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Abstract

Most existing universal approximation results for fuzzy systems are based on the
assumption that we use t-norms and t-conorms to represent “and” and “or”. Yager
has proposed to use, within the fuzzy systems modeling paradigm, more general
operations based on uninorms. In this paper, we show that the universal approxi-
mation property holds for an arbitrary choice of a uninorm.
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1 Introduction

1.1  Uninorms: main idea

One of the main tasks of fuzzy systems modeling is to use expert knowledge
formulated in imprecise (fuzzy) terms when modeling systems. An important
part of this task is combining multiple pieces of evidence about a statement
(hypothesis). This task was recognized early as an important issue in expert
system community; see, e.g., (3; 17). Simply stated, the problem is as follows:
If two independent experts (or two independent pieces of evidence) support
the hypothesis H, A with degree a, and B with degree b, then what is our
resulting degree of confidence in H?

If these degrees a and b are the only information we have, then the resulting
resulting degree of confidence must depend only on these two values a and
b. In mathematical terms, we can say that the resulting degree of confidence
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must be a function of two real values a and b. In this paper, we will denote
the corresponding function by a * b. Which function should we choose?

Historically the first approach to this problem came from fuzzy logic. From
the logical viewpoint, in our case, H is true if and only if either support from
A is true or support from B is true. Thus, as the resulting degree of confidence
axbin H, we can take the value f(a,b), where f,(x,y) is a t-conorm, an
extension of a 2-valued logical “or” operation to [0, 1]-valued fuzzy logic (see,

e.g., (8; 14)).

Definition 1. A function f : [0,1] x [0,1] — [0, 1] is called a t-conorm if it
satisfies the following four conditions for all x, ', y, i/, and z:

(1) fv(0,)
(2) fulz,y) = ( z) (commutativity);

(3) fu(z, V( )) fv(fv(ac Y), 2)) (associativity);
(4) ifx and y <y, then fy(z,y) < fu(a',y') (monotonicity).

For “and”-type combination, we can use a similar notion of a t-norm:

Definition 2. A function fg : [0,1] x [0,1] — [0, 1] is called a t-norm if it
satisfies the following four conditions for all x, =', y, v, and z:

(1) fe(1,2)
(2) fe(z,y) v( y,x) (commutativity);

(3) felz, f&( 2)) = fe(fe(2,y), 2)) (associativity);
(4) ifx < 2" and y <y, then fg(x,y) < fe(z',y") (monotonicity).

T-conorms and t-norms are not always a completely adequate way of de-
scribing the evidence combination. Indeed, according to the properties of a
t-conorm, we always have fy(a,b) > a and fy(a,b) > b; as a result, the degree
of confidence in H coming from two supporting pieces of evidence is larger
(or the same) as the degree of confidence in H coming from just one piece of
evidence. This conclusion makes sense if we only allow supporting evidence,
but sometimes, we encounter evidence which supports the negation —H to the
hypothesis. Intuitively, if we have two difference pieces of negative evidence,
then we should decrease our degree of the confidence in the hypothesis, i.e.,
we should have a * b < a; on the other hand, if we choose a t-conorm, we get
a x b > a. Thus, for combining pieces of evidence, we need operations which
are more general than t-conorms.

First such operations were used already in the historically first expert system
MYCIN (see, e.g., (3; 17)). In this system, degrees of confidence take values
from the interval [—1, 1] instead of the more traditional [0, 1]. Here, negative
values describe negative evidence, and positive values describe positive evi-



dence. As we move from —1 to 1, we go from the evidence which absolutely
100% supports the negation —H to evidence which slightly supports =H to ev-
idence which slightly supports H to evidence which absolutely 100% supports
H. The combination operation is defined as follows:

(1)

For this operation, two pieces of positive evidence increase our degree of con-
fidence (xxy > x,y if ,y > 0), while two pieces of negative evidence decrease
our degree of confidence (z xy < z,y if z,y < 0).

