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Abstract

For many linear problems, in order to check whether a certain property
is true for all matrices A from an interval matrix A, it is sufficient to
check this property for finitely many “vertex” matrices A € A. J. Rohn
has discovered that we do not need to use all 2" vertex matrices, it is
sufficient to only check these properties for 22" ! « 9"” vertex matrices
of a special type A,.. In this paper, we show that a further reduction is
impossible: without checking all 2°"~' matrices A, ., we cannot guarantee
that the desired property holds for all A € A. Thus, these special vertex
matrices provide an optimal finite characterization of linear problems with
inexact data.

1 Introduction

Many practical problems are described by systems of linear equations and/or
inequalities, i.e., as linear problems. The components A;; of the corresponding
matrices A are often not exactly known; for each of these components, we only
know the interval [4;;, A;;] of possible values. The class of all matrices A which
are consistent with this information is called an interval matriz

A=[A4A]={A: A< AT},

where A is a matrix with components A;;, A is a matrix with components A,
and A < B means that A;; < B;; for all ¢ and j. In practice, all the elements of
the matrices are rational numbers (it is worth mentioning that our results hold
for real numbers as well).



We say that an interval matrix A satisfies a property P (e.g., is non-singular
or positive definite) if all matrices A € A satisfy this property. It is known that
for many such properties, an interval matrix satisfies the property P if and only
if all its vertez matrices, i.e., matrices for which A;; € {A;;, A} for all i and
j, satisfy this property. Thus, in order to check whether a given interval matrix
satisfies the property P, it is sufficient to check this property for a finite set of
vertex matrices.

This set is finite but huge: e.g., for n x n square matrices, we have 2’
possible vertex matrices; as a result, for large n, checking all such matrices
requires an unrealistic amount of computation time.

In [3, 6], it was shown that for many properties P, we do not need to check all

these matrices: it is sufficient to use vertex matrices from the following special

class. Namely, let us define e % ,...,n)T,

Y € {y eR" : |y| = e} = the set of all + 1 — vectors.

For every y,z € Y, we can can define a matrix A, if we set, for every ¢ and j,

L] (Ayz)ij déf Zz’j if Yi- 25 = —1, and

def .
o (Ayz)ij = Az’j ifyi-2z; =1

(these matrices were first introduced in [3], p. 43). Each such matrix is a vertex
matrix, but there are only 227! matrices A,. compared to 27" vertex matrices
(2n — 1 since Ay, = A_, _.). For some problems, it is sufficient to check only
some of such matrices, e.g., only matrices Ay, or only matrices A, _, (in both
cases, we need only 2"~! vertex matrices).

For such problems, a natural question is: can we further decrease the set
of checked matrices? In this paper, we show that for most problems described
in [3, 6], further decrease is impossible: all 227~ (corr., 2"~1) vertex matrices
Ay, (corr., Ay,) are needed. To be more precise: there exist cases when the
property P holds for all but one of these matrices and still does not hold for the
corresponding interval matrix A. In this sense, finite characterizations presented
in [3, 6] are optimal.

These results are in good accordance with the fact that many of the corre-
sponding problems are NP-hard (see, e.g., [2]) and therefore, less than exponen-
tial finite characterizations are not to be expected.

Comment. The fact that a exponential ~ 2™ finite characterization cannot be
decreased is not as pessimistic as it may seem:

e First, NP-hardness means that we cannot expect less than exponential-
time algorithms for solving the corresponding problems. Of course, this
does not necessarily mean that the algorithms based on checking all 271
vertex matrices are necessarily optimal; we may have faster — although
still exponential-time — algorithms based on different ideas.



o Second, the fact that we need to check all 2"~ ! matrices does not nec-
essarily mean that the computation time of the corresponding algorithm
for checking the property P for an interval matrix is 27! times larger
than the computation time ¢ of checking this property for a single matrix.
For some properties, it was shown that many of these 27! checkings con-
tain the exact same computational steps; so, when we need to check all
these matrices, we can perform the common steps only once. As a result,
the total computational time for all the checkings is much smaller than
271 % ¢ [7].

