
Computational Complexity of Planning with Temporal Goals

Chitta Baral
CS&E, Arizona State University
Tempe, AZ 85287-5406, USA

chitta@asu.edu

Vladik Kreinovich
University of Texas at El Paso

El Paso, TX 79968, USA
vladik@cs.utep.edu

Raúl A. Trejo
ITESM Campus Edo. México

Atizapan, México 52926
rtrejo@campus.cem.itesm.mx

Abstract

In the last decade, there has been several studies on
the computational complexity of planning. These
studies normally assume that the goal of planning
is to make a certain fluent true after the sequence of
actions. In many real-life planning problems, the
goal is represented in a much more complicated
temporal form: e.g., in addition to having a de-
sired fluent true at the end, we may want to keep
certain fluents true at all times. In this paper, we
study the complexity of planning for such temporal
goals. We show that for goals expressible in Linear
Temporal Logic, planning has the same complexity
as for non-temporal goals: it is NP-complete; and
for goals expressible in a more general Branching
Temporal Logic, planning is PSPACE-complete.

1 Introduction
In the presence of complete information about the initial sit-
uation, a plan – in the sense of classical planning – is a se-
quence of actions that takes the agent from the initial sit-
uation to the state which satisfies a given goal. Tradition-
ally, a goal is described as a fluent which must be true after
all the actions. For such goals, the computational complex-
ity of finding a plan has been well-studied [Bylander, 1994;
Erol et al., 1995; Liberatore, 1997; Baral et al., 2000]. In the
most natural formulation, the problem of finding polynomial
length plans is NP-complete (for exact definitions of stan-
dard complexity terms such as NP-completeness, see, e.g.,
[Papadimitriou, 1994; Baral et al., 2000]).

In many real-life planning problems, the goal is repre-
sented in a much more complicated temporal form: e.g., in
addition to having a desired fluent true at the end, we may
want to keep certain fluents true at all times; for example, we
may want to make sure that certain safety constraints are sat-
isfied at all times. In this paper, we study the complexity of
planning for such temporal goals. There exist two formalisms
for describing temporal goals: Linear Temporal Logic (LTL)
[Bacchus and Kabanza, 1998] in which we are allowed to re-
fer to the actual past and future events, and Branching Tem-
poral Logic CTL [Niyogi and Sarkar, 2000] in which we are
also allowed to refer to events from the possible future. In
this paper, we will describe the computational complexity of

planning in both logics. To the best of our knowledge this has
not been done before.

Our complexity analysis will be based on the action de-
scription language

�
proposed in [Gelfond and Lifschitz,

1993]. The language
�

and its variants have made it easier
to understand the fundamentals (such as inertia, ramification,
qualification, concurrency, sensing, etc.) involved in reason-
ing about actions and their effects on a world, and we would
like to stick to that simplicity principle here. To stick to the
main point we consider the simplest action description, and
do not consider features such as executability conditions. We
now start with a brief description of the language

�
.

1.1 The language � : brief reminder
In the language

�
, we start with a finite list of properties (flu-

ents) ���������	���
��� which describe possible properties of a state.
A state is then defined as a finite set of fluents, e.g., ��
 or��� � ������
 . We are assuming that we have complete knowledge
about the initial state: e.g., ��� � ������
 means that in the initial
state, properties ��� and � � are true, while all the other proper-
ties �������������	��� are false. The properties of the initial state are
described by formulas of the type����� ��� ����� � ���
where � is a fluent literal, i.e., either a fluent ��� or its negation ��� .

To describe possible changes of states, we need a finite set
of actions. In the language

�
, the effect of each action ! can

be described by formulas of the type

!#" ��$�%'&	% � � (� � ���	���)�
��*+�
where ���������	���	�)��� * are fluent literals. A reasonably straight-
forward semantics describes how the state changes after an
action:,

If, before the execution of an action ! , fluent literals� � ���	�����
��* were true, and the domain description con-
tains a rule “ !-" ��$.%/&�% � � (�������	���)�
� * ”, then this rule
is activated, and after the execution of the action ! , �
becomes true.,
If for some fluent � � , no activated rule enables us to con-
clude that ��� is true or false, this means that the execution
of action ! does not change the truth of this fluent; there-
fore, � � is true in the resulting state if and only if it was
true in the old state.

