �C�  ������ � � a (first pro-
posed by Hurwicz [5]) has been successfully used in
areas ranging from submarine detection to petroleum
engineering [11]; in [16], this approach is applied to
second-order probabilities.)

With this approach, we get the following formulas
which generalize the above definitions:

����
R��	 �������� � �����
�����=����	��^ #"($ �'���  ����� � �*),+�� �
�="��/	0���
����P���	 �������� � �����������="��/	�� � �  ���d� � �*) +������-�G�/	�"� ��9J
Theorem 3.

�*������ ��� � 
,� 3 
�59�:
76 � 3 
 ��5�
76���
��
� � �  g�	�d�

B �
� � �  g�	�d�'J
�*������ ��� � 
,� 3 P 59�
PR6Q� 3 P ��5 P 60��
#�

� � �  g�	�d�
B �
� � �  g�	�d�'J

Comment. This non-associativity degree is the smallest
( �e$ ) when � � $ or � �  , and the largest ( �] =<�> ) for
midpoint operations ( � � $WJ � ).
In our proof, it was useful to first show that the new op-
erations have some properties of associativity: namely,
it turns out that for every � , both operations are semi-
associative in the sense that 3 � 5 � 6 implies that
3�� ��5 � 6�� ; 5 � � 3�� 6�� ; 6 � � 3
� 59� .
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