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Abstract

In thelastdecade,therehasbeenseveralstudieson
the computationalcomplexity of planning. These
studiesnormally assumethat the goal of planning
is to makeacertainfluenttrueafterthesequenceof
actions. In many real-life planningproblems,the
goal is representedin a much more complicated
temporalform: e.g., in addition to having a de-
siredfluent true at the end,we may want to keep
certainfluentstrue at all times. In this paper, we
studythecomplexity of planningfor suchtemporal
goals.Weshow thatfor goalsexpressiblein Linear
TemporalLogic, planninghasthesamecomplexity
asfor non-temporalgoals: it is NP-complete;and
for goalsexpressiblein a moregeneralBranching
TemporalLogic, planningis PSPACE-complete.

1 Intr oduction
In thepresenceof completeinformationaboutthe initial sit-
uation,a plan – in the senseof classicalplanning– is a se-
quenceof actionsthat takes the agentfrom the initial sit-
uation to the statewhich satisfiesa given goal. Tradition-
ally, a goal is describedasa fluentwhich mustbe trueafter
all the actions. For suchgoals,the computationalcomplex-
ity of finding a planhasbeenwell-studied[Bylander, 1994;
Erol etal., 1995;Liberatore,1997;Baraletal., 2000]. In the
mostnaturalformulation,theproblemof finding polynomial
length plansis NP-complete(for exact definitionsof stan-
dard complexity termssuchas NP-completeness,see,e.g.,
[Papadimitriou,1994;Baraletal., 2000]).

In many real-life planning problems,the goal is repre-
sentedin a muchmorecomplicatedtemporalform: e.g., in
addition to having a desiredfluent true at the end,we may
wantto keepcertainfluentstrueatall times;for example,we
maywantto makesurethatcertainsafetyconstraintsaresat-
isfied at all times. In this paper, we studythe complexity of
planningfor such temporal goals.Thereexist two formalisms
for describingtemporalgoals:Linear Temporal Logic (LTL)
[BachhusandKabanza,1998] in whichweareallowedto re-
fer to theactualpastandfutureevents,andBranching Tem-
poral Logic CTL [Niyogi andSarkar, 2000] in which we are
alsoallowed to refer to eventsfrom the possiblefuture. In
this paper, we will describethecomputationalcomplexity of

planningin bothlogics.To thebestof ourknowledgethishas
notbeendonebefore.

Our complexity analysiswill be basedon the action de-
scription language� proposedin [Gelfond and Lifschitz,
1993]. The language� andits variantshave madeit easier
to understandthefundamentals(suchasinertia,ramification,
qualification,concurrency, sensing,etc.) involvedin reason-
ing aboutactionsandtheir effectson a world, andwe would
like to stick to thatsimplicity principlehere. To stick to the
main point we considerthe simplestactiondescription,and
donotconsiderfeaturessuchasexecutabilityconditions.We
now startwith abrief descriptionof thelanguage� .

1.1 The language� : brief reminder
In thelanguage� , westartwith afinite list of properties(flu-
ents)���
	����
��	��
� whichdescribepossiblepropertiesof astate.
A stateis thendefinedasa finite setof fluents,e.g., ��� or��� � 	��
��� . Weareassumingthatwehavecompleteknowledge
aboutthe initial state:e.g., ��� � 	��
�
� meansthat in the initial
state,properties��� and � � aretrue,while all theotherproper-
ties ����	��
��	��
��� arefalse.Thepropertiesof theinitial stateare
describedby formulasof thetype����� ��� �����  �!	
where� is afluentliteral, i.e.,eitherafluent �
" or its negation# �
" .

To describepossiblechangesof states,weneeda finite set
of actions. In thelanguage� , theeffectof eachaction $ can
bedescribedby formulasof thetype

$&% ��'�(*)
( � � + � � 	��
���,	��
-.	
where�!	�����	
���
�,	�� - arefluentliterals.A reasonablystraight-
forward semanticsdescribeshow the statechangesafter an
action:/

If, before the executionof an action $ , fluent literals� � 	��
����	��
- weretrue, andthe domaindescriptioncon-
tains a rule “ $0% ��'1(2)�( � � + �3��	��
���,	�� - ”, then this rule
is activated, andafter the executionof the action $ , �
becomestrue./
If for somefluent � " , noactivatedruleenablesusto con-
cludethat �
" is trueor false,thismeansthattheexecution
of action $ doesnotchangethetruthof thisfluent;there-
fore, � " is truein theresultingstateif andonly if it was
truein theold state.



