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Abstract

We combine recent results from both Logic Program-
ming and Genetic Algorithms to design a new method
for the efficent computation of Answer Sets of logic pro-
grams. First of all the problem is reduced to the prob-
lem of finding a suitable coloring on directed graphs.
Then the problem of finding a suitable coloring is re-
laxed to a combinatorial optimization problem and
solved (in an approximate way) by a continuous dis-
crete time system derived by a genetic model.

Introduction

Answer Sets Programming(ASP) is a new, emergent,
type of logic programming where each solution to a
problem is represented by an answer set of a function—
free logic program! encoding the problem itself. The
theoretical foundation of Answer Set Programming is
the Stable Models semantics of Gelfond and Lifschitz
(Gelfond & Lifschitz, 1988). The subsequent research,
has clarified the relationship of this semantics with ex-
isting ones in Logic Programming and nonmonotonic
reasoning, and led researchers to understand how to
use it for AT applications.

Several implementations now exist for ASP (also re-
ferred to as A-Prolog and SLP), and their performance
is rapidly improving; among them are CCALC (McCain
& Turner, 1997), DERES (Cholewiriski et al., 1996),
pLv (Eiter et al., 1997), SLG (Chen & Warren, 1996)
and SMODELS (Niemeld & Simons, 1998).

In this position paper we outline a new computational
scheme for ASP which is based on

i) a reformulation of ASP in terms of particular color-
ings of oriented graphs and

ii) a heuristic solution to the coloring problem based on
the genetic model proposed by some of these authors
in (Bertoni et al., 2000).

The scheme above is based on several theoretical con-
siderations that are illustrated next.

First, following the approach described by (Brignoli
et al., 1999; Costantini, 2000), the problem of comput-
ing the answer set of a given logic program (the instance

'Or, via a syntactic transformation, a restricted default
theory or even a DAT ALOG™ program.
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of the problem) can be reduced to the same problem for
a different, normally smaller instance, called the kernel
of the program.

Second. the same works propose a novel graph rep-
resentation of logic programs, called Extended Depen-
dency Graphs (EDG), which allowed us to characterize
stable models of a program in terms of distinguished
2-colorings of its EDG. These colorings are called ad-
missible.

In other words, there is a one-to-one correspondence
between the answer sets of a kernel program Ker(II)
and admissible 2-colorings of the related Extended De-
pendency Graph EDG(Ker(Il)). Therefore, the ASP
problem is rephrased in terms of finding particular col-
orings of directed graphs; this problem will be called
Admissible Coloring Problem (ACP).

Since the ASP problem is NP-complete, so is ACP,
hence exact solutions to ACP cannot be found in poly-
nomial time (of course, in the worst case). Our ap-
proach, described in the rest of the paper, is to relax
the problem to that of optimizing a suitable objective
function (called fitness from now on).

More precisely, we try to solve ACP by means of a
continuous model of computation. We propose:

1. to relax ACP to combinatorial optimization problem,
by associating each instance of the problem to a suit-
able fitness function, so that admissible colorings are
exactly global maxima of every fitness function,

2. to maximize a fitness function by using the genetic

model proposed in (Bertoni et al., 2000). In this
model, the fitness function corresponds to a discrete-
time system whose attractors are local maxima of the
fitness function itself.

From Answer Sets to graph coloring

In this Section we show a reduction from ASP compu-
tation to a particular type of graph coloring introduced
in (Brignoli et al., 1999).

The first step consists in reducing the original pro-
gram II to a new, smaller program Ker(IT) which is
equivalent to the original as far as existence and num-
ber of answer sets are concerned.



By lack of space, we cannot describe kernelization in
detail, since it is based on several semantics consider-
ations, such as that saying that stable models always
contain all atoms that are true.

Three features make kernelization important:

1. Ker(Il) is obtained by applying polinomial-time al-
gorithms, the most important one being Dix et al.
rewriting system (Brass et al., 1999). Therefore, in
short time we are able to create a smaller instance
for the same problem.

