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Abstract

In this paper, we develop a relationship between two approaches to
combining evidence: the Ordered Abelian Group (OAG) approach and
the uninorm approach. We show that while there exist uninorms that are
not extended OAG’s it turns out that for operations which are continuous
(in some reasonable sense), these two approaches coincide.

1 Introduction: The Problem of Combining Ev-
idence

In the development of expert systems the problem of combining multiple pieces
of evidence about a hypothesis H was recognized early as an important issue
[1, 12]. Simply stated, the problem is as follows: If two independent pieces of
evidence support the hypothesis H, A with degree a, and B with degree b, then
what is our resulting degree of belief in H?



If these degrees a and b are the only information we have, then the result-
ing resulting degree of belief must depend only on these two values a and b.
In mathematical terms, we can say that the resulting degree of belied must
be a function of two real values a and b. In this paper, we will denote the
corresponding function by a * b. Which function should we choose?

Several approaches have been proposed for solving this problem. In this
paper, we show that two of these approaches:

e Ordered Abelian Groups (OAG) approach [5], and
e the (more recent) uninorm approach [13] —

largely coincide. The fact for an important continuous case, these two ap-
proaches — coming from different ideas — coincide, is a good argument in favor
of the formulas obtained by using each of these approaches.

To put our result into a proper perspective, we first briefly describe the fuzzy
logic approach to combining non-probabilistic uncertain evidence, the approach
which was (most probably) historically the first, and which can be viewed as
a predecessor of both OAG and uninorm approaches. Then, we mention a
different approach presented in the first successful expert system MYCIN, and
how this approach was generalized to OAG. After that, we describe the uninorm
approach, and formulate and prove our main results.

2 Combining Evidence: Fuzzy Logic Approach

From the logical viewpoint, in our case, H is true if and only if either support
from A is true or support from B is true. Thus, as the resulting degree of belief
a*bin H, we can take the value fy(a,b), where fy(x,y) is a t-conorm, an
extension of a 2-valued logical “or” operation to [0, 1]-valued fuzzy logic (see,
e.g., [10, 11]). T-conorms are defined as follows:

Definition 1. A function fy : [0,1] x [0,1] — [0,1] is called a t-conorm if it
satisfies the following four conditions for all x, y, z, and t:

1. fv(0,2) =x;
2. fu(=,y) = fu(y,z) (commutativity);

3. fv(@, fv(y,2) = fv(fv(z,y),2)) (associativity);
4. ifx < z and y <t, then fy(z,y) < fv(z,t) (monotonicity).

T-conorms have been completely classified. In particular, it is known that t-
conorms from an important class called “strictly Archimedean” t-conorms are



isomorphic to addition + on the set RT of all non-negative real numbers ex-
tended by +00, i.e., there exists a 1-1 monotonic mapping ¢ : [0,1] = R* such
that for every z and v,

zxy =9 (o) + o)) (1)

This formula means that for every two inputs x and y, we can compute the
value z x y as follows:

e first, we map both values z and y into the set R by computing z' = ¢(z)
and y' = o(y);

e second, we add the values =’ and y', thus getting 2’ = 2’ + y' € RT;

e finally, we map the value 2z’ back into the interval [0, 1] by applying the

inverse function p=!: z =z xy = 71 (2').

In particular, to get the “algebraic sum” z *y = z +y — = * y, we can use
@(z) = —In(1 — z), for which = (z) =1 — e 7.

3 Combining Evidence: MYCIN Approach

T-conorms are not always an adequate way of describing the evidence com-
bination. Indeed, according to the properties of a t-conorm, we always have
fv(a,b) > a and fy(a,b) > b; as a result, the degree of belief in H coming from
two supporting pieces of evidence is larger (or the same) as the degree of belief
in H coming from just one piece of evidence. This conclusion makes sense if
we only allow supporting evidence, but sometimes, we encounter evidence which
supports the negation -H to the hypothesis. Intuitively, if we have two dif-
ference pieces of negative evidence, then we should decrease our degree of the
belief in the hypothesis, i.e., we should have a x b < a; on the other hand, if we
choose a t-conorm, we get a xb > a. Thus, for combining pieces of evidence, we
need operations which are more general than t-conorms.