Formally, a domain description 4 is a finite set of value
propositions5 of thetype“

����� ��� �����  � ” (which describetheini-
tial state),anda finite setof effect propositionsof the type
“ $6% ��'1(2)�( � � + ���
	����
��	�� - ” (whichdescriberesultsof actions).
The initial state 7
8 consistsof all thefluents � " for which the
correspondingvalueproposition“

����� ��� �����  � " ” is containedin
thedomaindescription.(Herewe areassumingthatwe have
completeinformationabouttheinitial situation.)We saythat
a fluent � " holds in 7 if � ":9 7 ; otherwise,we saythat # � "
holds in 7 . The transition function ;=<
71>&?@$!	�7�A which de-
scribesthe effect of an action $ on a state 7 is definedas
follows:/

we say that an effect proposition
“ $B% ��'1(2)�( � � + � � 	
�����
	��
- ” is activated in a state 7
if all C fluentliterals �3�1	��
����	�� - hold in 7 ;/
we define DFE> ?@$!	�7�A asthesetof all fluents ��" for which
a rule “ $=% ��'�(*)
( � " � + � � 	��
���,	��
- ” is activatedin 7 ;/
similarly, wedefineDHG> ?@IF	�JKA asthesetof all fluents� "
for whicharule“ $6% ��'�(*)
( # �
" � + ����	
�����
	�� - ” isactivated
in 7 ;/
if DFE> ?@$!	�7�AMLFD G> ?@$!	�71AONPRQ , wesaythattheresultof the
action $ is undefined;/
if the resultof the action $ is definedin a state 7 (i.e.,
if DSE> ?@$!	�7�ATLUD G> ?@$!	�7�A PVQ ), we define ;=<�7 > ?W$X	�7�A P?Y7[Z\DSE> ?W$X	�7�A*A^]_D G> ?@$!	�7�A .

A plan ` is definedasasequenceof actionsa $b��	
�����
	2$ -dc . The
result ;=<
7
>&?�`^	�71A of applyingaplan ` to theinitial state7
8 is
definedas

;=<�7 > ?W$ - 	2;=<
7 > ?@$ - G ��	����
�,	2;=<
7 > ?@$b��	�7 8 Ae�
����A*Af�
The planningproblem is: given a domain 4 anda desired
property, find a plan for which the resulting trajectory 7�8 ,7 �&g
hjiP ;=<�71>=?@$ � 	�7
81A , 71� g�hjiP ;=<
7
>=?W$��3	�7 � A , etc.,satisfiesthe
desiredproperty. In particular, if thegoalis to makeacertain
fluent � true,thentheplanningproblemconsistsof findinga
planwhich leadsto thestatein which � is true.

In additionto theplanningproblem,it is usefulto consider
theplan checking problem:givena domain,a desiredprop-
erty, andacandidateplan,checkwhetherthisactionplansat-
isfiesthe desiredproperty. It is known that in the presence
of completeinformation aboutthe initial situation, for flu-
ent goals,plan checkingis a tractableproblem– i.e., there
exists a polynomial-timealgorithm for checkingwhethera
given plan satisfiesthe given fluent goal[Bylander, 1994;
Erol etal., 1995;Liberatore,1997;Baraletal., 2000].

1.2 Linear temporal logic: brief reminder
In LinearTemporalLogic (LTL), in additionto thetruth val-
uesof a fluent at the currentmomentof time, we canalso
referto its truth valuesin thepastandin thefuture. For this,
LTL hasseveraloperators. Differentauthorsusedifferentno-
tationsfor theseoperators.Sincewe will alsoanalyzeplan-
ning in branchingtimelogic describedin [Niyogi andSarkar,
2000] as an extensionof LTL, we will usenotationsfrom
[Niyogi andSarkar, 2000] for LTL operators.