Formally, a domain description
�

is a finite set of value
propositions of the type “

����� ��� ����� � � ” (which describe the ini-
tial state), and a finite set of effect propositions of the type
“ ! " ��$.%/&�% � � (���������	���
� * ” (which describe results of actions).
The initial state ��� consists of all the fluents � � for which the
corresponding value proposition “

����� ��� ����� � � � ” is contained in
the domain description. (Here we are assuming that we have
complete information about the initial situation.) We say that
a fluent � � holds in � if � ��� � ; otherwise, we say that � �
holds in � . The transition function ���	��

� !������ which de-
scribes the effect of an action ! on a state � is defined as
follows:,

we say that an effect proposition
“ ! " ��$.%/&�% � � (� � �	�����	����* ” is activated in a state �
if all � fluent literals ���.���	�����
� * hold in � ;,
we define ���
 � !������ as the set of all fluents ��� for which
a rule “ ! " ��$�%'&�% � � � (� � ���	���)�
��* ” is activated in � ;,
similarly, we define ���
 � ! ����� as the set of all fluents � �
for which a rule “ ! " ��$�%'&	% ��� � (�����	�����	��� * ” is activated
in � ;,
if ���
 � !���������� �
 � !����������� , we say that the result of the
action ! is undefined;,
if the result of the action ! is defined in a state � (i.e.,
if � �
 � !�������� �!�
 � !������ �"�), we define �#�	�
 � ! ����� ��$�&%'� �
 � ! �����(�*)+�!�
 � !������ .

A plan , is defined as a sequence of actions - ! ���	�����	�/! */. . The
result ���	��

�0, ����� of applying a plan , to the initial state �	� is
defined as

�#����

� !�*+�1�#�	��
#� ! * � � �����	�)�1�#�	��

� ! � ���2��� �	���3�(� �
The planning problem is: given a domain

�
and a desired

property, find a plan for which the resulting trajectory �	� ,
� �
42576� �#����
#� ! � ���2��� , �.� 48576� �#�	�2
#� !������ � � , etc., satisfies the
desired property. In particular, if the goal is to make a certain
fluent � true, then the planning problem consists of finding a
plan which leads to the state in which � is true.

In addition to the planning problem, it is useful to consider
the plan checking problem: given a domain, a desired prop-
erty, and a candidate plan, check whether this action plan sat-
isfies the desired property. It is known that in the presence
of complete information about the initial situation, for flu-
ent goals, plan checking is a tractable problem – i.e., there
exists a polynomial-time algorithm for checking whether a
given plan satisfies the given fluent goal [Bylander, 1994;
Erol et al., 1995; Liberatore, 1997; Baral et al., 2000].

1.2 Temporal extensions: motivations
Let us give two examples of planning problems explaining
why temporal extensions are desirable:

1) If we are planning a flight of an automatic spy mini-
plane, then the goal is not only to reach the target point (which
can be described by the fluent 9), but also to avoid detection;
more formally, a fluent : (“detected”) must remain false all
the time.

2) When planning a movement of a robot, we may want
to require that not only the robot achieve its goal but also

that, whenever the robot strays from the desired trajectory, it
should always be possible to bring the robot back to this tra-
jectory (i.e., make the fluent ;�< =>9�!	?@��AB=C;�9�D true) by a single
corrective action.

