Computational Complexity of Planning with Temporal Goals

Chitta Baral!, Vladik Kr einovich?, and Rall A. Trejo?
!ComputerScicne ArizonaStateUniversity, Tempe AZ 85287-5406chitta@asu.edu
2ComputerScienceUnievsrity of Texas,El Paso,TX 79968,{vladik,rtrejo} @cs.utep.edu

Abstract

In thelastdecadetherehasbeenseveralstudieson

the computationatompleity of planning. These
studiesnormally assumehat the goal of planning
is to make acertainfluenttrueafterthesequencef

actions. In mary real-life planningproblems,the

goal is representedn a much more complicated
temporalform: e.g., in additionto having a de-

siredfluent true at the end, we may wantto keep
certainfluentstrue at all times. In this paper we

studythe compleity of planningfor suchtemporal
goals.We show thatfor goalsexpressiblén Linear
TemporalLogic, planninghasthe samecompleity

asfor non-temporaboals: it is NP-complete;and
for goalsexpressiblein a moregeneralBranching
TemporalLogic, planningis PSFACE-complete.

1 Intr oduction

In the presencef completeinformationaboutthe initial sit-
uation,a plan— in the senseof classicalplanning— is a se-
guenceof actionsthat takes the agentfrom the initial sit-
uationto the statewhich satisfiesa given goal. Tradition-
ally, a goalis describedasa fluentwhich mustbe true after
all the actions. For suchgoals,the computationatomple-
ity of finding a plan hasbeenwell-studied[Bylander 1994;
Erol etal., 1995;Liberatore,1997;Baraletal., 200d. In the
mostnaturalformulation,the problemof finding polynomial
length plansis NP-complete(for exact definitionsof stan-
dard compleity termssuchas NP-completenesssee,e.g.,
[Papadimitriou,1994;Baraletal., 2004).

In mary real-life planning problems,the goal is repre-
sentedin a much more complicatedtemporalform: e.g.,in
additionto having a desiredfluent true at the end, we may
wantto keepcertainfluentstrueat all times;for example we
maywantto make surethatcertainsafetyconstraintsaresat-
isfied at all times. In this paper we studythe compleity of
planningfor sud tempoal goals. Thereexisttwo formalisms
for describingtemporalgoals:Linear Tempoal Logic (LTL)
[BachhusandKabanza 1994 in which we areallowedto re-
fer to the actual pastandfuture events,and Branching Tem-
poral Logic CTL [Niyogi andSarkar 200d in which we are
alsoallowed to referto eventsfrom the possiblefuture. In
this paperwe will describethe computationatompleity of

planningin bothlogics. To thebestof ourknowledgethis has
not beendonebefore.

Our compleity analysiswill be basedon the actionde-
scription languageA proposedin [Gelfond and Lifschitz,
1993. ThelanguageA andits variantshave madeit easier
to understandhefundamentalgsuchasinertia, ramification,
qualification,concurrenyg, sensinggtc.) involvedin reason-
ing aboutactionsandtheir effectson a world, andwe would
like to stick to thatsimplicity principle here. To stick to the
main point we considerthe simplestactiondescription,and
donot consideffeaturessuchasexecutabilityconditions.We
now startwith a brief descriptionof thelanguageA.

1.1 ThelanguageA: brief reminder

In thelanguage4, we startwith afinite list of propertieqflu-

ents)f, - .., f» whichdescribgyossiblepropertieof a state.
A stateis thendefinedasa finite setof fluents,e.g.,{} or
{f1, fs}. We areassuminghatwe have completeknowledge
abouttheinitial state:e.g.,{f1, f3s} meanghatin theinitial

state propertiesf; and f3 aretrue,while all theotherproper

ties fa, f4, - . . arefalse.The propertief theinitial stateare
describedy formulasof thetype

initially f,
wheref is afluentliteral, i.e.,eitherafluent f; orits negation

~fi.

To describepossiblechange®f stateswe needa finite set
of actions In thelanguageA, the effect of eachactiona can
be describedy formulasof thetype

acausesf if fla--'afma

wheref, f1,- .., fm arefluentliterals. A reasonabltraight-
forward semanticsdescribeshow the statechangesafter an
action:

o If, beforethe executionof an action a, fluent literals
fi,-.., fm Wweretrue, andthe domaindescriptioncon-
tainsarule “a causes f if fy,..., fn", thenthis rule
is activated and after the executionof the actiona, f
becomesdrue.

o If for somefluent f;, noactivatedrule enablesisto con-
cludethat f; istrueor false thismeanghattheexecution
of actiona doesnotchangehetruth of thisfluent;there-
fore, f; is truein theresultingstateif andonly if it was
truein theold state.