LTL hasfour basicfutureoperators:

/lk
(neXt time in thefuture):

k ` is trueata momenttimem
if ` is trueat themoment

monqp
;/sr

(Goingto bealwaystrue):

r ` is trueat themoment
m

is ` is trueatall momentsof time 7&t m ./vu
(sometimein theFuture):

u ` is trueat themoment
m

if` is trueatsomemoment7&t m ;/vw
(Until): ` wyx is trueat themoment

m
if ` is trueat this

momentof time andat all the future momentsof time
until

x
becomestrue.

Similarly, LTL hasfour basicpastoperators:/vz
(Previously):

z ` is trueatamomenttime
m

if ` is true
at themoment

mT{Bp
;/q|

(Hasalwaysbeen):

| ` is trueatthemoment
m

if ` was
trueatall momentsof time 7&} m ;/s~

(Onceor sometimein thepast):

~ ` is trueat themo-
ment

m
if ` wastrueat somemoment7S} m ;/��

(Since): ` ��x is trueat themoment
m

if ` is trueat this
momentof timeandatall thepastmomentsof timesince
thelasttimewhen

x
wastrue.

We cancombineseveralsuchoperators:e.g.,

k � ` g�hjiP k�k�k `
is trueatamoment

m
if ` is trueat themoment

mon��
.

In general,an LTL-goal is a goal which is obtainedfrom
fluentsby usingLTL operatorsandpropositionalconnectives�

(“and”), � (“or”), and # (“not”).
For example,if we areplanninga flight of an automatic

spy mini-plane,thenthe goal is not only to reachthe target
point (which can be describedby the fluent � ), but also to
avoid detection.Thisadditionalgoalcanbedescribedby the
requirementthatthefluent � (“detected”)remainfalseall the
time. Thesetwo requirementscanbeeasilyformulatedasthe

following LTL-goal: J g�hjiP � � # � � | ? # ��A,�
Comment.Someversionsof LTL have additionaloperators,
e.g., we may have interval operatorsin which momentsof
time 7St m or 7&} m arerestrictedto agiveninterval [Bachhus
andKabanza,1998;Niyogi andSarkar, 2000].

1.3 Branching temporal logic: brief reminder
In the Branching Temporal Logic CTL [Emerson,1990;
Niyogi andSarkar, 2000], in additionto LTL operations,we
have two additionaloperators� and � which describepossi-
ble futures:/ ��` (Existspath)is trueat thestate7 at thetime

m
if there

existsapossibleevolutionof thisstatefor which ` is true
at thissamemoment

m
./ �o` (All paths)is true at the state 7 at the time

m
if for

all possibleevolutionsof thisstate,̀ is trueat thissame
moment

m
.

For example,therequirementthat,no matterwhatactionwe
apply to the state 7 , a fluent � will alwaysstaytrue, canbe
describedas ��? k �oA .

Similarly, we candescribein this languagethe following
fast maintainability requirement:no matterwhat actionwe
applyto thestate7 , if � stopsbeingtrueafterthis action,we



canalwaysmake theproperty � trueby applyingappropriate
correcting� action.

For example, when planning a movement of a robot,
we may want to require that whenever the robot strays
from the desiredtrajectory, it shouldalways be possibleto
bring the robot back to this trajectory(i.e., make the fluent��� m �
$
�3<�� m � ��� true)by asinglecorrectiveaction.

In CTL, this fastmaintainabilityrequirementcanbe for-
mulatedasfollows:/

Oncewehavealreadyreachedthenext state71� , thepos-
sibility to get � backby applyinga singlecorrectingac-
tion meansthateither � is alreadytrue,or thereis apath
in which � will betrueat thenext momentof time(

k � ),
i.e., that �.���o? k �oA ./
So, the fastmaintainabilityrequirementmeansthat ev-
erypossibleimmediatefuturestate71� satisfiestheabove
property�.���o? k �oA , i.e., in CTL notations,that

��? k ?Y�:���o? k �oA*A*A,� ? p A
Comment.The descriptionof moregeneraltemporallogics
canbefoundin [Gabbayetal., 1994].