1.3 Linear temporal logic: brief reminder
In Linear Temporal Logic (LTL), in addition to the truth val-
ues of a fluent at the current moment of time, we can also
refer to its truth values in the past and in the future. For this,
LTL has several operators. Different authors use different no-
tations for these operators. Since we will also analyze plan-
ning in branching time logic described in [Niyogi and Sarkar,
2000] as an extension of LTL, we will use notations from
[Niyogi and Sarkar, 2000] for LTL operators.

LTL has four basic future operators:,FE
(neXt time in the future):

E
, is true at a moment time= if , is true at the moment =HGJI ;,LK

(Going to be always true):

K
, is true at the moment =

is , is true at all moments of time �
MN= .,JO
(sometime in the Future):

O
, is true at the moment = if, is true at some moment �PML= ;,JQ

(Until): ,
QSR

is true at the moment = if , is true at this
moment of time and at all the future moments of time
until

R
becomes true.

Similarly, LTL has four basic past operators:,JT
(Previously):

T
, is true at a moment time = if , is true

at the moment =SUVI ;,XW
(Has always been):

W
, is true at the moment = if , was

true at all moments of time �
YL= ;,LZ
(Once or sometime in the past):

Z
, is true at the mo-

ment = if , was true at some moment �PYL= ;,N[
(Since): ,

[\R
is true at the moment = if , is true at this

moment of time and at all the past moments of time since
the last time when

R
was true.

We can combine several such operators: e.g.,

E � , 48576�
E]E]E

,
is true at a moment = if , is true at the moment =HG_^ .

In general, an LTL-goal is a goal which is obtained from
fluents by using LTL operators and propositional connectives`

(“and”), a (“or”), and (“not”).
For example, the objective from our first planning problem

can be easily formulated as the following LTL-goal: b 48576�9 ` : `
W
� :�� �

Comment. Some versions of LTL have additional operators,
e.g., we may have interval operators in which moments of
time �
MV= or �PYL= are restricted to a given interval [Bacchus
and Kabanza, 1998; Niyogi and Sarkar, 2000].

1.4 Branching temporal logic: brief reminder
In the Branching Temporal Logic CTL [Emerson, 1990;
Niyogi and Sarkar, 2000], in addition to LTL operations, we
have two additional operators c and d which describe possi-
ble futures:,

c�, (Exists path) is true at the state � at the time = if there
exists a possible evolution of this state for which , is true
at this same moment = .

,
d , (All paths) is true at the state � at the time = if for
all possible evolutions of this state, , is true at this same
moment = .

For example, the requirement that, no matter what action we
apply to the state � , a fluent � will always stay true, can be
described as d �

E
� � .

Similarly, we can describe in this language the fast main-
tainability requirement from our second planning problem:
no matter what action we apply to the state � , if a fluent �
stops being true after this action, we can always make the
property � true by applying appropriate correcting action.

In CTL, this fast maintainability requirement can be for-
mulated as follows:,

Once we have already reached the next state � � , the pos-
sibility to get � back by applying a single correcting ac-
tion means that either � is already true, or there is a path
in which � will be true at the next moment of time (

E
�),

i.e., that ��a c �
E
� � .,

So, the fast maintainability requirement means that ev-
ery possible immediate future state � � satisfies the above
property � a c �

E
� � , i.e., in CTL notations, that

d �
E
� ��a c �

E
� �(�(�)� �CI��

Comment. The description of more general temporal logics
can be found in [Gabbay et al., 1994].

2 Results
2.1 What kind of planning problems we are

interested in
Informally speaking, we are interested in the following prob-
lem:,

given a domain description (i.e., the description of the
initial state and of possible consequences of different ac-
tions) and a goal (i.e., a fluent which we want to be true),,
determine whether it is possible to achieve this goal (i.e.,
whether there exists a plan which achieves this goal).

We are interested in analyzing the computational complexity
of the planning problem, i.e., analyzing the computation time
which is necessary to solve this problem.

