Computational Complexity of Planning with Temporal
Goals

Chitta Baral

Dept. of Computer Science and Engg., Arizona State University, Tempe, AZ
85233, USA. chitta@asu.edu

Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso, El Paso, TX
79968, USA. vladik@cs.utep.edu

Sudeshna Sarkar

Department of Computer Science & Engr., Indian Institute of Technology,
Kharagpur, India 721302. sudeshna@cse.iitkgp.ernet.in

Raul A. Trejo

ITESM Campus Edo. México, Atizapan, México 52926
rirejo @campus. cem.itesm.mz

Abstract

In the last decade, there have been several studies on the computational com-
plexity of planning. In these studies planning is about finding a plan that takes the
world to one of several desired states. The set of desired states is often described
by a goal formula. In some recent papers, the use of linear temporal logic to specify
goals for planning has been studied. Such goals are able to specify conditions on the
trajectory forced by the plan. In this paper we study the complexity of planning
with such goals. In addition we also propose that for certain kind of goals we may
need more than linear temporal logics to specify them. In particular we define what
it means for a plan to satisfy a goal in branching time temporal logics such as CTL
and CTL*. We analyze the complexity of planning with such goals and identify
a variant of CTL goals which leads to a lower complexity of planning. Our main
results are: For goals expressible in Linear Temporal Logic, planning has the same
complexity as for non-temporal goals: it is NP-complete; and for goals expressible
in a more general Branching Temporal Logic such as CTL and CTL* | planning is
PSPACE-complete.

Preprint submitted to Elsevier Science 16 April 2002

1 Introduction and Motivation

In the presence of complete information about the initial situation, a plan — in
the sense of classical planning — is a sequence of actions that takes the agent
from the initial situation to the state which satisfies a given goal. Traditionally,
a goal is described by a fluent formula which must be true in the state reached
after executing the plan. For such goals, the computational complexity of
finding a plan has been well-studied [Byl94,ENS95,Lib97, BTKO00]. In the most
natural formulation, the problem of finding polynomial length plans is NP-
complete. (We give the definitions of standard complexity terms such as NP-
completeness in a later section.)

In many real-life planning problems, often the goal is much more than just
reaching one of a set of desired states. It may involve putting restrictions on
the path such as making sure certain fluents are true throughout the path,
or the truth value of certain fluents revert back [WE94| — after the execution
of the plan — to their truth value in the initial state. In [BK98] the authors
proposed to use Linear Temporal Logics (LTLs) to express such goals. In this
paper our first goal is to study the complexity of polynomial length planning
with such goals when the planning domain is specified in a high-level language
such as STRIPS or A [GL93]. In [DV99] planning with LTL goals is studied
with respect to arbitrary length plans and with the planning domain specified
as an automata. There is no direct correlation between these two type of
results.

Although LTLs can specify certain restrictions on the trajectory corresponding
to a plan, certain goal specifications are beyond the expressibility of LTLs. This
include cases where we explore and restrict states that are not directly in the
trajectory but are reachable from states in the trajectory. For example, we
may want to specify the goal of going from location A to location B such that
for each intermediate location there is a gas station within two steps. In this
case the gas station does not have to be in the path (trajectory) taken from A
to B. Such a goal can not be expressed in LTLs and need branching time logics.
The second goal of our paper is to explore the use of branching time logics
such as CTL and CTL* in expressing planning goals beyond the capability of
LTLs. In particular, we give several example goals and their representations
in CTL* and CTL; and precisely define what it means for a plan to satisfy a
goal in CTL and CTL*. The use of CTL for expressing goals in planning was
first proposed in [NS00].

! This paper is based on two conference papers, one in IJCAT'01 [BKTO01] and
another in CIT’00 [NS00]. The current version differs substantially from both.

We then analyze the complexity of polynomial time planning with respect
to CTL and CTL* goals. We also identify a variant of CTL and CTL* with
respect to which polynomial length planning belongs to a lower complexity
class.

Our complexity analysis will be based on the action description language A
proposed in [GL93]. The language A and its variants have made it easier
to understand the fundamentals (such as inertia, ramification, qualification,
concurrency, sensing, etc.) involved in reasoning about actions and their effects
on a world, and we would like to stick to that simplicity principle here. To
stick to the main point we consider the simplest action description, and do
not consider features such as executability conditions.