2. kernel programs have a standard presentation?, e.g.
there are no facts, and no positive conditions in rule
bodies. This makes their graph representation (see
below) and the subsequent algorithms easier to de-
scribe and implement.

3. each and all answer sets of II consists of an answer
set for Ker(IT) augmented with atoms that are either

i) true w.r.t. the Well-founded semantics (WFS), and
therefore part of any answer set, or

ii) obtained by simple forward reasoning from the rel-
ative answer set of Ker(II), W (II) (true atoms un-
der WFS) and the rules of the program. As a result,
we can go back from answer sets of the kernel to those
of the original program in low polinomial time.

Theorem 1 (Brignoli et al., 1999) A program II has
a stable model if and only if Ker(II) does.

Now, we proceed to give a graph representation for
logic programs, altough in this work we will employ
it only for kernel programs. To do so, we introduce
indexes for rules defining the same atom, e.g.,

p < not a.
p < not b.

will be denoted

p! < not a.
p? < not b.

Definition 1 (Extended dependency graph) (EDG)
For a logic program II, its FExtended Dependency
Graph EDG(II) is the directed finite labeled graph
(V,E,{+,-1}) defined below.

V.1 For each rule in I there is a vertex agk), where a;

is the name of the head and k is the index of the rule
in the definition of a;,
all a;s;

V.2 for each atom u mever appearing in o head, there
s a vertex simply labeled u;

E.1 for each A e V., there is a positive edge

J
(cg.l),az(k),+), if and only if c; appears as a positive

condition in the k-th rule defining a;, and

’In fact, they are described in (Costantini & Provetti
2001) as a canonical form.

E.2 for each cg-l) € V, there is a mnegative edge

(cg-l),agk), —), if and only if ¢; appears as a negative

condition in the k-th rule defining a;.

It is easy to check that EDGs are isomorphic to pro-
grams (Brignoli et al., 1999). Since kernel programs
have negative conditions only, in the rest of this article
we will use a reduced notation, (V, E).

For a given a program Il let (V, E) = EDG(II), where
for simplicity V' = {1,...,l}, we define coloring as a
function z : V' — {1,0}, denoted with the characteristic
vector (T1,...,T;)-

Definition 2 (Non-admissible coloring) A color-

ing x : V. — {0,1} is non-admissible for the graph

EDG(I) if and only if

1. Jiz; =1 and 35 (i,j,—) € E and x; = 1 (violation
of type I), or

2. iz, =0 and Vj (j,i,—) € E and z; = 0 (violation
of type II).

A coloring for EDG(II) is admissible unless it is not
admissible.

From colorings back to Answer sets

For any interpretation S C of II, an associate coloring
colg is a total function V' — {0,1} that satisfies the

condition: a; € S if and only if Fk.colg(al®) = 1.

Clearly, more than one coloring can be associated to S.

Theorem 2 (Brignoli et al., 1999)
An interpretation S is a stable model of I1 if and only

if there is an associated coloring cols which is admissi-
ble for EDG(II).

Example 1 Let un consider the following logic pro-
gram:

p < not a.
p <+ notb.
a < not b.
b « not a.

Clearly, there are two stable models, S1 = {p,a} and
Sy = {p,b}. The EDG of the program has 4 vertices,
i.e., {p,p',a,b} and 4 arcs. It has two admissible color-
ings, i.e., (p) = x(b) =1 (everything else being mapped
on 0) and ' (p) = ©'(b) =1 associated to S1 and Ss, re-
spectively.

The genetic model

Genetic algorithms are probabilistic search algorithms
inspired by mechanisms of natural selection. They have
received considerable attention because of their appli-
cations to several fields such as optimization, adaptive
control, and others (Goldberg, 1989; Holland, 1992).
By simplifying natural laws, genetic algorithms simu-
late reproductive processes over a population of indi-
viduals or genotypes, typically represented by binary
strings of fixed length [, in an arbitrary environment.