MYCIN’s combination operation is defined for all possible pairs (z,y), with
one exception of a pair (—1, 1), for which the above formula is not continuously
defined. This exception, however, makes perfect sense: the situation when
a = 1 and b = —1 means that we have two pieces of evidence A and B such
that A leads to our 100% degree of confidence in H, while B leads to a 100%
confidence in = H, i.e., in a rejection of the hypothesis. In this case, we clearly
have a contradiction, both degrees cannot be true, so, instead of trying the
combine the two inconsistent pieces of evidence, we should try to analyze and
correct the inconsistent degrees of confidence a and b.

The MYCIN operation can be easily re-defined on the interval [0, 1] if we map
[—1, 1] onto [0, 1] by a mapping z — (x+1)/2. To find z*y for z,y € [0, 1], we
first find the corresponding values ' = 2z — 1 and y' = 2y — 1 in the interval
[—1, 1], then combine z’ and y' according to the original MYCIN rule, getting
2 = (2 +y)/(1+2-vy'), and then find z = z * y by mapping the resulting
value 2z’ € [—1, 1] back into the interval [0,1]: z = (2’ + 1)/2. As a result, we
get the following operation on the interval [0, 1]:

-y x-y @)

T xy = = .
Ty —y ay+(1-a) -1y

More recently, a new approach to describing combination operations has been
proposed in (19) under the name of a uninorm. The authors of (19) looked
into which part of the standard definition of a t-conorm can be weakened in
such a way that it allows MYCIN-type operations as well as usual t-conormes.

Among the conditions from Definition 1, the first condition seems to be the
most eligible for changing: this condition makes sense if 0 corresponds to the
absence of confirmation, but now 0 stands for the largest negative confirma-
tion, so we have to reformulate this condition by using some value g € [0, 1]
which does represent neither positive nor negative confirmation. As a result,
we arrive at the following definition:

Definition 3. (1; 2; 7; 18; 19) A function U : [0,1] x [0,1] — [0, 1] is called a



uninorm if the following four conditions are satisfied for all x, x', y, y', and z:

e U(g,z) =z (identity);

o U(z,y) =Ul(y,z) (commutativity);

o U(z,U(y,2)) =U(U(z,y),2)) (associativity);

o ifr <z andy <y, then U(z,y) <U(z',y") (monotonicity).

We note that if ¢ = 0, the uninorm is a t-conorm, and if g = 1, the uninorm
is a t-norm.

According to our motivation, uninorms are a natural generalization of t-
conorms. It is reasonable to consider related generalizations of t-norms (18):

Definition 4. By a relevancy transformation, we mean a function h : [0, 1] x
[0,1] — [0, 1] for which the following four conditions are satisfied for all z, z',
y, and y':

e h(l,z) =ux;

i h(O, .”17) =9

e ify <y then h(z,y) < h(z,y’) (monotonicity);

o if x < &' then h(z,y) < h(z',y) for y < g and h(z,y) > h(z',y) fory < g.

In this paper, we show that fuzzy system models based on uninorms and
relevancy transformations can indeed describe arbitrary real-life systems; in
more precise terms, we show that such models are universal approximators.

1.2 Fuzzy systems modeling: in brief

Fuzzy systems modeling (see, e.g., (13)) is a methodology that translates the
expert’s if-then rules of the type

if A;(x) then B;(y), 1<i<N, (3)

in which the properties A;(x) and B;(y) are described by using words from
natural languages (such as “x is small”), into a crisp model, i.e., into a function
f X — Y describing what control we should apply for a given input z € X.
In the important case when y is the control value, the desired crisp model is
a control strategy.

This methodology consists of three major steps:

e first, we formalize each “linguistic” property A;(x) or B;(y) as a fuzzy set,
i.e., as a function 4; : X — [0,1] (or B; : Y — [0,1]) which describes, for



each object z € X (correspondingly, y € V), to what extent this property
holds for this z or y (e.g., to what extent x is small);

e then, we combine these fuzzy sets into a fuzzy relation, i.e. a function
R(z,y) : X x Y — [0,1] which describes, for each input x € X and for
each possible output y € Y, to what extent this particular outputs satisfies
the expert’s rules;

e finally, we apply some defuzzification procedure to the fuzzy relation R(z,y),
and get the desired control strategy, as a function f: X — Y.