The rest of the paper is organized as follows. In Section 2 we present several
background materials. In particular in Section 2.1 we give a brief description
of the language A; in Section 2.2 we present syntax and semantics of LTL and
define what it means for a plan to satisfy an LTL goal; and in Section 2.3 we
recall useful complexity notions. In Section 3 we discuss the use of CTL* and
CTL is expressing goals, define what it means for a plan to satisfy a CTL or
CTL* goal, and give several examples of planning goals in CTL and CTL*.
In Section 4 we present complexity results about planning and plan checking
with respect to LTL, CTL and CTL* goals, and consider a variant of CTL
and CTL* goals with a lower complexity. Finally in Section 5 we conclude.

2 Background

2.1 The action description language A

In the language A, we start with a finite list of properties (fluents) fi,..., f,
which describe possible properties of a state. A state is then defined as a finite
set of fluents, e.g., {} or { f1, f3}. Intuitively, a state { f1, f3} means that in that
state, properties f; and f3 are true, while all the other properties fs, f4, ...
are false. The properties of the initial state are described by formulas of the
type

initially f,

where f is a fluent literal, i.e., either a fluent f; or its negation — f;. We assume
that we have complete knowledge about the initial state.

To describe possible changes of states, we need a finite set of actions. In the
language A, the effect of each action a can be described by formulas of the

type
a causes f if fi,..., fm,

where f, f1,..., fm are fluent literals. A reasonably straightforward semantics
describes how the state changes after an action:

— If] before the execution of an action a, fluent literals fi,..., f,, were true,
and the domain description contains a rule “a causes f if fi,..., f,.”, then
this rule is activated, and after the execution of the action a, f becomes
true.

— If for some fluent f;, no activated rule enables us to conclude that f; is true
or false, this means that the execution of action a does not change the truth
of this fluent; therefore, f; is true in the resulting state if and only if it was
true in the old state.

Formally, a domain description D is a finite set of value propositions of the
type “initially f” (which describe the initial state), and a finite set of effect
propositions of the type “a causes f if fi,..., fn” (which describe results
of actions). The initial state so consists of all the fluents f; for which the
corresponding value proposition “initially f;” is in the domain description.
(Here we are assuming that we have complete information about the initial
situation.) We say that a fluent f; holds in s if f; € s; otherwise, we say that
—f; holds in s. The transition function ®p(a,s) which describes the effect of
an action a on a state s is defined as follows:

— we say that an effect proposition “a causes f if fi,..., f,,” is activated in a
state s if all m fluent literals fi,..., f;, hold in s;

— we define Vi(a,s) as the set of all fluents f; for which a rule
“a causes f; if fi,..., fn” is activated in s;

— similarly, we define V}, (a,s) as the set of all fluents f; for which a rule
“a causes —f; if f1,..., fn” is activated in s;

— if Vi (a,8)NV} (a, s) # 0, we say that the result of the action a is undefined;
— if the result of the action a is defined in a state s (i.e., if Vi (a, s)NVp (a,5) =
0), we define ®p(a,s) = (sU V3 (a,5)) \ Vp (a, 5).

When the domain description D is clear from the context we just write &
instead of ®p.

A plan p is defined as a sequence of actions [ay, ..., ay]- The result ®p(p, s)
of applying a plan p to the initial state sy is defined as

®p(am, Pp(am-1,--.,Pp(a,s)-..)).

The planning problem is: given a domain D and a desired property, find a
plan for which the resulting plan sg, s; def ®p(ai, so), So o, (a9, s1), etc.,
satisfies the desired property. In particular, if the goal is to make a certain

fluent f true, then the planning problem consists of finding a plan which leads
to the state in which f is true.

In addition to the planning problem it is useful to consider the plan checking
problem: given a domain, a desired property, and a candidate plan, check
whether this action plan satisfies the desired property. It is known that in
the presence of complete information about the initial situation, for fluent
goals, plan checking is a tractable problem — i.e., there exists a polynomial-
time algorithm for checking whether a given plan satisfies the given fluent goal
[Byl94,ENS95,Lib97,BTKO00].