2 Regularity

Definition 2.1. A square interval matrix A is called regular if each A € A is
regular.

The problem of checking whether a given interval matrix is regular is known to
be NP-hard (see, e.g., [2]).

Theorem 2.1. [1, 3] A is regular if and only if for all the matrices Ay, the
determinant det Ay, has the same sign.

The following result shows that all 227! different matrices A, are needed for
this characterization:

Theorem 2.2. For every n, and for every pair (y,Z2), y,z € Y, there exists an
interval matriz A, for which

o for all pairs (y,z) # (U,2),{—y, —Z2), all the values det A,, have the same
sign;

e A is not regular.

Proof. Let d;; denote components of a unit matrix I (d;; = 1 and d;; = 0 for
i # 7). Let us consider the interval matrix with

Ajj=2m-8ij - Yi - Zj — i Zj — €i - €5 (2.1)
Ay =2n-6i5 -5 Z — §i Zj +ei - e (2.2)

For this interval matrix, for every y,z € Y, we have
(Ayz)ij =20 035 - §i - 25 — Yi * 25 — Yi - %j- (2.3)

Let us show that for all pairs (y, z) # (¥, 2) and (y, 2) # (—y, —2), the determi-
nants of the matrices A,. have exactly the same sign, and that det Ayz = 0.

To prove this, let us first slightly simplify the computations by noticing that
for every y,z € Y, the matrix A, can be represented as

(Ay2)ij = (Bpg)ij ~ Yi * Zj> (2.4)



where
(Bpg)ij = 2n - 0i — € - €j — pi - 4j; (2:5)
Pi =Yi Y @ = % Zi (2.6)
In short, to get from By, to A, ., we multiply each i-th row by ¥;, and each j-th
column by Z;. In particular, the matrix Ay; corresponds to p =g =e.
By definition, the determinant of an n x n matrix is a linear combination of
the n-factor products, each of which contain exactly one component from each

row and exactly one component from each column. Thus, when we substitute

the expression (2.4) into the formula for det A,., we conclude that

det A,, =det By, -Y - Z, (2.6)

The values Y and Z are the products of +/ — 1’s, so each of them is equal to
+1. Hence, to prove that all the matrices A,., (y,2) # (¥, 2), (—¥, —Z), have
the determinants of the same sign, it is sufficient to prove that all the matrices
Bypg, (p,q) # (e, €), (—e, —e), have the determinants of the same sign.

We will show that all these matrices By, are positive definite and therefore,
they all have positive determinants. By definition, positive definiteness means
that if z = (z1,...,2,) # 0, then

where

Q d=ef Z(qu)ij “Tp T > 0. (28)
ij

Indeed, by definition (2.5) of the matrix B,,, we have

Q=2n-Z(mi)2—<Zei-xi>- Zej-xj _<Zpi'37i>‘ qu"ﬂﬁj =

2n - ||z]l* — (e, 2)* — (p, =) - (4, 2), (2.9)

where (a,b) denotes a scalar (dot) product of the two vectors. For the scalar
product, we have a known inequality |(e,z)| < |le|| - ||z||, in which the equality

is possible only if vectors e and z are collinear: e || . Here, e = (1,...,1)T, so
llell = v/n, |(e; 2)| < v/n - ||z]], and
(e,2)* < n-[lzl?, (2.10)

and the equality is possible only if z || e.
Similarly, |(p,z)| < +v/n - ||z]| and |(g,z)| < v/n - ||z||. Hence,

(p,z) - (¢,2) < n- [zl (2.11)



and the equality is possible only if p || z, ¢ || 2, and both p and ¢ are on the
same side as z (else we would have (p,z) - (¢,z) = —n - ||z||?). Substituting
(2.10) and (2.11) into (2.9), we conclude that

Q > 2nljz||* — nllzl]” - nllz||* = 0, (2.12)

and the equality is possible only when z || e, z || p, and z || ¢ (hence p || e and
q || e), and p and g are on the same side of e. Since p,q € Y, the only possibility
for equality is, hence, when either p = ¢ = e, or p = ¢ = —e. So, for all other
pairs, the equality is impossible, and the matrix B, is indeed positive definite.