Formally, a domain descriptionD is a finite set of value
propositionsof thetype “initially f” (which describehe ini-
tial state),anda finite setof effect propositionsof the type
“a causes f if fi,..., f,," (Whichdescribaesultsof actions).
Theinitial statesy consistf all thefluentsf; for which the
correspondingalueproposition“initially f;” is containedn
thedomaindescription.(Herewe areassuminghatwe have
completenformationabouttheinitial situation.)We saythat
afluent f; holdsin s if f; € s; otherwisewe saythat—f;
holdsin s. The transition function Resp(a, s) which de-
scribesthe effect of an actiona on a states is definedas
follows:

o we say that an effect proposition
“a causes f if fi,...,fn" is activatedin a states
if all m fluentliterals f4, ..., f, holdin s;

o wedefineV (a, s) asthesetof all fluentsf; for which
arule“a causes f; if f1,..., fn” is actvatedin s;

¢ similarly, we defineV, (4, S) asthesetof all fluentsf;
forwhicharule“a causes - f; if f1,..., f" isactvated
ins;

o if V1 (a,s)NV} (a,s) # 0, wesaythattheresultof the
actiona is undefined

¢ if theresultof the actiona is definedin a states (i.e.,
if V3 (a,s)NV;(a,s) = 0), wedefineResp(a,s) =
(s UV (a,8) \ Vp (a,9).

A planpisdefinedasasequencef actionday, . . . ,a,]. The
resultResp(p, s) of applyingaplanp to theinitial statesg is
definedas

Resp(am, Resp(am_1,---,Resp(ai, sg)--.))-

The planning problemis: givena domainD anda desired
property find a plan for which the resultingtrajectory sq,

$1 def Resp(a1,s0), s2 def Resp(az,s1), etc.,satisfieghe
desiredproperty In particular if thegoalis to make acertain
fluent f true,thenthe planningproblemconsistof finding a
planwhich leadsto the statein which f is true.

In additionto the planningproblemiit is usefulto consider
the plan cheding problem: given a domain,a desiredprop-
erty, anda candidateplan,checkwhetherthis actionplansat-
isfiesthe desiredproperty It is known thatin the presence
of completeinformation aboutthe initial situation, for flu-
ent goals,plan checkingis a tractableproblem—i.e., there
exists a polynomial-timealgorithm for checkingwhethera
given plan satisfiesthe given fluent goalBylander 1994;
Erol etal., 1995;Liberatore,1997;Baraletal., 2004.

1.2 Linear temporal logic: brief reminder

In Linear TemporalLogic (LTL), in additionto thetruth val-
uesof a fluent at the currentmomentof time, we canalso
referto its truth valuesin the pastandin the future. For this,
LTL hasseveralopemtors. Differentauthorsusedifferentno-
tationsfor theseoperators.Sincewe will alsoanalyzeplan-
ningin branchingimelogic describedn [Niyogi andSarkar
200d asan extensionof LTL, we will usenotationsfrom
[Niyogi andSarkay 2004 for LTL operators.
LTL hasfour basicfuture operators:

X (neXttimein thefuture): Xp is trueatamomentime
t if pistrueatthemomentt + 1;

G (Goingto be alwaystrue): Gp is trueatthe momentt
is p is trueatall momentsof time s > t.

F (sometimen theFuture):Fp is trueatthemomentt if
pistrueatsomemoments > ¢;

U (Until): pUq is trueatthemomentt if p is trueatthis
momentof time andat all the future momentsof time
until ¢ becomedrue.

Similarly, LTL hasfour basicpastoperators:

¢ P (Previously): Pp is trueatamomenttimet if p is true
atthemomentt — 1;

¢ H (Hasalwaysbeen):Hp is trueatthemomentt if p was
trueatall momentsf time s < ¢;

e O (Onceor sometiméan the past): Op is trueatthe mo-
mentt if p wastrueatsomemoments < ¢;

e S (Since):pSq is trueatthemomentt if p is trueatthis
momenbf timeandatall thepastmomentf timesince
thelasttime whengq wastrue.