2.2 Representing planning goals using Linear Temporal Logic

In most planning systems the goals — represented by a logical formula — de-
scribe a set of finals states that an agent may want to get into. The plans then
involve a sequence of actions that takes the world from a given initial state
to one of the states specified by the goal. Temporal logics play a role when
the goal is not just to get to one of a set of a given states but also involves
conditions on what are acceptable ways to get there and what are not. In
the past [BK98] it has been suggested that Linear Temporal Logics (LTLs)
be used to specify certain kind of goals. LTLs are modal logics with modal
operators either referring to the future or to the past. The future operators
in LTL are: next (denoted by (), always (denoted by 0O), eventually (denoted
by <), and until (denoted by U). The past operators in LTL are: previously,
always in the past, sometime in the past, and since. In this paper our focus
will be more on the future operators as planning for temporal goals with only
future operators can be easily done by forward search methods. Syntactically
an LTL formula is defined as follows:

(LTL_formula) :== (propositional_formula)|

—(LTL_formula)|

(LTL_formula) A {LTL_formula)|
(LTL_formula) V (LTL_formula)|
O(LTL_formula)|
O(LTL_formula)|
O(LTL_formula)|

(LTL_formula) U (LT L_formula)

The truth of LTL formulas are usually defined with respect to an infinite
sequence of states, often referred to as a trajectory, and a reference state.
Intuitively, an LTL formula Op is true with respect to a trajectory o consisting
of 59, s1,..., and a reference state s; if for all ¢ > 7, p is true in s;. We now give

a formal definition of the truth of LTL formulas consisting of future operators
[BK98]. In the following p denotes propositional formulas, s;’s are states, o
is the trajectory sg,si,..., and f;’s denote LTL formulas (with only future
operators).

p iff p is true in s;.

~f iff (s5,0) = f

fin o i (s5,0) = fi and (s, 0)
iV foiff (s5,0) = fior (sj,0) =
Of iff (sj41,0) = f
I:I
<>

gy
S

= fu.
f

Q

BN L L L I [[I

iff (sg,0) = f, for all k > j.
iff (sg,0) = f, for some k > j.
fi U fy iff there exists k > j such that (sg,0) = fo and for all i,

]§Z<k,(81,)):fl

&
Q

P
V)
<

N e e e S S S

S
S

Since truth of LTL formulas are defined with respect to a reference state and a
trajectory made up of an infinite sequence of states, to define the correctness
of a plan with respect to an initial state and an LTL goal, we need to identify
a trajectory that corresponds to the initial state and the plan. We define it as
follows:

Let s be a state designated as the initial state, let a4, ..., a, be a sequence of
deterministic actions whose effects are described by a domain description. The
trajectory corresponding to s and a4, ..., a, is the sequence of states sq, s1, . . .,
that satisfies the following conditions:

- § =80,
— Siy1 = P(aiy1,8:), for 0 <i<n-—1, and
~ Sj41 = 8, for 7 > n.

We then say that the sequence of actions a4, ..., a, is a plan from the initial
state s for the goal f, if (sg,0) | f, where o is the trajectory corresponding
to s and ay, ..., an.

One nuance of the above definition is that a simple goal of reaching a state
where f is true can not be expressed by just f, but now need to be expressed
by the temporal formula ¢Of. This is because our reference point in the
definition of a plan is the initial state. On the other hand if we were to use
an LTL with only past operators, then the specification can refer to the states
before the reference state, and by having the reference state as the current
state during forward planning, the goal of reaching a state where f is true can
be expressed by just f.

Another nuance is of our definition is that although a propositional formula
is also an LTL formula, a goal represented as a propositional formula is in
general not very useful as (i) if the formula is true in the initial state then the
empty sequence of actions is a plan, and (ii) if the formula is not true in the
initial state then there are no plans.

We prefer the usage of future operators because of its use in earlier work on
planning with temporal goals [BK98], because if we use the initial state as the
reference point then it remains the same as the plan is expanded in the forward
direction, and because we find it more intuitive for expressing many other kind
of temporal goals. We now list some temporal goals and their representation
using an LTL with only future operators.