In most practical application of fuzzy control, Mamdani’s approach is used in
the combination (second) step. In this approach, the fuzzy relation R(z,y) is
represented by a logical formula

(Au(z) & Bi(y)) V... V (An(z) & By (y)), (4)

where ‘&’ and ‘V' stand for connectives of conjunction and disjunction re-
spectively. The actual choice of model requires that we select an interpre-
tation: a t-norm fg : [0,1] x [0,1] — [0,1] for conjunction and a t-conorm
fv 1 [0,1] x [0,1] — [0,1] for disjunction (see, e.g., (8; 14)), and use these
operations in the formula (4), resulting in:

R(z,y) = f(fe(Ar(2), Bi(Y)); - - » fe(An (), By (y))), (5)

For every x, we can then apply an appropriate defuzzification procedure to
R(z,y) and get the desired value y. In this paper, we prove the universal
approximation result for such Mamdani-style fuzzy models.

Comment. From the logical viewpoint, it is somewhat more natural to repre-
sent the fuzzy relation R(z,y) as a conjunction of implications:

(A1(z) = Bi(y))& ... &(Ax(z) = Bn(y)), (6)

In this case, we select the interpretation: fg, : [0,1] x [0, 1] — [0, 1] for conjunc-
tion and f_, : [0,1] x [0,1] — [0, 1], for implication and use these operations,
resulting in:

R (z,y) = fe(f-(Ai(2), Bi(y)), - -, f-(An(2), Bn(y)))- (7)

It is desirable to extend our results to the corresponding fuzzy inference-based
fuzzy models.

1.3 Known universal approximation results

In order to guarantee that this methodology can indeed describe an arbitrary
system, it is desirable to check that this methodology is universal, i.e., that



for any choice of t-norm and t-conorm, for an arbitrary control function f :
X — Y, and for an arbitrary accuracy, there exist appropriate if-then rules
for which the resulting control strategy represented by f(z) approximates the
original control function f(z) within the given accuracy.

There exists many universal approximation results for fuzzy systems based
on t-norms and t-conorms; first such results were formulated and proved, al-
most simultaneously, in 1990-92 papers by J. Buckley, Z. Cao, E. Czogala,
D. Dubois, M. Grabisch, J. Han, Y. Hayashi, C.-C. Jou, A. Kandel, B. Kosko,
J. Mendel, H. Prade, and L.-X. Wang; for a recent survey, see, e.g., (10) and
references therein.

Comment. There also exist several universal approximation results for
implication-style fuzzy models (4; 5; 6; 15; 16).

1.4  Uninorms in fuzzy systems modeling

In (18), the author proposes to use, in fuzzy systems modeling, uninorms
and relevancy transformation operations instead of t-conorms and t-norms.
Specifically, since the operation U is associative, we can unambiguously define
Ulz,y,z,...,t) as, eg., UUU(z,y),2)...,t). In (18), the author uses these
operators to define

R(z,y) = U(h(A1(2), B1(y)), - - ., h(An(2), By (1)), (8)

In this paper, we show that for every pair (h,U), the resulting fuzzy system
modeling methodology has the universal approximation property.

2 General Case: Functions Defined on an Arbitrary Compact Set

Let X be a compact metric space with a metric dy, and let Y be a complete
metric space with a metric dy. In this section, we will show that uninorm-
based systems can approximate an arbitrary continuous function f: X — Y.

Definition 5. By a defuzzification procedure, we mean a mapping D
[0,1]¥ — Y which maps every membership function yu : Y — [0,1] (which
is not identically zero) into an element D(p) € Y for which p(D(p)) > 0.

Theorem 1. Let h be a relevancy transformation, and let U be a uninorm.
Then, for every compact metric space X, for every continuous function f :



X — Y into a complete metric space Y, and for every real number € > 0,
there exist fuzzy rules of type (3) for which, for each defuzzification procedure
D, the result f(x) of defuzzifying the relation R (obtained using h and U) is
e-close to f.

Comments.

e For the convenience of the readers, all the proofs are placed in the special
Proofs section.

e Since uninorms are more general than t-norms and t-conorms, the universal
approximation theorems for t-norms and t-conorms are a particular case of
this result. Theorem 1 extends these two results to a more general case of
uninorms.