To complete the proof, we will show that det Az = 0. As we have men-
tioned, this is equivalent to showing that det B.. = 0. Indeed, due to formula
(2.9), we have

def
Q = E (Bee)ij * T Tj = 2n - ||£L'||2 - 2(6,3))2. (2.13)
ij
If we select an orthonormal basis in which e(t) = e/||e|| = e/+/n, then, in this

basis, we have (e,x) = v/n - z1, hence, the formula (2.13) leads to

Q=2n-z3+2n-22+...4+2n-22 —2n-22 =2n-25+...+2n-22. (2.14)

n:

In other words, in this basis, the symmetric matrix B, becomes diagonal, with
one of the eigenvalues 0, hence its determinant is 0. Thus, due to Theorem 2.1,
A is not a regular matrix. Q.E.D.

3 Positive (semi)definiteness

Definition 3.1. A square interval matrix A is called positive (semi)definite if
each A € A is positive (semi)definite.

The problems of checking whether a given interval matrix is positive definite or
positive semidefinite are known to be NP-hard (see, e.g., [2]).

Theorem 3.1. [5] A is positive (semi)definite if and only if (Ay, + AL)/Q 18
positive (semi)definite for each y € Y.

The following result shows that all 2"~ different matrices A, are needed for
this characterization:

Theorem 3.2. For everyn, and for everyy € Y, there exists an interval matriz
A, for which

o the matriz (Ayy, + AZL)/Q is positive (semi)definite for all y # 7y, —y, and

e A is not positive (semi)definite.



Proof. Let us first prove this result for positive definiteness. For this, we will
consider the following interval matrix:

Aij = 2n . 6ij — :T/; . gj —€; ej; (31)

Aij =2n-0i — i j +ei-ej (3.2)

For this interval matrix, for every y € Y, we have
(Ayy)ij =2n-0ij — Yi - Yj — Vi - Yj- (3.3)

This is a symmetric matrix, so A,y = Agy and (Ayy + AZy)/Q = Ay,

Similarly to the proof of positive definiteness of a matrix B4 in the proof
of Theorem 2.1, we can show that for all y # y, —y, the matrix A,, is positive
definite, while for y = ¥, it is only positive semi-definite and not positive definite.
Thus, for positive definiteness, the theorem is proven.

To prove a similar result for positive semi-definiteness, we consider an inter-
val matrix
B;j=2n—¢€)-0ij — i~ Yj — €i- e (3.4)

1,

Bij = (2n—¢)-0ij —¥i-U; +€i- €, (3.5)

for some small € > 0. For this interval matrix, for every y € Y, we have
(Byy)ij = 2n—¢) - 6ij — Yi " ¥j — Yi " Yj- (3.3)

Since all the matrices Ay, for y # y, —y were positive definite, for sufficiently
small e, the new matrices By, = Ay, — ¢ - I are still positive definite. On
the other hand, since the matrix Az was positive semi-definite, with one of
the eigenvalues 0, the new matrix By; = Ay has a negative eigenvalue —¢
and hence, is not positive semi-definite. So, for positive semi-definiteness, the
theorem is also proven. Q.E.D.

4 Stability

Definition 4.1. A square symmetric interval matrix A (i.e., both A, A sym-
metric) is called stable if each A € A is stable, i.e., Re A < 0 for each eigenvalue
A of A.

The problem of checking whether a given interval matrix is stable is known to
be NP-hard (see, e.g., [2]).

Theorem 4.1. [5] A is stable if and only if A, _, is stable for each y €Y.

The following result shows that all 2"~! different matrices A, _, are needed for
this characterization:



Theorem 4.2. For everyn, and for everyy € Y, there exists an interval matriz
A, for which

o the matriz Ay,_y is stable for all y # y,—y, and

o A is not stable.