2 Results
2.1 What kind of planning problemsweare

interestedin
Informally speaking,weareinterestedin thefollowing prob-
lem:/

givena domaindescription(i.e., the descriptionof the
initial stateandof possibleconsequencesof differentac-
tions)andagoal(i.e.,afluentwhichwewantto betrue),/
determinewhetherit is possibleto achievethisgoal(i.e.,
whetherthereexistsaplanwhichachievesthisgoal).

We areinterestedin analyzingthecomputationalcomplexity
of theplanningproblem,i.e.,analyzingthecomputationtime
which is necessaryto solvethisproblem.

Ideally, we want to find casesin which theplanningprob-
lem can be solved by a tractablealgorithm, i.e., by an al-
gorithm � whosecomputationaltime

mY� ?��OA on eachinput� is boundedby a polynomial `y?�� �:� A of the length � �.� of
the input � :

m � ?@�!A0�V`T?2� �.� A (this lengthcanbe measured
bit-wiseor symbol-wise).Problemswhich canbesolvedby
suchpolynomial-timealgorithmsare called problemsfrom
theclassP (whereP standsfor polynomial-time).If we can-
not find a polynomial-timealgorithm,thenat leastwewould
like to have an algorithm which is as closeto the classof
tractablealgorithmsaspossible.

Sinceweareoperatingin atime-boundedenvironment,we
shouldworry notonly aboutthetime for computingtheplan,
but we shouldalsoworry aboutthetime that it takesto actu-
ally implementtheplan. If a (sequential)actionplanconsists
of asequenceof � ��� actions,thenthisplanis not tractable.It
is thereforereasonableto restrictourselvesto tractableplans,
i.e., to plans� whoseduration�.?��oA is boundedby a polyno-
mial `y?2� �.� A of theinput � .

With this tractability in mind, we cannow formulatethe
aboveplanningproblemin preciseterms:

/
given: a polynomial̀y? � AO� � , a domaindescription4
(i.e., the descriptionof the initial stateandof possible
consequencesof differentactions)anda goalstatementJ (i.e.,a statementwhichwewantto betrue),/
determinewhetherit is possibleto tractablyachievethis
goal, i.e., whetherthereexistsa tractable-durationplan� (with �F?@�eA�� `y?2� 4U� n � J�� A ) whichachievesthisgoal.

We areinterestedin analyzingthecomputationalcomplexity
of thisplanningproblem.

2.2 Complexity of the planning problemwith goals
expressiblein Linear Temporal Logic

Theorem 1. For goalsexpressiblein Linear Temporal Logic
(LTL), theplanningproblemis NP-complete.

Comments./
Since the planning problem is NP-completeeven for
simple(non-temporal)goals[Bylander, 1994;Eroletal.,
1995;Liberatore,1997;Baral et al., 2000], this result
meansthatallowing temporalgoalsfrom LTL doesnot
increasethecomputationalcomplexity of planning./
This result is in goodaccordancewith the fact that the
decidability problem for linear temporallogic is also
NP-complete[Emerson,1990]./
For readers’convenience,all theproofsareplacedin the
specialProofssection.

Theproofof Theorem1 is basedon thefollowing result:

Theorem 2. For goalsexpressiblein Linear Temporal Logic
(LTL), theplancheckingproblemis tractable.

We give the proofs of Theorems1 and 2 for the version
of Linear TemporalLogic which only useseight basictem-
poral operators. However, as one can easily seefrom the
proofs, theseresult remainstrue if we allow moresophisti-
catedtemporaloperators,e.g.,interval operatorsof the type¡£¢ ¤j¥ ¦j§

meaningthat thefluent is true in somefuturemoment
of time from theinterval a m 	�7 c [BachhusandKabanza,1998;
Niyogi andSarkar, 2000].

2.3 Complexity of the planning problemwith goals
expressiblein Branching Temporal Logic

Theorem 3. For goals expressiblein Branching Temporal
Logic CTL, theplanningproblemis PSPACE-complete.

Comment.Thisresultis in goodaccordancewith thefactthat
thedecidabilityproblemfor mostbranchingtemporallogics
is alsoPSPACE-complete[Gabbayetal., 1994].
For the BranchingTemporalLogic, not only planning,but
evenplancheckingis difficult:

Theorem 4. For goals expressiblein Branching Temporal
Logic CTL, theplancheckingproblemis PSPACE-complete.