Ideally, we want to find cases in which the planning prob-
lem can be solved by a tractable algorithm, i.e., by an al-
gorithm

�
whose computational time =�� ����� on each input� is bounded by a polynomial ,S��� ��� � of the length � �	� of

the input � : = � ��
 �
�",���� �	� � (this length can be measured
bit-wise or symbol-wise). Problems which can be solved by
such polynomial-time algorithms are called problems from
the class P (where P stands for polynomial-time). If we can-
not find a polynomial-time algorithm, then at least we would
like to have an algorithm which is as close to the class of
tractable algorithms as possible.

Since we are operating in a time-bounded environment, we
should worry not only about the time for computing the plan,
but we should also worry about the time that it takes to actu-
ally implement the plan. If a (sequential) action plan consists
of a sequence of � ��� actions, then this plan is not tractable. It
is therefore reasonable to restrict ourselves to tractable plans,

i.e., to plans � whose duration ����� � is bounded by a polyno-
mial ,���� �	� � of the input � .

With this tractability in mind, we can now formulate the
above planning problem in precise terms:,

given: a polynomial ,�� <*���X< , a domain description
�

(i.e., the description of the initial state and of possible
consequences of different actions) and a goal statementb (i.e., a statement which we want to be true),,
determine whether it is possible to tractably achieve this
goal, i.e., whether there exists a tractable-duration plan� (with � ��� ��� ,S��� � �2G�� b�� �) which achieves this goal.

We are interested in analyzing the computational complexity
of this planning problem.

2.2 Complexity of the planning problem with goals
expressible in Linear Temporal Logic

Theorem 1. For goals expressible in Linear Temporal Logic
(LTL), the planning problem is NP-complete.

Comments.,
Since the planning problem is NP-complete even for
simple (non-temporal) goals [Bylander, 1994; Erol et al.,
1995; Liberatore, 1997; Baral et al., 2000], this result
means that allowing temporal goals from LTL does not
increase the computational complexity of planning.,
This result is in good accordance with the fact that the
decidability problem for linear temporal logic is also
NP-complete [Emerson, 1990].,
For readers’ convenience, all the proofs are placed in the
special Proofs section.

The proof of Theorem 1 is based on the following result:

Theorem 2. For goals expressible in Linear Temporal Logic
(LTL), the plan checking problem is tractable.

We give the proofs of Theorems 1 and 2 for the version
of Linear Temporal Logic which only uses eight basic tem-
poral operators. However, as one can easily see from the
proofs, these result remains true if we allow more sophisti-
cated temporal operators, e.g., interval operators of the type��� ��� ���

meaning that the fluent is true in some future moment
of time from the interval - = ��� . [Bacchus and Kabanza, 1998;
Niyogi and Sarkar, 2000].

2.3 Complexity of the planning problem with goals
expressible in Branching Temporal Logic

Theorem 3. For goals expressible in Branching Temporal
Logic CTL, the planning problem is PSPACE-complete.

Comment. This result is in good accordance with the fact that
the decidability problem for most branching temporal logics
is also PSPACE-complete [Gabbay et al., 1994].

For the Branching Temporal Logic, not only planning, but
even plan checking is difficult:

Theorem 4. For goals expressible in Branching Temporal
Logic CTL, the plan checking problem is PSPACE-complete.

Theorems 3 and 4 mean that allowing temporal goals from
CTL can drastically increase the computational complexity
of planning. These results, however, are not that negative be-
cause most safety and maintainability-type conditions can be
expressed in a simple subclass of CTL. Namely, in the main-
tainability conditions like the one above, we do not need to
consider all possible trajectories, it is sufficient to consider
trajectories which differ from the actual one by no more than
one (or, in general, by no more than

�
) states. In this case, the

planning problem becomes much simpler:
Definition 1. Let

� M�� be a positive integer. We say that
an expression in CTL is

�
-limited if this expression remains

true when in all operators c and d , we only allow possible
trajectories differ from the actual trajectory in no more than

�

moments of time.
For example, the above maintainability statement (1) means
that all possible 1-deviations from the actual trajectory are
maintainable and therefore, this statement is 1-limited.