First such operations were used already in the historically first expert system
MYCIN (see, e.g., [1, 12]). In this system, degrees of belief take values from
the interval [—1,1] instead of the more traditional [0,1]. Here, negative values
describe negative evidence, and positive values describe positive evidence. As we
move from —1 to 1, we go from the evidence which absolutely 100% supports the
negation —H to evidence which slightly supports —H to evidence which slightly
supports H to evidence which absolutely 100% supports H. The combination
operation is defined as follows:

(2)



For this operation, two pieces of positive evidence increase our degree of belief
(xxy > z,y if z,y > 0), while two pieces of negative evidence decrease our
degree of belief (z xy < z,y if 2,y < 0).

MYCIN’s combination operation is defined for all possible pairs (x,y), with
one exception of a pair (—1, 1), for which the above formula is not defined. This
exception, however, makes perfect sense: the situation when ¢ = 1 and b= —1
means that we have two pieces of evidence A and B such that A leads to our
100% degree of belief in H, while B leads to a 100% belief in —H, i.e., in a
rejection of the hypothesis. In this case, we clearly have a contradiction, both
degrees cannot be true, so, instead of trying the combine the two inconsistent
pieces of evidence, we should try to analyze and correct the inconsistent degrees
of belief a and b.

The MYCIN operation can be easily re-defined on the interval [0,1] if we
map [—1, 1] onto [0, 1] by a mapping z — (z+1)/2. To find zxy for z,y € [0, 1],
we first find the corresponding values ' = 2z — 1 and ¥’ = 2y — 1 in the interval
[—1,1], then combine z’' and y' according to the original MYCIN rule, getting
2= +9y)/(1+2'-9y"), and then find z = z *y by mapping the resulting
value 2z’ € [—1,1] back into the interval [0,1]: z = (2' + 1)/2. As a result, we
get the following operation on the interval [0, 1]:

Ty _ z -y
20-y—z—y z-y+(l—-2)-(1-y) (3)

TxyYy =

4 Combining Evidence: Hajek’s OAG Approach

In the early 1980s, Héajek et al. generalized MYCIN’s operations by describing
the corresponding combination operator in general algebraic terms, as an ordered
Abelian group (OAG) (see, e.g., [5, 6, 7, 8]). Let us give the corresponding
definitions.

Definition 2.

e A set S with a binary operation x is called an Abelian semigroup with zero
if this operation is commutative, associative, and has a fixed element g
such that gxx =z for allx € S.

e An Abelian semigroup with zero is called an Abelian group if every element
x € S has an inverse element vy, i.e., an element for which z xy = g.

e If < is a linear (total) ordering of the set S, then the Abelian group is
called ordered if for every x, y, and z, ¢ < y implies © * z < y * z.

For example, for MYCIN’s operation, the open interval (—1,1) is an ordered
Abelian group (OAG). To describe the full interval, we must add two new el-
ements (“endpoints”) L and T, and extend the ordering and the operations
to the new set {L}USU{T} asfollows: L <z < Tforallze S, L <T,



lxz=zxl=_1forallz #T,and Tz =x*T =T for all z # L. This
extension S is called an extended OAG.

Such structures have been completely classified: It is known that an arbitrary
extended OAG is isomorphic to addition + on an extended real line

R={-00}URU {+o0}

in the sense that there exists a 1-1 monotonic mapping ¢ : S — R such that for
every z and v,

zxy =9 (p(z) + ¢(y))- (4)
In particular, to get the original MYCIN operation, we can take
1 1+z
=--1
o) = 5w (152). ©
with
et — e~ 7

-1 = hizg) = — .
o7 (@) = tanh(2) = Z——

For the re-scaled MYCIN-like operation (3), we can take

ola) =5 (521)

_ 1
C1l4e 2
(which, incidentally, is the activation function typically used in neural networks.)

Notice that the formula (4) is the same as for the strictly Archimedean
t-conorms, but there are two differences:

with
o N (x)

e First, for extended OAG, we need both positive and negative real numbers,
while for t-conorms, we only used non-negative real numbers.

e Second, for extended OAG, this formula is always true, while for t-conorms
it is only true in a special case (of a strictly Archimedean operation).

5 Combining Evidence: Uninorm Approach

More recently, a new approach to describing combination operations has been
proposed in [14] under the name of a uninorm. Instead of following a more
mathematical path of generalizing the algebraic properties of MYCIN operation,
the authors of [14] followed a more foundational path of looking into which part
of the standard definition of a t-conorm can be weakened in such a way that it
allows MY CIN-type operations as well as usual t-conorms.