Theorems3 and4 meanthat allowing temporalgoalsfrom
CTL can drasticallyincreasethe computationalcomplexity
of planning.Theseresults,however, arenot thatnegativebe-
causemostsafetyandmaintainability-typeconditionscanbe



expressedin a simplesubclassof CTL. Namely, in themain-
tainability¨ conditionslike the oneabove, we do not needto
considerall possibletrajectories,it is sufficient to consider
trajectorieswhichdiffer from theactualoneby nomorethan
one(or, in general,by nomorethan © ) states.In thiscase,the
planningproblembecomesmuchsimpler:
Definition 1. Let ©vt«ª be a positive integer. We saythat
anexpressionin CTL is © -limited if this expressionremains
true whenin all operators� and � , we only allow possible
trajectoriesdiffer from theactualtrajectoryin nomorethan ©
momentsof time.
For example,theabove maintainabilitystatement(1) means
that all possible1-deviations from the actualtrajectoryare
maintainableandtherefore,thisstatementis 1-limited.

Theorem 5. Let ©¬t­ª be an integer. For © -limited goals
expressiblein Branching Temporal Logic CTL, theplanning
problemis NP-complete.

Theorem6. Let ©®tvª bean integer. For © -limitedgoalsex-
pressiblein BranchingTemporal Logic CTL, theplancheck-
ing problemis tractable.

2.4 Conclusions
Our first conclusionis that if, insteadof traditional goals
whichonly referto thestateof thesystemat thelastmoment
of time, we allow goalswhich explicitly mentionthe actual
pastandactualfuture states,the planningproblemdoesnot
becomemuchmorecomplex: it stayson the samelevel of
complexity hierarchy.

Oursecondconclusionis thatif weallow goalswhichrefer
to potentialfuture,theplanningproblemcanbecomedrasti-
cally morecomplicated.Thus,we shouldbe very cautious
aboutsuchmoregeneralgoals.

3 Proofs
Proof of Theorems1 and 2. We alreadyknow thattheplan-
ning problemis NP-completeeven for the simplestpossi-
ble caseof LTL-goals: namely, for goalswhich are repre-
sentedsimply by fluents[Bylander, 1994;Erol et al., 1995;
Liberatore,1997; Baral et al., 2000]. Therefore,to prove
thatthegeneralproblemof planningunderLTL-goalsis NP-
complete,it is sufficient to prove that this generalproblem
belongsto theclassNP.

Indeed, it is known [Papadimitriou,1994] that a prob-
lem belongsto the classNP if the correspondingformula¡ ?��¯A can be representedas °M�e±H?��T	*�OA , where ±H?@�y	2�OA is
a tractableproperty, and the quantifierruns over words of
tractablelength(i.e., of lengthlimited by somegiven poly-
nomialof thelengthof theinput).

For a givenplanningsituation� , checkingwhethera suc-
cessfulplanexistsor not meanscheckingthevalidity of the
formula °M�O±H?@�y	2�OA , where ±H?��T	*�OA standsfor “the plan �
succeedsfor the situation � ”. Accordingto the above def-
inition of the classNP, to prove that the planningproblem
belongsto theclassNP, it is sufficient to provethefollowing
two statements:/

thequantifierrunsonly overwords � of tractablelength,
and

/
the property ±H?��T	*�OA can be checked in polynomial
time.

The first statementimmediatelyfollows from the fact that
in this paper, we are consideringonly plansof polynomial
(tractable)duration,i.e., sequentialplans � whoselength � �²�
is boundedby a polynomial of the length � �.� of the input� : � ���³�v`T?2� �.� A , wherèy? � A is a givenpolynomial. So, the
quantifierrunsoverwordsof tractablelength.

Let usnow provethesecondstatement– thatplanchecking
canbedonein polynomialtime. (This statementconstitutes
Theorem2.) Oncewe have a plan � of tractablelength,we
cancheckits successfulnessin asituation� asfollows:/

weknow theinitial state7 8 ;/
take thefirst actionfrom theactionplan � andapply it
to thestate7
8 ; asa result,wegetthestate7 � ;/
take thesecondactionfrom theactionplan � andapply
it to thestate7 � ; asa result,wegetthestate71� ; etc.