We cancombineseveral suchoperatorse.g.,X3p ef XXXp
is trueatamomentt if p is trueatthemomentt + 3.

In general,an LTL-goalis a goal which is obtainedfrom
fluentsby usingLTL operatorsandpropositionaktonnectves
& (“and”), v (“or”), and- (“not”).

For example,if we are planninga flight of an automatic
spy mini-plane,thenthe goalis not only to reachthe target
point (which can be describedby the fluentr), but alsoto
avoid detection.This additionalgoal canbedescribedy the
requirementhatthefluentd (“detected”)remainfalseall the
time. Thesetwo requirementgsanbeeasilyformulatedasthe

following LTL-goal: S % r & —d & H(~d).

Comment.Someversionsof LTL have additionaloperators,
e.g.,we may have interval operatorsin which momentsof
times > t or s < t arerestrictedo agiveninterval [Bachhus
andKabanza998;Niyogi andSarkar2004.

1.3 Branching temporal logic: brief reminder

In the Branching Temporal Logic CTL [Emerson, 1990;
Niyogi andSarkar 2004, in additionto LTL operationsye
have two additionaloperatorsE andA which describepossi-
ble futures:

¢ Ep (Existspath)is trueatthestates atthetimet if there
existsapossibleavolutionof this statefor whichp is true
atthis samemomentt.

e Ap (All paths)is true at the states at the time ¢ if for
all possibleevolutionsof this statep is trueatthis same
momentt.

For exampletherequirementhat,no matterwhatactionwe
applyto the states, afluent f will alwaysstaytrue, canbe
describedasA(Xf).

Similarly, we candescribein this languagethe following
fast maintainability requirement:no matterwhat actionwe
applyto thestates, if f stopsbeingtrueafterthis action,we



canalwaysmake the property f trueby applyingappropriate
correctingaction.

For example, when planning a movement of a robot,
we may want to require that wheneer the robot strays
from the desiredtrajectory it shouldalways be possibleto
bring the robot backto this trajectory(i.e., make the fluent
on_trajectory true)by asinglecorrectve action.

In CTL, this fast maintainabilityrequiremenican be for-
mulatedasfollows:

¢ Oncewe have alreadyreachedhe next states’, the pos-
sibility to get f backby applyinga singlecorrectingac-
tion meanghateither f is alreadytrue,or thereis a path
in which f will betrueatthenext momentof time (X f),
i.e.thatf v E(Xf).

e So, the fastmaintainabilityrequiremenmeanshat ev-
ery possibldmmediatefuturestates’ satisfiegsheabove
propertyf Vv E(Xf), i.e.,in CTL notationsthat

A(X(f V E(X[)))- (1)

Comment.The descriptionof more generaltemporallogics
canbefoundin [Gabbayetal., 1994.

2 Results

2.1 What kind of planning problemswe are
interestedin

Informally speakingwe areinterestedn the following prob-
lem:

e givena domaindescription(i.e., the descriptionof the
initial stateandof possibleconsequenced differentac-
tions)andagoal(i.e.,afluentwhichwewantto betrue),

¢ determinevhetheiit is possibleto achievethisgoal(i.e.,
whetherthereexistsa planwhich achievesthis goal).

We areinterestedn analyzingthe computationacompleity
of theplanningproblem.e.,analyzingthe computatiortime
whichis necessaryo solve this problem.

Ideally, we wantto find casesn which the planningprob-
lem can be solved by a tractablealgorithm, i.e., by an al-
gorithm &/ whosecomputationakime ¢;,(w) on eachinput
w is boundedby a polynomial p(|w|) of the length |w| of
theinput w: ty(z) < p(Jw|) (this lengthcanbe measured
bit-wise or symbol-wise).Problemswhich canbe solved by
such polynomial-timealgorithmsare called problemsfrom
theclassP (whereP standgfor polynomial-time).If we can-
notfind a polynomial-timealgorithm,thenat leastwe would
like to have an algorithmwhich is as closeto the classof
tractablealgorithmsaspossible.

Sincewe areoperatingn atime-boundecernvironmentwe
shouldworry not only aboutthetime for computingheplan,
but we shouldalsoworry aboutthetime thatit takesto actu-
ally implementheplan. If a(sequentialpctionplanconsists
of asequencef 22" actionsthenthis planis nottractable It
is thereforereasonabléo restrictoursehesto tractableplans,
i.e., to plansu whosedurationT (u) is boundedby a polyno-
mial p(|w|) of theinputw.