(i) If we are planning a flight of an automatic spy mini-plane, then the goal
is not only to reach the target point, but also to avoid detection; i.e., to
have the fluent detected false all the time.

The above can be expressed as: COreached A O-detected
(ii) The goal “until the destination is reached the robot keeps its front clear
of obstacles” can be expressed as:

clear U reached
(iii) The goal “until the destination is reached the robot maintains its front
clear of obstacles” can be expressed as:

Oclear U reached
(iv) The goal “reach the destination but while doing it if a closed door is
opened then it must be immediately closed” can be expressed as:

OOreached N O(closed A O—closed = O O closed).
(v) The goal “reach the destination but while doing it if a closed door is
opened then it must be eventually closed” can be expressed as:

SOreached A O(closed A O—closed = Oclosed).
(vi) The goal “reach the destination but while doing it closed doors must not
be opened” can be expressed as:

OOreached A O(closed = Oclosed).

(vii) When dealing with plans that are not finite, which happens when the
agent is continually interacting with the environment, then one way to
express that the fluent f be maintained is through the LTL formula:
adof.

This corresponds to the notion of stability and stabilizability in discrete
event dynamic systems [OWA91].

Additional examples of use of LTL in specifying planning goals can be found
in [BK98,NS00].

2.8 Useful complexity notions

Crudely speaking, a decision problem is a problem of deciding whether a given
input w satisfies a certain property P (i.e., in set-theoretic terms, whether it
belongs to the corresponding set S = {w | P(w)}).

— A decision problem belongs to the class P if there is a feasible (polynomial-
time) algorithm for solving this problem.

— A problem belongs to the class NP if the formula w € S (equivalently, P(w))
can be represented as JuP(u,w), where P(u,w) is a feasible property, and
the quantifier runs over words of feasible length (i.e., of length limited by
some given polynomial of the length of the input). The class NP is also
denoted by ;P to indicate that formulas from this class can be defined by
adding 1 existential quantifier (hence ¥ and 1) to a polynomial predicate
(P).

— A problem belongs to the class coNP if the formula w € S (equivalently,
P(w)) can be represented as VuP(u, w), where P(u,w) is a feasible property,
and the quantifier runs over words of feasible length (i.e., of length limited
by some given polynomial of the length of the input). The class coNP is
also denoted by II; P to indicate that formulas from this class can be defined
by adding 1 universal quantifier (hence IT and 1) to a polynomial predicate
(hence P).

— For every positive integer k, a problem belongs to the class X;P
if the formula w € S (equivalently, P(w)) can be represented as
JuiVus . .. P(uq, ua, . . ., ug, w), where P(uq, ..., u, w) is a feasible property,
and all k& quantifiers run over words of feasible length (i.e., of length limited
by some given polynomial of the length of the input).

— Similarly, for every positive integer k, a problem belongs to the class
II,P if the formula w € S (equivalently, P(w)) can be represented as
VuyJug ... P(uy, ug, . .., ug, w), where P(uy,. .., ug, w) is a feasible property,
and all k& quantifiers run over words of feasible length (i.e., of length limited
by some given polynomial of the length of the input).

— All these classes XxP and II;P are subclasses of a larger class PSPACE
formed by problems which can be solved by a polynomial-space algorithm.
It is known (see, e.g., [Pap94]) that this class can be equivalently refor-
mulated as a class of problems for which the formula w € S (equivalently,
P(w)) can be represented as YuiJuy . .. P(u,us, . .., ug, w), where the num-
ber of quantifiers k£ is bounded by a polynomial of the length of the input,
P(uy,...,ug,w) is a feasible property, and all £ quantifiers run over words
of feasible length (i.e., of length limited by some given polynomial of the
length of the input).

A problem is called complete in a certain class if, any other general problem
from this class can be reduced to it by a feasible-time reduction. It is still

not known (2001) whether we can solve any problem from the class NP in
polynomial time (i.e., in precise terms, whether NP=P). However, it is widely
believed that we cannot, i.e., that NP#P. It is also believed that to solve a
complete problem from one of the second-level classes 5P or II,P requires
more computation time than solving NP-complete problems and solving com-
plete problems from the class PSPACE takes even longer.