Theorem 5. Let
� M�� be an integer. For

�
-limited goals

expressible in Branching Temporal Logic CTL, the planning
problem is NP-complete.

Theorem 6. Let
� M�� be an integer. For

�
-limited goals ex-

pressible in Branching Temporal Logic CTL, the plan check-
ing problem is tractable.

2.4 Conclusions
Our first conclusion is that if, instead of traditional goals
which only refer to the state of the system at the last moment
of time, we allow goals which explicitly mention the actual
past and actual future states, the planning problem does not
become much more complex: it stays on the same level of
complexity hierarchy.

Our second conclusion is that if we allow goals which refer
to potential future, the planning problem can become drasti-
cally more complicated. Thus, we should be very cautious
about such more general goals.

3 Proofs
Proof of Theorems 1 and 2. We already know that the plan-
ning problem is NP-complete even for the simplest possi-
ble case of LTL-goals: namely, for goals which are repre-
sented simply by fluents [Bylander, 1994; Erol et al., 1995;
Liberatore, 1997; Baral et al., 2000]. Therefore, to prove
that the general problem of planning under LTL-goals is NP-
complete, it is sufficient to prove that this general problem
belongs to the class NP.

Indeed, it is known [Papadimitriou, 1994] that a prob-
lem belongs to the class NP if the corresponding formula� ����� can be represented as � ���!��� � ��� , where �!��� � ��� is
a tractable property, and the quantifier runs over words of
tractable length (i.e., of length limited by some given poly-
nomial of the length of the input).

For a given planning situation � , checking whether a suc-
cessful plan exists or not means checking the validity of the
formula � ���!��� � ��� , where �!��� � ��� stands for “the plan �
succeeds for the situation � ”. According to the above def-
inition of the class NP, to prove that the planning problem

belongs to the class NP, it is sufficient to prove the following
two statements:,

the quantifier runs only over words � of tractable length,
and,
the property �!��� � ��� can be checked in polynomial
time.

The first statement immediately follows from the fact that
in this paper, we are considering only plans of polynomial
(tractable) duration, i.e., sequential plans � whose length � � �
is bounded by a polynomial of the length � ��� of the input� : � � � �J,���� �	� � , where ,�� <*� is a given polynomial. So, the
quantifier runs over words of tractable length.

Let us now prove the second statement – that plan checking
can be done in polynomial time. (This statement constitutes
Theorem 2.) Once we have a plan � of tractable length, we
can check its successfulness in a situation � as follows:,

we know the initial state � � ;,
take the first action from the action plan � and apply it
to the state � � ; as a result, we get the state ��� ;,
take the second action from the action plan � and apply
it to the state ��� ; as a result, we get the state � � ; etc.

At the end, we get the values of all the fluents at all moments
of time. On each step of this construction, the application
of an action to a state requires linear time; in total, there are
polynomial number of steps in this construction. Therefore,
computing the values of all the fluents at all moments of time
indeed requires polynomial time.

Let us now take the desired goal statement b and parse it,
i.e., describe, step by step, how we get from fluents to this
goal statement b .

For example, for the above spy-plane goal statementb
	 9 ` : `
W
� :�� , parsing leads to the following se-

quence of intermediate statements: b ��� � : , b � � �9 ` b � , b �
� �
W
b � , and finally, b�	�b ��� � b � ` b � .

The number of the resulting intermediate statements cannot
exceed the length of the goal statement; thus, this number is
bounded by the length � b�� of the goal statement.

Based on the values of all the fluents at all moments of
time, we can now sequentially compute the values of all these
intermediate statements b � at all moments of time:,

When a new statement is obtained from one or two pre-
vious ones by a logical connective (e.g., in the above
example, as b ��� � b � ` b �), then, to compute the value
of the new statement at all � moments of time, we need� logical operations.,
Let us now consider the case when a new statement is
obtained from one or two previously computed ones by
using one temporal operations: e.g., in the above exam-
ple, as b ��� �

W
b �). Then, to compute the truth value ofb � at each moment of time, we may need to go over all

other moments of time. So, to compute b � for each mo-
ment of time = , we need � � steps. Hence, to compute
the truth value of b � for all � moments of time, we need� � � steps.