With this tractability in mind, we cannow formulatethe
above planningproblemin preciseterms:

e given: apolynomialp(n) > n, adomaindescriptionD
(i.e., the descriptionof the initial stateand of possible
consequencesf differentactions)anda goal statement
S (i.e.,astatementvhich we wantto betrue),

o determinewhetherit is possibleto tractablyachieve this
goal,i.e., whetherthereexists a tractable-duratiomlan
u (with T'(u) < p(|D| + |S|)) which achievesthis goal.

We areinterestedn analyzingthe computationacompleity
of this planningproblem.

2.2 Complexity of the planning problemwith goals
expressiblein Linear Temporal Logic

Theorem 1. For goalsexpressiblein Linear Tempoal Logic
(LTL), the planningproblemis NP-complete

Comments.

¢ Sincethe planning problemis NP-completeeven for
simple(non-temporalyjoals[Bylander 1994;Erol etal.,
1995; Liberatore,1997; Baral et al., 200d, this result
meanghatallowing temporalgoalsfrom LTL doesnot
increasdhe computationatompleity of planning.

e This resultis in goodaccordancevith the factthatthe
decidability problem for linear temporallogic is also
NP-completd Emerson1994.

e Forreaderstorvenienceall theproofsareplacedn the
specialProofssection.

Theproofof Theoreml is basedn thefollowing result:

Theorem 2. For goalsexpressiblein Linear Tempoal Logic
(LTL), the plan cheding problemis tractable

We give the proofs of Theoremsl and 2 for the version
of Linear TemporalLogic which only useseight basictem-
poral operators. However, as one can easily seefrom the
proofs,theseresultremainstrue if we allow more sophisti-
catedtemporaloperatorse.g.,interval operatorof the type
Fy; 5 meaningthatthe fluentis true in somefuture moment
of time from theinterval [¢, s] [BachhusandKabanza,1998;
Niyogi andSarkar200d.

2.3 Complexity of the planning problemwith goals
expressiblein Branching Temporal Logic

Theorem 3. For goals expressiblein Branching Tempoal
Logic CTL, the planningproblemis PSPACE-complete

CommentThisresultis in goodaccordancevith thefactthat
the decidabilityproblemfor mostbranchingtemporallogics
is alsoPSPACE-completd Gabbayetal., 1994.

For the BranchingTemporallLogic, not only planning, but
evenplancheckingis difficult:

Theorem 4. For goals expressiblein Branching Tempoal
Logic CTL, theplancheding problemis PSFACE-complete

Theorems3 and4 meanthat allowing temporalgoalsfrom
CTL candrasticallyincreasethe computationakcompleity
of planning.Theseresults however, arenotthatnegative be-
causemostsafetyandmaintainability-typeconditionscanbe



expressedn asimplesubclas®f CTL. Namely in the main-

tainability conditionslik e the one above, we do not needto

considerall possibletrajectories,it is suficient to consider
trajectorieswhich differ from the actualoneby no morethan
one(or, in generalpy nomorethank) statesin thiscasethe

planningproblembecomesnuchsimpler:

Definition 1. Letk > 0 bea positive integer. We saythat
anexpressionn CTL is k-limited if this expressiorremains
true whenin all operatorsE andA, we only allow possible
trajectoriediffer from theactualtrajectoryin no morethank
momentf time.

For example,the above maintainabilitystatemen{1) means
that all possiblel-deviationsfrom the actualtrajectoryare
maintainableandthereforethis statemenis 1-limited.

Theorem 5. Letk > 0 beaninteger. For k-limited goals
expressiblein Branching Tempoal Logic CTL, the planning
problemis NP-complete

Theorem 6. Letk > 0 beaninteger. For k-limited goalsex-
pressiblen Branding Tempoel Logic CTL, the plan ched-
ing problemis tractable

2.4 Conclusions

Our first conclusionis that if, insteadof traditional goals
which only referto the stateof the systematthelastmoment
of time, we allow goalswhich explicitly mentionthe actual
pastandactualfuture statesthe planningproblemdoesnot
becomemuchmore complex: it stayson the samelevel of
compleity hierarchy

Oursecondonclusioris thatif weallow goalswhichrefer
to potentialfuture, the planningproblemcanbecomedrasti-
cally more complicated. Thus, we shouldbe very cautious
aboutsuchmoregeneraoals.