At theend,wegetthevaluesof all thefluentsatall moments
of time. On eachstepof this construction,the application
of anactionto a staterequireslinear time; in total, thereare
polynomialnumberof stepsin this construction.Therefore,
computingthevaluesof all thefluentsatall momentsof time
indeedrequirespolynomialtime.

Let usnow take thedesiredgoalstatementJ andparseit,
i.e., describe,stepby step,how we get from fluentsto this
goalstatementJ .

For example, for the above spy-plane goal statementJB´µ� � # � � | ? # �MA , parsingleadsto thefollowing se-
quenceof intermediatestatements:Jy�·¶ P # � , J � ¶ P� � J � , Jo�=¶ P | J � , andfinally, Jl´RJe�&¶ P J³� � Jo� .

The numberof the resultingintermediatestatementscannot
exceedthe lengthof thegoalstatement;thus,this numberis
boundedby thelength � J�� of thegoalstatement.

Basedon the valuesof all the fluentsat all momentsof
time,wecannow sequentiallycomputethevaluesof all these
intermediatestatementsJ " atall momentsof time:/

Whena new statementis obtainedfrom oneor two pre-
vious onesby a logical connective (e.g., in the above
example,as Je�.¶ P Jo� � Jo� ), then,to computethevalue
of thenew statementatall � momentsof time,weneed� logicaloperations./
Let us now considerthe casewhena new statementis
obtainedfrom oneor two previously computedonesby
usingonetemporaloperations:e.g.,in theaboveexam-
ple,as J � ¶ P | J^� ). Then,to computethetruth valueofJo� at eachmomentof time,we mayneedto go over all
othermomentsof time. So,to computeJ " for eachmo-
mentof time

m
, we need �µ� steps.Hence,to compute

thetruthvalueof Jo" for all � momentsof time,weneed�B� � steps.

In bothcases,for eachof �¸� J�� intermediatestatements,we
need�B� � computations.Thus,to computethetruthvalueof
thedesiredgoalstatement,weneed��� �²¹ � Jd� computational
steps.Sincewelook for plansfor which �µ� `T?2� 4U� n � J�� A for
somepolynomial̀y? � A , wethusneedapolynomialnumberof
stepsto checkwhetherthegivenplansatisfiesthegivengoal.



So,wecancheckthesuccessof aplanin polynomialtime,
and thus,

º
the planningproblemindeedbelongsto the class

NP. Thetheoremsareproven.
Proof of Theorem 3. This proof follows the samelogic
asproofsof PSPACE-completenessof otherplanningprob-
lems;see,e.g.,[Littman,1997] and[Baraletal., 2000].

By definition, the classPSPACE is formedby problems
which can be solved by a polynomial-spacealgorithm. It
is known (see,e.g., [Papadimitriou,1994]) that this class
can be equivalently reformulatedas a class of problems
for which the checked formula ±H?@�OA canbe representedas» � � °M�e���
���*±H?@� � 	*�e��	��
���,	2�e¼�	*�OA , wherethenumberof quan-
tifiers © is boundedby apolynomialof thelengthof theinput,±H?�� � 	
���
�,	*�o¼M	*�¯A is a tractableproperty, andall © quantifiers
run over wordsof tractablelength(i.e., of lengthlimited by
somegiven polynomialof the lengthof the input). In view
of this result, it is easyto seethat for CTL-goals,the plan-
ning problembelongsto the classPSPACE. Indeed,all the
operatorsof CTL canbedescribedby quantifiersoverwords
of tractablelength,namely, eitherover paths(for operators� and � ) or over momentsof time (for LTL operators).A
plan is alsoa word of tractablelength. Thus, the existence
of a planwhich satisfiesa givenCTL-goalcanbedescribed
by a tractablesequenceof quantifiersrunningover wordsof
tractablelength. Thus,for CTL-goals,theplanningproblem
doesbelongto PSPACE.