In both cases, for each of � � b�� intermediate statements, we
need � � � computations. Thus, to compute the truth value of
the desired goal statement, we need � � � � � b � computational
steps. Since we look for plans for which � � ,S��� � � G � b�� � for
some polynomial ,S� <*� , we thus need a polynomial number of
steps to check whether the given plan satisfies the given goal.

So, we can check the success of a plan in polynomial time,
and thus, the planning problem indeed belongs to the class
NP. The theorems are proven.
Proof of Theorem 3. This proof follows the same logic
as proofs of PSPACE-completeness of other planning prob-
lems; see, e.g., [Littman, 1997] and [Baral et al., 2000].

By definition, the class PSPACE is formed by problems
which can be solved by a polynomial-space algorithm. It
is known (see, e.g., [Papadimitriou, 1994]) that this class
can be equivalently reformulated as a class of problems
for which the checked formula �!����� can be represented as� � � � � � �	��� �!��� � � � �����	���)����� � ��� , where the number of quan-
tifiers

�
is bounded by a polynomial of the length of the input,

�!��� ���	���	�)� � � � ��� is a tractable property, and all
�

quantifiers
run over words of tractable length (i.e., of length limited by
some given polynomial of the length of the input). In view
of this result, it is easy to see that for CTL-goals, the plan-
ning problem belongs to the class PSPACE. Indeed, all the
operators of CTL can be described by quantifiers over words
of tractable length, namely, either over paths (for operatorsd and c) or over moments of time (for LTL operators). A
plan is also a word of tractable length. Thus, the existence
of a plan which satisfies a given CTL-goal can be described
by a tractable sequence of quantifiers running over words of
tractable length. Thus, for CTL-goals, the planning problem
does belong to PSPACE.

To prove that the planning problem is PSPACE-complete,
we will show that we can reduce, to the planning problem, a
problem known to be PSPACE-complete: namely, the prob-
lem of checking, for a given propositional formula

�
with

the variables
 � �	���	���
�* ��
 * � � ���	���)��
 � , the validity of the
formula � of the type �
 � �
 � �
 � �
 � ���	� � � This reduction
will be done as follows. Consider the planning problem
with two actions ! � and ! � , and ��< G I fluents
 � �	���	���
 � ,=>���1= � �	�����	�(= � . These actions and fluents have the following
meaning:,

the meaning of = � is that we are at moment of time � ;,
the action ! � , when applied at moment = � � � , makes � -th
variable
 � true;,
the action ! � , when applied at moment = � � � , makes � -th
variable
 � false.

The corresponding initial conditions are:, ����� ��� ����� �
 � (for all �);, ����� ��� ����� � =>� ; ����� ��� ����� � = � (for all �&M �).
The effect of actions if described by the following rules (ef-
fect propositions):,

for � � I���� �	���	� �(< , the rules

! � " ��$�%'&	%
 � � (= � � ��� ! � " ��$.%/&�%
 � � (= � � ���
describe how we assign values to the variables
 � ;

,
for � � I���� �	���	� �(< � the rules

! � " ��$�%'&	% = � � (= � � � � ! � " ��$�%'&	% = � � (= � � � �! � " ��$�%'&	% = � � � � (= � � ��� ! � " ��$�%'&	% = � � � � (= � � ���
describe the update of the time fluents = � .