3 Case When Y =R

In the case when Y is a real line (Y = IR), we can use a different class of
possible “defuzzification procedures” and still get the same universal approx-
imation result. Namely, we can use the following definition:

Definition 5'. (Y = IR) By a defuzzification procedure, we mean a mapping
D which maps every non-zero membership function p : IR — [0,1] into an
real number D(u) in such a way that for an arbitrary interval [a,b], if a
membership function p(x) is equal to 0 for all values x outside an interval
[a, b], then D(u) € |a, b].

Comments.

e Both centroid and center-of-maximum are defuzzification procedures in this
sense.

e The main difference between Definition 5 and Definition 5’ is that in Def-
inition 5, the interval [a, b] might still contain z for which pu(z) = 0. This
is true, e.g., for centroid defuzzification, when we apply it to a symmetric
membership function u(—z) = p(z) for which p(0) =0 (see, e.g., (20; 21)).

Theorem 1'. Let h be a relevancy transformation, and let U be a uninorm.
Then, for every compact metric space X, for every continuous function f :
X — R and for every real number € > 0, there exist fuzzy rules of type (3)
for which, for each defuzzification procedure D, the result f (x) of defuzzifying
the relation R (obtained using h and U) is e-close to f.



4 Proofs
4.1  Proof of Theorem 1

4.1.1 General structure of the proof

This proof is similar to the original Kosko’s proof (9) of a universal approxi-
mation result for a t-norm and t-conorm, and to our own proofs from (11; 12).

This proof uses the following auxiliary definition:

Definition 6. Let f : X — Y be a continuous function from X to Y, and
e > 0 be a real number. We say that a fuzzy relation R : X xY — [0,1]
e-approrimates a function f : X — Y if the following two conditions hold:

e for every x € X, R(z, f(z)) > 0, and
e foreveryx € X andy €Y, if R(z,y) > 0, then dy(y, f(x)) <e.

Then, Theorem 1 follows from the following two propositions:

Proposition 1. Let h be a relevancy transformation, and let U be a uninorm.
Then, for every compact metric space X, for every continuous function f :
X — Y into a complete metric space Y, and for every real number € > 0,
there exist fuzzy rules of type (3) for which the fuzzy relations R (obtained
using h and U) e-approzimate f.

Proposition 2. If a fuzzy relation R(x,y) e-approzimates a function f(x),
then, for every defuzzification procedure D, the result f(x) = D(ug) of apply-
ing this defuzzification procedure D to the corresponding membership function

Uz(y) = R(x,y) is e-close to f(x), i.e., dy (f(m),f(x)) <e.

4.1.2  Proof of Proposition 1

1°. Let us first select the rules for which, as we will show, the corresponding
relation (8) approximates a given function f.

Let us take €1 = £/2. Since f is continuous on a compact set X, it is also
uniformly continuous. Therefore, there exists 6 > 0 such that if dx(z,z') <6,
then dy (f(z), f(z) < e;.

Since X is a compact metric space, there exists a finite d-net for X, i.e., a



finite set of elements (M, ..., ™) € X for which, for every z € X, there
exists an ¢ for which dx (:c, x(i)) < 4. For each of these elements z(*), we can

find y® = f (x(i)). We will show that Proposition 1 holds for N rules of type
(3) where for every 1,

o Aj(z)=11ifdyx (x,x(i)) < 6, and A;(z) = 0 otherwise;
e Bi(y) =1ifdy (y,y(i)) < ¢y, and B;(y) = 0 otherwise.

Informally, the i-th rule can be described as “if z ~ 2 then y ~ y®”.

2°. Let us now describe the possible values of the degrees h(A;(z), B;(y)) with
which different rules are satisfied.

All these fuzzy sets A; and B; are crisp: indeed, A;(z) is a characteristic func-
tion of the inequality dx (x, x(i)) < 6, and B;(y) is a characteristic function of

the inequality dy (y, y(i)) < £1. Thus, each of the functions A;(z) and B;(y)
can take only values 0 or 1.