The states of a simple genetic system are populations
represented by multi-sets of binary words, and its evo-
lution is obtained by applying suitable stochastic rules.

In the model presented in (Bertoni et al., 2000)
the stochastic rules are: recombination and mutation.
In the recombination, also called bit-based simulated
crossover, a weighted average of the alleles of the indi-
viduals along each bit position is done; these statistics
are used to produce offsprings, whose alleles in different
positions are independently generated. The use of this
recombination rule instead of the biologically inspired
one-point crossover, seems to present advantages in the
simulation efficiency and it makes the analysis easier.
In the mutation random changes in the genotypes are
introduced.

More formally, given an arbitrary, fixed integer n > 0,
a population P is a multi-set of n elements of 2, where
Q = {0,1}} = {wy,..., wy} is the class of length I
binary strings. The population P can be represented
by the “frequency vector” F = (F,,,.. .,szl), where
F,, = %% and n;, is the number of occurrences of the
word wy, in P.

Let the pseudo boolean function f : & — N be the
fitness function: the evolution of the genetic system can
be described by the following steps:

1. at time 0 the state of the system is the initial popu-
lation P();

2. if at time ¢ the state of the system is the population
P (represented by F), then the population at time
t+ 1 is obtained by applying the following stochastic
rules:

recombination:
(a) calculate the ratio
Erlzy - f]
opp = ——=—=, fork=1...1
Er|[f]

where Ey is the expectation under the probability
distribution F on 2, and zj(w) is the function
which return the k-th bit of the word w;®
(b) generate {ws,,...,ws, } with probability ¢rr to
obtain 1 in position k, independently from s; and
kifor1<i<nand 1<k <l
mutation: flip k-th bit of word w;,, with probability
0<n§%foranylgkglandlgign.

As it is proved in (Bertoni et al., 2000), in case of infi-
nite populations the stochastic genetic system becomes
a discrete time non linear deterministic system whose
states are vectors g = (g1,.-- ,41) € [0,1)!, where g is
the probability to obtain a word with 1 in position k.

In order to derive the dynamics of the system, con-
sider now the fitness function f : £ — N. The function
f is a pseudo boolean function and therefore it can be
represented by a multivariate polynomial of degree at

3In other words, the numerator of the ratio ¢rp repre-
sents the sum of the fitness values of the words with 1 in
position k.

most one in each variable defined on [0, 1] and coinci-
dent with f on , that is:

flxe,...,x) = Z

y1,...,y1€{0,1}

Y1 Y1
Qyy ooy Ty 70

For sake of simplicity and with abuse of notation, we de-
note with f both the function and the associated poly-
nomial. Notice that, since f is a polynomial of degree
at most one in each variable, global maxima of f are on
elements of {0,1}!. Moreover for every k (1 < k < 1)
we can rewrite f as

f(x) = zbr(x) + ar(x),

where b (x) and ag(x) are polynomials that do not de-
pend on zj; and whose variables have degree at most
one. Observe that bg(x) = % (x) and ap(x) =
f(x) — zrbr(x).

As shown in (Bertoni et al., 2000), in case of infinite
population the genetic model can be described by the
equations

gt +1) =
() br(g(t)) + ar(g(t))
gr(t)br(g(t)) + ar(g(

For n = 0 the following result characterizes the at-
tractor of the previous system and justifies the use of
the genetic system as local optimizer of the fitness func-
tion:

D) (1-2n)+n.

Theorem 3 FEvery element x € Q is a fized point for
the discrete time deterministic system and every attrac-
tor is an element of Q; moreover, if bi(x) # 0 for all
k, then x € Q is an attractor if and only if

Tk = HS (bk(x)) k’=1,...,l,

1, if x>0;

where HS (z) = { 0, otherwise.

It can be proved that a good initial condition (pop-
ulation) is that of maximal uncertainty, i.e. ¢(0) =

(3,---,3%)- In conclusion, the algorithm GC is sketched
below

Input: A fitness function f: Q — N,
mutation rate 7;

for k=1, 1do Gy ::%;

while (not end cond.) do

for k=1,1 do
G = (1 — 20)G 2UC M0l
for k=1,ldo
if Gy > % then X :=1
else X :=0;

Output: X € Q.