To prove thattheplanningproblemis PSPACE-complete,
we will show thatwe canreduce,to theplanningproblem,a
problemknown to bePSPACE-complete:namely, theprob-
lem of checking,for a given propositionalformula

¡
with

the variables � � 	
���
��	*�!-F	2�X- E � 	��
���,	2� � , the validity of the
formula ½ of thetype°M� � » �!�
°M�!� » �¾���
��� ¡ �
This reductionwill be doneasfollows. Considerthe plan-
ningproblemwith two actions$ E and $ G , and � � n·p fluents� � 	��
���,	2� � , m 8�	 m � 	
�����
	 m � . Theseactionsandfluentshave the
following meaning:/

themeaningof
m " is thatweareatmomentof time ¿ ;/

theaction $ E , whenappliedatmoment
m " G � , makes ¿ -th

variable� " true;/
theaction $ G , whenappliedatmoment

m " G � , makes ¿ -th
variable�!" false.

Thecorrespondinginitial conditionsare:/ ����� ��� �����  # �X" (for all ¿ );/ ����� ��� �����  m 8 ; ����� ��� �����  # m " (for all ¿£tBª ).
Theeffect of actionsif describedby the following rules(ef-
fectpropositions):/

for ¿ P p 	��b	��
���f	 � , therules$ E % ��'�(*)
( � " � + m " G ��À $ G % ��'1(2)�( # � " � + m " G ��À
describehow weassignvaluesto thevariables� " ;/
for ¿ P p 	��b	��
���f	 � 	 therules$ E % ��'�(*)
( m " � + m " G ��À $ G % ��'�(*)
( m " � + m " G ��À$MEÁ% ��'�(*)
( # m " G � � + m " G ��À $ G % ��'�(*)
( # m " G � � + m " G ��À
describetheupdateof thetimefluents

m " .

Thecorrespondinggoalis designedasfollows:/
first, we replacein the above quantifiedpropositional
formula ½ , eachexistentialquantifier °��X" by � k , each
universalquantifier

» �X" by � k ; let us denotethe result
of this replacementby

¡ � ;/
then,weadd

� m 8 to theresultingformula
¡ � ;/

finally, we add

z � in front of thewholething – creatingz � ? ¡ � � m 8 A .
For example,for a formula °M� � » �!� ¡ , thisconstructionleads
to thefollowing goal:z � ?*� k ?@� k ? ¡ A2A � m 8 A,�
This reductionleadsto a linearincreasein length,sothis re-
ductionis polynomial-time.

To completetheproof,we mustshow thatthis is a “valid”
reduction,i.e., thattheresultingplanningproblemis solvable
if andonly if theoriginal quantifiedpropositionalformulais
true.

To prove this equivalence, let us first remark that, by
definition of the operator

z
(“previous”), the goal formulaz � ? ¡ � � m 81A is trueat a moment

m
if andonly if the formula¡ � � m 8 holdsat a moment

m�{ � . Since,dueto our rules,
m 8

is only trueat thestartingmomentof time
m P ª , thegoalcan

only betrueif
m P � . Thus,to checkwhetherwecanachieve

thegoal,it is sufficient to checkwhetherwecanachieve it at
themoment� , i.e.,afterasequenceof � actions.In thiscase,
thevalidity of thegoalis equivalentto validity of theformula¡ � at theinitial moment

m P ª .
Let usnow show that thevalidity of theformula

¡ � at the
moment

m P ª is indeedequivalentto thevalidity of theabove
quantifiedpropositionalformula. We will prove this equiva-
lenceby inductionover thetotalnumberof variables� .

Inductionbase:For � P ª , wehave novariables� " at all, so¡
is eitheridenticallytrueor identicallyfalse.In thiscase,

¡ �
simplycoincideswith

¡
, sothey are,of course,equivalent.

Inductionstep: Let us assumethat we have proven the de-
sired equivalencefor all quantifiedpropositionalformulas
with � {µp variables;let us prove it for quantifiedproposi-
tional formulaswith � variables.