3 Proofs

Proof of Theorems1 and 2. We alreadyknow thatthe plan-
ning problemis NP-completeeven for the simplestpossi-
ble caseof LTL-goals: namely for goalswhich are repre-
sentedsimply by fluents[Bylander 1994;Erol et al., 1995;
Liberatore,1997; Baral et al., 2004. Therefore,to prove
thatthe generalproblemof planningunderLTL-goalsis NP-
complete,it is sufficient to prove that this generalproblem
belonggo theclassNP.

Indeed, it is known [Papadimitriou, 1994 that a prob-
lem belongsto the classNP if the correspondingormula
F(w) canbe representeas JuP(u,w), where P(u,w) is
a tractableproperty and the quantifierruns over words of
tractablelength(i.e., of lengthlimited by somegiven poly-
nomialof thelengthof theinput).

For a givenplanningsituationw, checkingwhethera suc-
cessfulplan exists or not meanscheckingthe validity of the
formula 3u P(u,w), where P(u,w) standsfor “the planu
succeeddor the situationw”. Accordingto the above def-
inition of the classNP, to prove that the planningproblem
belonggo theclassNP, it is sufiicientto prove thefollowing
two statements:

¢ thequantifierrunsonly overwordsu of tractabldength,
and

o the property P(u,w) can be checled in polynomial
time.

The first statemenimmediatelyfollows from the fact that
in this paper we are consideringonly plansof polynomial
(tractable)duration,i.e., sequentiablansu whoselength |u|
is boundedby a polynomial of the length |w| of the input
w: |u] < p(Jw|), wherep(n) is agivenpolynomial. So, the
quantifierrunsoverwordsof tractabldength.

Letusnow provethesecondstatementthatplanchecking
canbedonein polynomialtime. (This statementonstitutes
Theorem2.) Oncewe have a planu of tractablelength,we
cancheckits successfulnedn asituationw asfollows:

e we know theinitial statesg;

o take thefirst actionfrom the actionplan« andapply it
to thestatesq; asaresult,we getthe states ;

¢ take the secondactionfrom theactionplanw andapply
it to the states; ; asaresult,we getthe states,; etc.

At theend,we getthevaluesof all thefluentsat all moments
of time. On eachstepof this constructionthe application
of anactionto a staterequiredineartime; in total, thereare
polynomialnumberof stepsin this construction.Therefore,
computingthevaluesof all thefluentsatall momentf time
indeedrequirespolynomialtime.

Let usnow take the desiredgoal statemenfS andparseit,
i.e., describe stepby step,how we get from fluentsto this
goalstatemenst.

For example, for the above spy-plane goal statement
S = r& —~d &H(—d), parsingleadsto the following se-
quenceof intermediatestatements:S; := —d, Sy :=
’I‘&Sl, 53 := HS;, andﬁna”y, S=84:=5, &53

The numberof the resultingintermediatestatementgannot
exceedthe lengthof the goal statementthus, this numberis
boundeddy thelength|S| of the goalstatement.

Basedon the valuesof all the fluentsat all momentsof
time, we cannow sequentiallicomputethevaluesof all these
intermediatestatements; atall momentsof time:

¢ Whenanew statements obtainedfrom oneor two pre-
vious onesby a logical connectve (e.g.,in the above
example,asSy := S; & S3), then,to computethevalue
of thenew statemenatall 7" momentwf time, we need
T logical operations.

e Let usnow considerthe casewhena new statemenis
obtainedfrom oneor two previously computedonesby
usingonetemporaloperationse.g.,in theabose exam-
ple,asS; := HS;p). Then,to computethetruth valueof
S3 ateachmomentof time, we may needto go over all
othermomentsof time. So,to computeS; for eachmo-
mentof time ¢, we need< T steps.Hence,to compute
thetruthvalueof S; for all T’ momentf time,we need
< T? steps.

In bothcasesfor eachof < | S| intermediatestatementsye
need< T2 computationsThus,to computethetruth valueof
thedesiredyoalstatementwe need< 72 - |S| computational
steps.Sincewelook for plansfor whichT' < p(|D|+|S]) for
somepolynomialp(n), we thusneeda polynomialnumberof
stepgo checkwhetherthegivenplansatisfiegshegivengoal.



So,we cancheckthesuccessf aplanin polynomialtime,
andthus, the planningproblemindeedbelongsto the class
NP. Thetheoremsareproven.