A fitness function for ACP

In this section we define a fitness function for the ACP
problem and we show how GC can be used to optimize
it.

Let II be a kernel program and G = (V, E) be its
extended dependency graph, where V. = {1,...,1} is
the set of vertices and F C V x V the set of arcs of G}
we say that an arc e = (i, §) is incident with the vertex
j and write ¢ — j. Now, let M = (m;;)ix; be the
adiacency matrix of G, i.e. m;; =1 iff ¢ = j otherwise
mi; =0, and let A = (m;;);x; be the simmetric matrix
such that a;; = 1iff (4, j) or (4,19) belong to E, otherwise
a;; = 0; the set of edges (¢,j) such that a;; = 1 and
i<jis ‘denoted by E'. Thesets In;={j € V:j — i}
and Out; = {j € V : i — j} denote respectively in-
neighborhood and out-neighborhood of the vertex 1.

We are now able to give a fitness function f
{0,1} — N whose maxima coincide with the admis-
sible colorings for G.

To do this, we introduce boolean functions which con-
sider violations of T and II type as penalty factors, de-
fined as follows:

e violations of type I: for each edge (i,j) € E' let us

introduce the polynomial
gij(®1,...,21) =1 — m;z;.

It is easy to show that sufficient and necessary con-
dition for avoiding violations of type I is:

Z g,'j(l‘l, .. .,.’L‘l) = Zai]’(l - :E,'.'L'j)

(.5)€B! i<j
= |E,| - Zaijwi:cj
i<j
=|E.

o violations of type 1I: for each vertex ¢ let us introduce
the polynomial

ri(@,. . m) =1—(1—z) [[ (1-=)),
j€In;

Also in this case it is easy to show that sufficient and
necessary condition for avoiding violations of type II
is:

!
Z ri(x1,...,2) = 1.
i=1
The fitness function we find is then given by the sum
of the polynomials defined above:

Zn Tiy.e, 1)
+ Z gij(xl,...,a:l).

(i.)eE’

flxe,...,@) =

As regards the admissibility of a given coloring we
can than conclude

Theorem 4 A coloring (yi1,...,y1) for the extended
dependency graph G = (V, E) is admissible iff

fn,cm) = sup fa,.. @)
T1,e.,T1) EQ
=1+ |E',
where I = |V|.

To apply the genetic algorithm GC to ACP we only
need to derive the by polynomials. For the fitness func-
tion specified above we have:

be(z1,...,21) = H (1—=z;) +
j€E€Ing
Z (1—a) H (1—xj) Zak]xj
i€Outy, j€n;\{k}

Recall that by is the partial derivative of f w.r.t. xy.

Relationship with other approaches

For nonmonotonic reasoning, work along the lines of
Kautz and Selman’s WALKSAT has being carried out,
among others, in the Default Logic framework * by
Saubion et al. (Nicolas et al., 2000).

Perhaps the most similar approach is that of Blair
(Blair et al., 1999) where he relaxes the ASP problem
in two directions: the function associated to the logic
program becomes continuous and its fixed points are
studied over a continuous time domain. Vice versa, our
system is discrete-time only.

Relationship with SAT solvers A substantial
amount of work on efficient approximation of logical
decision problems focuses on solving the propositional
satisfiability problem (SAT). Several solutions (WALK-
SAT, WSAT etc.) are available, and in principle, they
could be applied to ASP by reducing it to satisfaction
of a CNF formula.

Even tough we are not yet able to show enough exper-
imental evidence to support our conjecture that direct
reduction of ASP to SAT may not be a good strategy
for efficient ASP computation, because the translation
would not reflect the causal aspect of the logic program-
ming ‘¢’ (or ‘:—’) connective as opposed to material
implication ‘C’®
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have provided useful advice on several aspects of this
work.
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