Proof. As the desired interval matrix, let us take the interval matrix which is
equal to minus the interval matrix (3.1), (3.2), i.e., the matrix

Ay =—2n-8ij +Yi-yj —ei-ej; (4.1)
Ay ==2n-0i; +0i - U +ei - e (4.2)

For this interval matrix, for every y € Y, we have
(Ay,—y)ij = =20 -85 + Ui - Y5 + yi - Yj- (4.3)

Similarly to the proof of positive definiteness of a matrix By, in the proof of
Theorem 2.1, we can show that:

o for all y # y, —Yy, the symmetric matrix A, _, is negative definite, hence
stable, while

e for y = gy, the corresponding matrix has a 0 eigenvalue and is, hence, not
stable.

Q.E.D.

5 Linear interval equations

Definition 5.1. For an interval matrix A and an interval vector b, we define
[z,T] as the interval hull of the solution set

X ={z : Az = b for some A € A,b € b}.

The problem of computing this interval hull is known to be NP-hard (see,
e.g., [2]).

This interval hull can be characterized in terms of the matrices 4,. and vectors
by, which are defined, for every y € Y, as follows:

[ (by)z = 5, if Y; = 1, and
[ ] (by), = bi if Y; = —1.



Theorem 5.1. [3] If A is regular, then we have:

. —1 — —1
z= min A b,; T = max A__b,.
£ y.2EY yz Y vzeY yz Y

The following result shows that all 227 different pairs {(y, z) are needed for this
characterization:

Theorem 5.2. For every n, and for every pair (y,z), §,Zz € Y, there exists a
regular interval matrix A and an interval vector b, for which either

z min A7lb

LF Bl et
or
-1

T max A
7 (y,2)2(5.5)  *

by.

Proof. Let us first show that such a pair exists for ¥y = 2 = e. Indeed, in
this case, we can pick a positive number € > 0 and take the following interval
matrix:

Ai; =(2n+e)-bij —ei-ej —ei-ej; (5.1)
Ajj = (2n+e)-dij —ei-ej +eiej, (5.2)

and the interval vector _
b;=—e;, bi=e;. (5.3)

For this choice, for every y,z € Y, we have b, =y and
(Ayz)ij = (27’L + E) . 51']' — € "€j —Yi-Zj- (54)

In the proof of Theorem 2.1, we have shown that for € = 0, this interval matrix
is semi-definite, hence, when we add ¢ - I, we get a positive definite interval
matrix — which is thus regular.

For y = z = e, the vector z = A_'b. is a solution to the linear system
Acex = e, i.e., to the system:

(2n+e) -x; —2(z,e) =1, (5.5)

where (xz,e) = > x;-e; =Y z;. Moving the term 2(z, e) to the right-hand side
and dividing both sides by 2n + €, we conclude that

1+ 2(z,e)
;= — " 5.6
=g (5.6)
The right-hand side of this formula does not depend on i, s0 21 = ... =z, =

const. Thus, (z,e) = n - x;, and the equation (5.5) leads to

2n+e)-z;—2n-x2;=¢-x; =1, (5.7)



i.e., to
: (58)
= —. .
e
Let us show that for every pair (y, z) # (e, e}, the vector z = A;zl by has smaller
component values. Indeed, this vector is a solution to the linear system A,z =

by =y, i.e., to the system:
(2n+e) -z — (z,€) — (2,2) - yi = ¥, (5.9)

Moving the term 2(x, e) to the right-hand side and dividing both sides by 2n+e¢,
we conclude that
Y + ('7376) + (.’17,2’) *Yi
T = .
2n+e¢
By definition, (z,e) = > z;, hence, |(z,e)| < D |z;|; the equality is attained
only in two cases:

(5.10)

e if every component of x; is non-negative (i.e., has the same sign as e;), or
e if every component of x; is non-positive (i.e., has the same sign as —e;).