The corresponding goal is designed as follows:,
first, we replace in the above quantified propositional
formula � , each existential quantifier �
 � by c

E
, each

universal quantifier
�
�� by d

E
; let us denote the result

of this replacement by
� �

;,
then, we add

` = � to the resulting formula
� �

;,
finally, we add

T � in front of the whole thing – creatingT � � � � ` = � � .
For example, for a formula �
 � �
�� � , this construction leads
to the following goal:

T � �(c
E
� d
E
� � �(� ` =>�	� � This reduc-

tion leads to a linear increase in length, so this reduction is
polynomial-time.

To complete the proof, we must show that this is a “valid”
reduction, i.e., that the resulting planning problem is solvable
if and only if the original quantified propositional formula is
true.

To prove this equivalence, let us first remark that, by
definition of the operator

T
(“previous”), the goal formulaT � � � � ` = � � is true at a moment = if and only if the formula� � ` = � holds at a moment =]U_< . Since, due to our rules, = �

is only true at the starting moment of time = � � , the goal can
only be true if = � < . Thus, to check whether we can achieve
the goal, it is sufficient to check whether we can achieve it at
the moment < , i.e., after a sequence of < actions. In this case,
the validity of the goal is equivalent to validity of the formula� �

at the initial moment = � � .
Let us now show that the validity of the formula

� �
at the

moment = � � is indeed equivalent to the validity of the above
quantified propositional formula. We will prove this equiva-
lence by induction over the total number of variables < .
Induction base: For < � � , we have no variables
 � at all, so�

is either identically true or identically false. In this case,
� �

simply coincides with
�

, so they are, of course, equivalent.
Induction step: Let us assume that we have proven the de-
sired equivalence for all quantified propositional formulas
with <FU�I variables; let us prove it for quantified proposi-
tional formulas with < variables.

Indeed, let a quantified propositional formula � of the
above type be given. There are two possibilities for the first
variable
 � of this formula:,

it may be under the existential quantifier �
 � ; or,
it may be under the universal quantifier

�
 � .
I
	 . In the first case, the formula � has the form �
 ��� , where
for each
 � , � is a quantified propositional formula with < U I
variables
������	���)��
 � . According to our construction, the CTL
formula

� �
has the form c �

E�
 � � , where

 �
is the result of

applying this same construction to the formula � .
To show that

� �
is indeed equivalent to � , we will first

show that
� �

implies � , and then that � implies
� �

.
I�� I
	�� Let us first show that

� �
implies � .

Indeed, by definition of the operator c , if the formula
� � 	c �

E�
 � � holds at the moment = � � this means that there exists
a path for which, at moment = � � , the formula

E�
 �
is true.

By definition of the operator

E
(“next”), the fact that the

formula

E�
 �
is true at the moment = � � means that the for-

mula

 �
is true at the next moment of time = � I .

By the time = � I , we have applied exactly one action
which made
 � either true or false, after which the value of
this variable
 � does not change. Let us select the value
 �
as ”true” or “false” depending on which value was selected
along this path.

The moment = � can be viewed as a starting point for the
planning problem corresponding to the remaining formula� . By induction assumption, the validity of

 �
at this new

starting moment is equivalent to the validity of the quantified
propositional formula � . Thus, the formula � is true for this
particular
 � , hence the original formula � 	 �
 � � is also
true. So,

� �
indeed implies � .I�� � 	�� Let us now show that � implies

� �
.

Indeed, if � 	 �
 � � is true, this means that there exists
a value
 � for which � is true. By the induction assumption,
this means that for this same
 � , the goal formula

 �
is also

true at the new starting moment = � I . Thus, for any path
which starts with selecting this
 � , the formula

E�
 �
is true

at the previous moment = � � . Since this formula is true for
some path, by definition of the operator c , it means that the
formula c �

E�
 � � is true at the moment = � � , and this formula
is exactly

� �
.

Thus, � does imply
� �

, and hence � and
� �

are equivalent.

� 	�� The second case, when
 � is under the universal quantifier�
 � , can be handled similarly.
The induction step is proven, and thus, by induction, the
equivalence holds for all < .