Indeed, let a quantifiedpropositionalformula ½ of the
above typebegiven. Therearetwo possibilitiesfor thefirst
variable� � of this formula:/

it maybeundertheexistentialquantifier°M� � ; or/
it maybeundertheuniversalquantifier

» �o� .p1Â
. In thefirst case,theformula ½ hastheform °M� ��Ã , where

for each� � , Ã is aquantifiedpropositionalformulawith � {Äp
variables� � 	��
���,	2�X� . Accordingto ourconstruction,theCTL
formula

¡ � hasthe form �o? k£Å �ÆA , where

Å � is the resultof
applyingthissameconstructionto theformula Ã .

To show that
¡ � is indeedequivalent to ½ , we will first

show that
¡ � implies ½ , andthenthat ½ implies

¡ � .p � p1Â � Let usfirst show that
¡ � implies ½ .

Indeed,by definitionof theoperator� , if theformula
¡ �X´�o? k£Å �ÆA holdsatthemoment

m P ª thismeansthatthereexists
a pathfor which,atmoment

m P ª , theformula

k£Å � is true.



By definition of the operator

k
(“next”), the fact that the

formulaÇ k£Å � is trueat themoment
m P ª meansthatthefor-

mula

Å � is trueat thenext momentof time
m P p

.
By the time

m P p
, we have appliedexactly one action

which made� � eithertrueor false,afterwhich the valueof
this variable � � doesnot change.Let us selectthevalue � �
as”true” or “f alse” dependingon which valuewasselected
alongthispath.

The moment
m � canbe viewed asa startingpoint for the

planning problem correspondingto the remainingformulaÃ . By inductionassumption,the validity of

Å � at this new
startingmomentis equivalentto thevalidity of thequantified
propositionalformula Ã . Thus,theformula Ã is truefor this
particular � � , hencethe original formula ½È´É°M� �
Ã is also
true.So,

¡ � indeedimplies ½ .p ��� Â � Let usnow show that ½ implies
¡ � .

Indeed,if ½Ê´Ë°M�o� Ã is true, this meansthat thereexists
a value � � for which Ã is true. By theinductionassumption,
this meansthat for this same� � , thegoal formula

Å � is also
true at the new startingmoment

m P p
. Thus,for any path

which startswith selectingthis �e� , the formula

k£Å � is true
at thepreviousmoment

m P ª . Sincethis formula is truefor
somepath,by definitionof theoperator� , it meansthat the
formula �o? k£Å �ÌA is trueatthemoment

m P ª , andthisformula
is exactly

¡ � .
Thus,½ doesimply

¡ � , andhence½ and
¡ � areequivalent.

� Â � Thesecondcase,when� � is undertheuniversalquantifier» � � , canbehandledsimilarly.
The induction step is proven, and thus, by induction, the
equivalenceholdsfor all � .

Thus, the reductionis valid, andthe correspondingplan-
ning problemis indeedPSPACE-complete.The theoremis
proven.
Proofof Theorem4. Similarly to theproofof Theorem3,we
canshow thatplancheckingbelongsto theclassPSPACE, so
all weneedto prove is thedesiredreduction.Fromtheproof
of Theorem3, onecanseethattheexactsamereductionwill
work hereaswell, becausein this reduction,theequivalence
between½ and

¡ � did not dependon any actionplanat all.
Theequivalenceusedin theproof of Theorem3 is basedon
theanalysisof possibletrajectoriesanddoesnot usetheac-
tual trajectoryatall.

Thus,we canpick any actionplan (e.g.,a sequencecon-
sistingof � actions$ E ), andthedesiredequivalencewill still
hold. Thetheoremis thusproven.
Proof of Theorems5 and 6. For trajectoriesof duration � ,
with I possibleactionsateachmomentof time, thereareno
morethan � ¹ I possibletrajectoriesdifferingin onestate,no
morethan ?�� ¹ I¯A � trajectoriesdiffering in two states,etc. In
general,whatevernumber© wefix, thereis onlyapolynomial
number( �R?�� ¹ I¯A ¼ ) of possibletrajectorieswhichdiffer from
theactualonein �v© places.

Therefore,for fixed © , we canexplicitly describethenew
operators� and � by enumeratingall suchpossibletrajecto-
ries. Thus,similarly to the proof of Theorems1 and2, we
canconcludethat for © -planning,plan checkingis tractable
andthecorrespondingplanningproblemis NP-complete.
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