Among the conditions from Definition 1, the first condition seems to be the
most eligible for changing: this condition makes sense if 0 corresponds to the
absence of confirmation, but now 0 stands for the largest negative confirmation,
so we have to reformulate this condition by using some value g € [0,1] which
does represent neither positive nor negative confirmation. As a result, we arrive
at the following definition:

Definition 3. A function f : [0,1] x [0,1] — [0,1] is called a uninorm if there
exists a number g € [0,1] for which the following four conditions are satisfied
for all z, y, z, and t:

1. f(g,2) =;
2. f(z,y) = f(y,x) (commutativity);

3. f(z, f(y,2)) = f(f(2,9),2)) (associativity);
4. ifx < z and y < t, then f(z,y) < f(2,t) (monotonicity).

In particular, for g = 0, we get a standard definition of a t-conorm. (It is worth
mentioning that for g = 1, we get a definition of a t-norm.) New examples of
uninorms correspond to g € (0,1).

The structure of uniforms has been studies extensively in [4], where it was
proven, among other things, that if g € (0,1), then a uninorm cannot be con-
tinuous on the whole unit square.

6 Known Relationship Between OAG and Uni-
norm Approaches

Uninorms have been studied in [2, 3, 4, 13]. It turned out that:
e every extended OAG is a uninorm, but
e the class of uninorms is larger than the class of extended OAG’s.

For example, the following operation from [4] is a uninorm but not an extended
OAG: f(z,y) = max(z,y) when z > 0.5 or y > 0.5, and f(z,y) = min(z,y) if
z < 0.5 and y < 0.5. In this example, g = 0.5.

7 New Result: Motivation

The above example can be further generalized: we can take f(z,y) equal to
some t-conorm for z,y > g, to some t-norm for z,y < g, and to either min(x,y)
or max(z,y) for all other z,y.

Extended OAG are discontinuous for f(0,1) and f(1,0). All known examples
of uninorms that are not extended OAGs have one common property: they are



discontinuous not only for f(0,1) and f(1,0), but also for some other values. For
example, the above example is discontinuous when z < 0.5 and y = 0.5: then, for
small € — 0, f(x,0.5) = min(z,0.5) = z, while f(x,0.5+¢) = max(x,0.5+¢) =
0.5+¢—0.5#x.

In this paper, we show that this additional discontinuity is a general feature
of all such examples: namely, we prove that every “maximally continuous”
uninorm is an extended OAG.

8 New Result: Formulation

Definition 4. We say that a uninorm is mazimally continuous if it is continuous
at all the points (z,y) except for the points (0,1) and (1,0).

Proposition. Every mazimally continuous uninorm with g € (0,1) is an ex-
tended OAG.

Comment. From this Proposition, one can easily deduce the result from [4] that
a uninorm with g € (0,1) cannot be continuous for all z and y. Indeed, if a
uninorm is continuous everywhere, then by the Proposition, it is an extended
OAGQG, thus defined by the formula (4), but this formula is not continuous at the
point (0,1) — a contradiction which shows that everywhere continuous uninorms
are impossible for g € (0,1).

Corollary. An arbitrary mazimally continuous uninorm with g € (0,1) s iso-
morphic to addition + on an extended real line R = {-0} URU {400} in the
sense that there ezxists a 1-1 monotonic mapping ¢ : [0,1] = R such that for
every x and y,

f(z,y) =0 @) + ¢(y)). (7)

Comment. This corollary generalizes a result from [9], where a similar state-
ment was proven under the additional condition that the uninorm is strictly
monotonic.

9 New Result: Proofs

1°. Let us first show that for the operation zxy = f(z,y) every number z € (0,1)
has an inverse element y € (0,1) for which z xy = g. To prove the existence of
this y, we will consider three possible cases: © =g, z < g, and = > g.

1.1°. When z = g, we can take y = g € (0,1), then z xy = g * g = g by the
definition of a uninorm.

1.2°. Let us now consider the case when z < g. In this case, due to property 1.,
we have g * x = x. Due to z < g, we conclude that g xz < g.