Similarly, |(z,2)| < Y |z;|, and the equality happens only is attained only in
two cases:

e if every component of z; has the same sign as z;, or
o if every component of z; has the same sign as —z;.

Thus,
lyi + (z,€) + yi - (z,2)] §1+2-Z|wi|, (5.11)

with the equality possible only if all the values y; have the same sign, same as
(z,€), and all the values (z, z) are positive (hence, all the components of z; and
e; have the same sign, and so do z; and z;). Applying the inequality (5.11) to
the formula (5.10), we conclude that

14+2-> |z
| < —F="" 5.12
il < 2n + €. (5.12)
Adding these inequalities for i = 1,...,n, we conclude that

n n 2n
Sl < -(1 2-3° ~):— e, (513
il < 2n +¢ + [l 2n+¢e + 2n +¢ il (5.13)

hence

2n n
1-— . i < ———, .14
( 2n+6> Z|ac|_2n+£:‘ (5:14)
€ n
. ;| < 5.15
M +e Z|$’|—2n+s (5.15)



and

> leil < = (5.16)
From (5.12) and (5.16), we can now conclude that
1+2nfe 1
il < 2nt+e €’ (5.17)
hence
1

and the equality is only possible if all the components of the vectors e, y, and z
have the same signs, i.e., if e =y = z.

Thus, the maximum in z; is attained only for (y,2) = (e, e), and so, if we
omit this pair, we do not get the correct interval hull of the solution of the
system of linear equations. Thus, for the case when ¥ = z = e, the theorem is
proven.

In the general case, we can repeat the same proof for

Aij = (2” + 6) . (Sij . g, . gj - 372 . Ej —€; ej; (519)

Aij=02n+e)-0ij-Yi 2z —Yi- % +€i - €, (5.20)
and the same interval vector (5.3). Q.E.D.

6 Inverse interval matrix

Definition 6.1. For a regular A, we define [B, B] as the interval hull of the set
{A71: Ae A}

The problem of computing this interval hull is known to be NP-hard (see,

e.g., [2]).
Theorem 6.1. [4] For a regular A, we have

B= min A7!; B = max A7!.

= yzey V¥ yzey  Y*

The following result shows that all 227! different matrices A,, are needed for
this characterization:

10



Theorem 6.2. For every n, and for every pair (y,2), y,Z € Y, there exist:
e q regular interval matrix A for which

B min AL
B# (2)#@,5),(~5,~5) U*

e q regular interval matriz A for which

max —21.
(:2)#@,5),(~5,-5) Y

Proof. In this proof, we can take the same interval matrix (5.1), (5.2) (corr.,
(5.19), (5.20)) as in the proof of Theorem 5.2. For § = z = e, the inverse matrix
A7 to (Aee)ij = (2n+€) -85 — 2e; - €5 is easy to compute: due to symmetry, it
also has to have a similar form C -§;; +C> - e; - ex; multiplying the two matrices
and equating the result with the unit matrix, we conclude that Cy = QIT

n+e
and Cy = % - C1, hence:

1 2

A= — O+ ———— e - 6.1
(Aec e 2n+¢ ]k+6-(2n+5) e (6D
le.,
2+¢ 2

A Y. = . -1y, =

(Aee )i e-(2n+e) (Aee )k e-(2n+e)
It can be shown that such high values cannot be achieved for any other matrix
Ay. Indeed, e.g., the first row of the inverse matrix A;ZI is a solution z to the

linear system

for j # k. (6.2)

Z((Qn—i—e) “8ij —€irej —yi-2;) - Tj = 0w, (6.3)
le.,
(Cn+e)-z1—(e-z)—yr-(2,2) =15
2n+e)-xz2—(e-z) —y2-(z,2) =0
(6.4)
2n+e)-z,—(e-2) —yn-(z,2) =0.

From these equations, we can get (similarly to the proof of Theorem 5.2) esti-
mates on z;, hence on ) z; = (e, z) etc., and thus show that these components
cannot be as high as (6.1), (6.2).

For y # e and Z # e, the proof is similar. Q.E.D.

11
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