Proof of Theorem 3. This proof follows the samelogic
asproofsof PSPACE-completenessf otherplanningprob-
lems;seee.g.,[Littman, 1997 and[Baraletal., 200d.

By definition, the classPSPACE is formed by problems
which can be solved by a polynomialspacealgorithm. It
is known (see, e.g., [Papadimitriou,1994) that this class
can be equialently reformulatedas a class of problems
for which the checled formula P(w) canbe representecs

YuiJus . .. P(u1,us, .. ., uk, w), wherethenumberof quan-
tifiers k is boundedy apolynomialof thelengthof theinput,
P(uy,...,ug,w) is atractableproperty andall £ quantifiers

run over wordsof tractablelength(i.e., of lengthlimited by
somegiven polynomialof the length of the input). In view
of this result, it is easyto seethatfor CTL-goals,the plan-
ning problembelongsto the classPSFACE. Indeed,all the
operatorof CTL canbedescribedy quantifiersover words
of tractablelength, namely eitherover paths(for operators
A andE) or over momentsof time (for LTL operators).A
planis alsoa word of tractablelength. Thus,the existence
of a planwhich satisfiesa given CTL-goal canbe described
by atractablesequencef quantifiersrunningover words of
tractablelength. Thus,for CTL-goals,the planningproblem
doesbelongto PSFACE.

To prove thatthe planningproblemis PSPACE-complete,
we will shav thatwe canreduce to the planningproblem,a
problemknown to be PSFACE-complete:namely the prob-
lem of checking,for a given propositionalformula F' with
the variableszy, . .., Tm, Tm+1,. - -, Ty, the validity of the
formulaF of thetype

33:1V;c23;c3V:1;4 ... F.

This reductionwill be doneasfollows. Considerthe plan-
ning problemwith two actionsa™ anda—, and2n + 1 fluents
Z1,---,Tn, to,t1,--.,t,. Theseactionsandfluentshave the
following meaning:

¢ themeaningof ¢; is thatwe areat momentof time;

¢ theactiona™, whenappliedat momentt;_;, makesi-th
variablez; true;

¢ theactiona—, whenappliedat momentt;_;, makesi-th
variablez; false.

Thecorrespondingnitial conditionsare:

e initially —z; (for all ©);

e initially to; initially —¢; (for all ¢ > 0).
The effect of actionsif describedy thefollowing rules(ef-
fectpropositions):

e fori =1,2,...,n,therules

+ a~ causes —x; if t;_1;

causes x; if t;_1;
describehow we assignvaluesto thevariablest;;
e fori =1,2,...,n, therules

at causes t; if t;_1; a~ causest; if t;_1;

a

at causes —t;_1 if t;_1; @~ causes —t;_q if tj_1;

describehe updateof thetime fluentst;.

Thecorrespondingyoalis designedasfollows:

o first, we replacein the above quantifiedpropositional
formula F, eachexistentialquantifierdz; by EX, each
universalquantifiervVz; by AX; let us denotethe result
of thisreplacemenby F”;

e then,weadd & ¢, to theresultingformula F’;

o finally, we addP™ in front of thewholething— creating
P™(F' & tg).
For example for aformula3z, Vo F, this constructiorleads
to thefollowing goal:

P2(EX(AX(F)) & to).

This reductionleadsto a linearincreasen length,sothis re-
ductionis polynomial-time.

To completethe proof, we mustshow thatthisis a“valid”
reduction,.e., thattheresultingplanningproblemis solvable
if andonly if the original quantifiedpropositionaformulais
true.

To prove this equialence,let us first remark that, by
definition of the operatorP (“previous”), the goal formula
P™(F' & to) is trueatamomentt if andonly if theformula
F' & tg holdsat a momentt — n. Since,dueto ourrules,ty
is only trueatthestartingmomentof timet = 0, thegoalcan
only betrueif ¢ = n. Thus,to checkwhetherwe canachiese
thegoal,it is sufficientto checkwhethemwe canachieveit at
themomentn, i.e.,afterasequencef n actions.In thiscase,
thevalidity of thegoalis equivalentto validity of theformula
F' attheinitial momentt = 0.

Let us now show thatthe validity of theformula F” atthe
moment = 0 isindeedequialentto thevalidity of theabove
quantifiedpropositionafformula. We will prove this equia-
lenceby inductionover thetotal numberof variablesn.