Let us now show, by reduction to a contradiction, that 1 xz > g. Indeed,
assume that 1 xx < g. By 1., we have 1 x ¢ = 1, so by monotonicity, we have
1x1>1xg=1hence1¥1 =1. Since l xz < gand1x1=12> g, and the
function f(1,y) = 1 *y is continuous for y > 0, we can apply the Intermediate
Value Theorem and conclude that 1%t = g for some ¢t € (x,1). Then, by
associativity, we must have ¢ x (1 1) = (¢ * 1) x 1, but:

e we already know that 1%1 =1, hence t * (1x1) =t x1 = g (by our choice
of t);

e on the other hand, by our choice of ¢, we have t*1 = g, hence (t*1) x1 =
g * 1, and by the property 1., we have g x 1 = 1.

So, tx(1x1) = g # (t*1)*1 = 1. This contradiction shows that our assumption
1%z < g is impossible and thus, 1 xx > g.

So, gxx < g, 1 xx > g, and since the function y — f(y,x) is continuous for
all y, we can apply the Intermediate Value Theorem and conclude that yxxz = g
for some y € (g, 1].

If y = 1, then we would have 1 * £ = g, which, as we have already shown,
leads to a contradiction. Thus, y € (g,1) C (0,1).

1.3°. Finally, let us consider the remaining case when x > g. In this case, due
to property 1., we have g x x = x. Due to x > g, we conclude that g xx > g.

Let us now show, by reduction to a contradiction, that 0 x z < g. Indeed,
assume that 0 xx > g. By 1., we have 0 x ¢ = 0, so by monotonicity, we have
0x0<0%xg =0, hence 0x0=20. Since 0xx > g and 0%x0 = 0 < g, and the
function f(0,y) = 1y is continuous for y < 1, we can apply the Intermediate
Value Theorem and conclude that 0 x¢t = g for some ¢t € (0,z). Then, by
associativity, we must have ¢ x (0% 0) = (¢ x 0) x 0, but:

e we already know that 0% 0 = 0, hence ¢t x (0% 0) =t x0 = g (by our choice
of t);

e on the other hand, by our choice of ¢, we have tx0 = g, hence (£ *0) x0 =
g %0, and by the property 1., we have g *x 0 = 0.

So, tx(0%0) = g # (tx0)x0 = 0. This contradiction shows that our assumption
0 * z > g is impossible and thus, 0 x z < g.

So, 0xx < g, g *x > g, and since the function y — f(y, ) is continuous for
all y, we can apply the Intermediate Value Theorem and conclude that yxxz = g
for some y € [0, g).

If y = 0, then we would have 0 * x = g, which, as we have already shown,
leads to a contradiction. Thus, y € (0,g) C (0,1).

The existence of the inverse element is now proven for all z € (0, 1).

2°. Let us now show, by reduction to a contradiction, that if z € (0,1) and
€ (0,1), then z xy € (0,1). To make this conclusion, we need to prove that
the values z *y = 0 and x x y = 1 are impossible.



2.1°. If z * y = 0, then, due to monotonicity, z *0 < xxy = 0 and £ x0 = 0.
By 2°, there exists an element z=! € (0,1) which is inverse to z, i.e., for which
x 1%z = g. Due to associativity, z 1 %0 =z 1x(z*y) = (z 1xz)xy = gxy =1y
and at the same time, 27 ' *0 =2 1% (z%x0) = (z 1 x2) *0 = g* 0 = 0. Thus,
y = 0, which contradicts to our assumption that y € (0,1). This contradiction
shows that = xy # 0.

2.2°. If z * y = 1, then, due to monotonicity, z *1 >z *xy =1 and zx1 = 1.
By 2°, there exists an element z=! € (0,1) which is inverse to z, i.e., for which
z7lxx = g. Due to associativity, 711 =27 x(z*y) = (z 7 1xz)xy = gxy =y
and at the same time, 7' x1 =271 % (zx1) = (z 1 *x)x1 =g+ 1 = 1. Thus,
y = 1, which contradicts to our assumption that y € (0,1). This contradiction
shows that = xy # 1.

Thus, zxy #0and zxy # 1,s0 z xy € (0,1).

3°. Thus, the operation * is defined on the set (0, 1), it is commutative, asso-
ciative, and monotonic on this set, and every element has an inverse. Hence, it
is an OAG.

It is known that every OAG has the form z xy = ¢ 1(p(z) + ¢(y)) for
an appropriate function . From this representation, we can conclude that for
z € (0,1), exx — 0 ase — 0, hence due to continuity, 0xz = 0 for all z € (0,1).
Due to monotonicity, we also get 0% 0 = 0. Similarly, we get 1 xx = 1 for all
z > 0. Thus, * is indeed an extended OAG. The proposition is proven.
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