For these values, due to the properties of the relevance transformation,
h(1,1) =1, h(1,0) = 0, and h(0,0) = A(0,1) = g. So:

o if 2 ~ 2 and y ~ y®, then h(4;(z), Bi(y))
e if z ~ (¥ and y % y(i), then h(A;(z), B;(y))
o if z %z, then h(4;(z), B;(y)) = g

1;
0;

3°. Let us now show that the relation R e-approximates the given function f.

3.1°. In accordance with the definition of e-approximation, we first prove that
for every z € X, we have R(z, f(z)) > 0.

Indeed, let x be an arbitrary element of the set X.
For every i for which x % 29, we have h(4;(z), Bi(y)) = g.

For every i for which z ~ 2, i.e., for which dx (:r,x(i)) < 4, by our choice

of ¢, we have dy (f(x),y(i)) < g1, ie., y = y®9. Thus, for such i, we have
h(Ai(z), Bi(y)) = 1.

Since zM, ..., ™) ig a §-net, there exists an i for which dx (x, x(i)) < 6. Thus,
R(z,y) is equal to the uninorm combination of several values, at least one of
which is equal to 1, and the rest are equal to either 1 or to g: R(z, f(z)) =

Ul,...,1,g9,...,9).



By definition of a uninorm, ¢ acts as an identity (U(g,z) = =z for all
x), so we can simply delete ¢g’s in the uninorm combination: R(z, f(z)) =

Ul,...,1Lg,...,9)=U(1,...,1).

Since U (l,g) = 1 and g < 1, from monotonicity, we conclude that 1 =
U(l,9) < U(1,1) hence U(1, 1) = 1. Thus, R(z, f(z)) = U(1,...,1) =1
hence R(x, f(z)) > 0.

3.2°. Let us now prove that for every x € X and y € Y, if R(z,y) > 0, then
dy(y, f(z)) <e.

Indeed, we already know that R(z,y) is a uninorm combination of several
values 0, 1, and g. We also know that since z ~ 2 for some 7, at least one of
these values is either 0 or 1. We can ignore ¢’s in this combination, so R(z,y)
is a uninorm combination of several 0’s and 1’s.

For a uninorm, U(g, 0) = 0 and so, due to monotonicity, U(0,0) < U(g,0) =0
and U(0,0) = 0. Thus, if all of the combined values were 0’s, we would
have R(z,y) = 0. Since we have R(x,y) > 0, this means that at least
one of the combined values is equal to 1. This means that there exists
an ¢ for which dx (x,x(i)) < § and dy (y,y(i)) < ¢&;. Due to our choice
of §, from dx (x,x(i)) < §, we can conclude that dy (f(x),f(ac(i))) =
dy ( f(x),y(i)) < g1. Thus, from the triangle inequality, we conclude that

dy(y, f(z)) < dy (y,y(i)) + dy (y(i),f(x)) < g1 4+ £1 = €. The statement is
proven, and so is Proposition 1.

4.1.8  Proof of Proposition 2
By definition, f(x) = D(u,), where the membership function j, : ¥ — [0,1]
is defined as p,(y) = R(z,y). By the definition of a defuzzification proce-

dure, for every z € X, we have u,(D(ug)) > 0, i.e., by definition of g,
R (a:, f (x)) > 0. From the definition of e-approximation, we can now conclude

that dy (f(x), f(x)) < &. The proposition is proven, and so is Theorem 1.

4.2 Proof of Theorem 1'

For Y = IR, Proposition 1 is still true. So, the only thing that needs to be
proven anew is the new version of Proposition 2 (corresponding to the new
definition of defuzzification).

Indeed, by definition, f(z) = D(u,), where the membership function g : ¥ —
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[0,1] is defined as p,(y) = R(z,y). From the definition of e-approximation,
we conclude that if R(z,y) > 0, then dy(y, f(z)) = |y — f(z)| < e. Thus, if
ly — f(z)| > e, we have R(z,y) = p.(y) = 0. Hence, the function pu,(y) is
equal to 0 outside the interval [f(z) — ¢, f(z) + €]. By the new definition of
a defuzzification procedure, we can now conclude that the result f(x) of its
defuzzification also belongs to the same interval, i.e., that ‘f(a:) - f(:c)‘ <e.
The proposition is proven, and so is Theorem 1.
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