Inductionbase:For n = 0, we have novariablese; atall, so
F is eitheridenticallytrueoridenticallyfalse.In thiscase F"’
simply coincideswith F', sothey are,of coursegquivalent.

Inductionstep: Let us assumehat we have proventhe de-
sired equialencefor all quantified propositionalformulas
with n — 1 variables;let us prove it for quantifiedproposi-
tional formulaswith n variables.

Indeed, let a quantified propositionalformula F of the
above type be given. Therearetwo possibilitiesfor the first
variablez; of thisformula:

¢ it maybeundertheexistentialquantifierdz, ; or
¢ it maybeundertheuniversalquantifiervz;.

1°. In thefirst casetheformula F hastheform 3z, G, where
for eachz;, G is aquantifiedpropositionaformulawith n —1
variablesrs, . . ., z,,. Accordingto ourconstructionthe CTL
formula F' hasthe form E(XG"), whereG’ is the resultof
applyingthis sameconstructiorto theformulag.

To show that F' is indeedequialentto F, we will first
show that F' implies F, andthenthat F implies F”.

1.1°. Let usfirst shav that F' implies F.

Indeed by definitionof theoperatoik, if theformulaF’ =
E(XG") holdsatthemoment: = 0 thismeanghatthereexists
apathfor which,atmomentt = 0, theformulaXG' is true.



By definition of the operatorX (“next”), the factthatthe
formulaXG' is trueatthe momentt = 0 meanshatthefor-
mulaG’ is trueatthenext momentof timet = 1.

By thetime t = 1, we have appliedexactly one action
which madez; eithertrue or false,after which the value of
this variablex; doesnot change.Let us selectthe valuex;
as’"true” or “false” dependingon which valuewas selected
alongthis path.

The momentt; canbe viewed asa startingpoint for the
planning problem correspondingo the remainingformula
G. By inductionassumptionthe validity of G' at this new
startingmomentis equivalentto the validity of the quantified
propositionaformulag. Thus,theformulag is truefor this
particularzy, hencethe original formula F = 3z, G is also
true. So, F’ indeedimplies F.

1.2°. Letusnow show thatF implies F".

Indeed,if F = Jz,G is true, this meansthat thereexists
avaluez; for which g is true. By theinductionassumption,
this meanghatfor this samez,, thegoalformulaG’ is also
true at the new startingmomentt = 1. Thus,for ary path
which startswith selectingthis z1, the formula XG" is true
atthe previousmomentt = 0. Sincethis formulais truefor
somepath, by definition of the operatorE, it meanghatthe
formulaE(XG') istrueatthemomentt = 0, andthisformula
is exactly F’.

Thus,F doesmply F’, andhenceF andF’ areequialent.

2°. Thesecondtasewhenz; is undertheuniversalquantifier
Vz1, canbehandledsimilarly.

The induction stepis proven, and thus, by induction, the
equivalenceholdsfor all n.

Thus, the reductionis valid, andthe correspondinglan-
ning problemis indeedPSFACE-complete. The theoremis
proven.

Proof of Theorem4. Similarly to theproofof Theorens, we
canshawv thatplancheckingbelonggo theclassPSPACE, so
all we needto proveis the desiredreduction.Fromthe proof
of Theorem3, onecanseethatthe exactsamereductionwill
work hereaswell, becausén this reduction the equivalence
betweenF and F” did not dependon ary actionplan at all.
The equivalenceusedin the proof of Theorem3 is basedon
the analysisof possibletrajectoriesanddoesnot usethe ac-
tualtrajectoryatall.

Thus,we canpick ary actionplan (e.g.,a sequence&on-
sistingof n actionsa™), andthedesiredequivalencewill still
hold. Thetheoremis thusproven.

Proof of Theorems5 and 6. For trajectoriesof durationT,
with A possibleactionsat eachmomentof time, thereareno
morethanT - A possibletrajectoriedifferingin onestateno
morethan(T - A)? trajectoriedifferingin two statesgtc. In
generalwhaterernumberk wefix, thereis only apolynomial
number(< (T-A)*) of possiblerajectoriesvhichdiffer from
theactualonein < k places.

Therefore for fixed k, we canexplicitly describethe new
operatorsE andA by enumeratingll suchpossibletrajecto-
ries. Thus,similarly to the proof of Theoremsl and2, we
canconcludethatfor k-planning,plan checkingis tractable
andthe correspondinglanningproblemis NP-complete.
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