Thus, the reduction is valid, and the corresponding plan-
ning problem is indeed PSPACE-complete. Q.E.D.
Proof of Theorem 4. Similarly to the proof of Theorem 3, we
can show that plan checking belongs to the class PSPACE, so
all we need to prove is the desired reduction. From the proof
of Theorem 3, one can see that the exact same reduction will
work here as well, because in this reduction, the equivalence
between � and

� �
did not depend on any action plan at all.

The equivalence used in the proof of Theorem 3 is based on
the analysis of possible trajectories and does not use the ac-
tual trajectory at all.

Thus, we can pick any action plan (e.g., a sequence con-
sisting of < actions ! �), and the desired equivalence will still
hold. Q.E.D.
Proof of Theorems 5 and 6. For trajectories of duration � ,
with

�
possible actions at each moment of time, there are no

more than � � �
possible trajectories differing in one state, no

more than ��� � � � � trajectories differing in two states, etc. In
general, whatever number

�
we fix, there is only a polynomial

number (����� � � � �) of possible trajectories which differ from
the actual one in � � places.

Therefore, for fixed
�

, we can explicitly describe the new
operators c and d by enumerating all such possible trajecto-
ries. Thus, similarly to the proof of Theorems 1 and 2, we

can conclude that for
�

-planning, plan checking is tractable
and the corresponding planning problem is NP-complete.

Acknowledgments
This work was supported by NASA (grant NCC5-209 and a
Research on Intelligent Systems grant), by the AFOSR grant
F49620-00-1-0365, by the grant W-00016 from the U.S.-
Czech Science and Technology Joint Fund, and by the NSF
grants IRI 9501577, 0070463, and 9710940 Mexico/Conacyt.

The authors are thankful to the anonymous referees for
valuable comments.

References
[Bacchus and Kabanza, 1998] Fahiem Bacchus and Frodu-

ald Kabanza. Planning for temporally extended goals. An-
nals of Mathematics and Artificial Intelligence, 22:5–27,
1998.

[Baral et al., 2000] Chitta Baral, Raúl Trejo, and Vladik
Kreinovich. Computational complexity of planning and
approximate planning in the presence of incompleteness.
Artificial Intelligence, 122:241–267, 2000.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artificial In-
telligence, 69:161–204, 1994.

[Emerson, 1990] E. Allen Emerson. Temporal and modal
logics. In: Jan van Leeuwen, editor. Handbook of The-
oretical Computer Science, Vol. B, pages 995–1072, MIT
Press, Cambridge, Massachusetts, 1990.

[Erol et al., 1995] Kuthulan Erol, Dana S. Nau, and
V.S. Subrahmanian. Complexity, decidability and unde-
cidability results for domain-independent planning. Artifi-
cial Intelligence, 76(1-2):75–88, 1995.

[Gabbay et al., 1994] Dov M. Gabbay, Ian Hodkinson, and
Mark Reynolds. Temporal Logic: Mathematical Foun-
dations and Computational Aspects. Oxford University
Press, New York, 1994.

[Gelfond and Lifschitz, 1993] Michael Gelfond and
Vladimir Lifschitz. Representing actions and change
by logic programs. Journal of Logic Programming,
17(2,3,4):301–323, 1993.

[Liberatore, 1997] Paolo Liberatore. The complexity of the
language

�
. Electronic Transactions on Artificial Intel-

ligence, 1:13–28 (http://www.ep.liu.se/ej/etai/1997/02),
1997.

[Littman, 1997] Michael L. Littman. Probabilistic proposi-
tional planning: representations and complexity. In AAAI
97, pages 748–754, 1997.

[Niyogi and Sarkar, 2000] Rajdeep Niyogi and Sudeshna
Sarkar. Logical specification of goals. In Interna-
tional Conference on Information Technology ICIT’2000,
Bhubaneswar, India, December 21-23, 2000. Tata
McGraw-Hill.

[Papadimitriou, 1994] Christos H. Papadimitriou. Compu-
tational Complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