3 Goal representation using branching time temporal logic

In Section 2.2 we discussed specifying planning goals using an LTL with future
operators, and cited earlier work on this. In this section we consider use of a
branching temporal logic in specifying planning goals that can not be speci-
fied using LTLs. To the best of our knowledge this has not been discussed in
the planning literature other than the paper [NS00]. The necessity of branch-
ing time operators arises when we want to specify conditions on other paths
starting from the states in the main path that the agent’s plan suggests. For
example, a robot going from position A to position B may be required to take
a path so that from any point in the path there is a charging station within
two steps. Note that these two steps do not have to be in the path of the robot.
This goal can not be expressed using LTLs. We propose to use the branching
time logic CTL* for this purpose. We now give the syntax and semantics for
CTL* [Eme90].

There are two kinds of formulas in CTL*: state formulas and path formulas.
Normally state formulas are properties of states while path formulas are prop-
erties of paths. The syntax of state and path formulas is as follows. Let (p)
denote an atomic proposition, (sf) denote state formulas, and (pf) denote
path formulas.

(sf) ==) | (sfYN(sf) | (sf)V{(sf) | =(sf) | E{pf) | A(pf)
(pf) == (sf) | ®f) U ®f) | ~of) | ®of) A f) | (of) vV (pf) |
Of) | Spf) | B(pf)

The new symbols A and E are the branching time operators meaning ‘for all
paths’ and ‘there exists a path’ respectively. As the qualification ‘branching
time’ suggests, specification in the branching time logic CTL* are evaluated
with respect to the branching structure of the time. The term ‘path’ in the
meaning of A and E refers to a path in the branching structure of time. The
branching structure is specified by a transition relation R between states of
the world. Intuitively, R(s1, s2) means that the state of the world can change
from s; to s, in one step. Given a transition relation R and a state s, a path

in R starting from s is a sequence of states s, s1,... such that sy = s, and
R(s;, 8i41) is true.

When planning in an environment where our agent is the only one that can
make changes to the world, R(sy,s2) is true if there exists an agent’s action
a such that sy = ®(s;,a). If there are external agents other than our agent
then R(sy,sq) is true if there exists an action (by some agent) a such that
sg = ®(s1,a). We now give the formal semantics of CTL*.

Formal semantics: Semantics of CTL* formulas are defined depending on
whether they are state formulas or path formulas. The truth of state formulas
are defined with respect to a pair (s;, R), where s; is a state and R is the
transition relation. In the following p denotes a propositional formula sf;s are
state formulas and pf;s are path formulas.

(sj, R) = pif p is true in s;.
— (s, R) = sfi Nsfyif (s, R) = sfi and (s, R) = sf.
— (s5,R) =sfi1Vsfyif (s;,R) = sfi or (s, R) = sfo.
(SJ’R)): _'Sf if (Sja R) bé Sf'
(sj, R) = E pf if there exists a path ¢ in R starting from s; such that
(Sja Ra 0)): pf
— (s, R) = A pf if for all paths o in R starting from s; we have that
(8j7 R: 0)): pf

The truth of path formulas are defined with respect to a triplet (s, R, o) where
o given by the sequence of states s, s1, ..., is a path, R is a transition relation
and s is a state in o.

~ (s5,R,0) =sfif (s,R) =sf.
- (s, R,0) =pfi U pfy iff there exists £ > j such that (si, R,0) = pfs and
foralli, j <i<k, (s;, R,0) =pfi-

- (SJ’R’ G)): —pf iff (SjaR U) b’é pf-

— (85, R,0) =pfi Apf2iff (s;, R,0) = pfi and (s, R, 0) = pfe.

= (85, R,0) EpfiVpfeiff (s, R,0) Epfior (sj, R,0) E pfo

o (Sja Ra 0)): Opf iff (8]-}—1’ R U)): pf

~ (sj, R,0) = Opf iff (ss, R, 0) = pf, for all k > j.

— (s, R,0) = <pf iff (sg, R,0) = pf, for some k > j.

We now define when a sequence of actions aq,...,a, is a plan with respect
to a given initial state s and a goal in CTL*. As in the case of LTL goals in
Section 2.2 we use the notion of a trajectory corresponding to s and aq, . . ., a,.
We say a sequence of actions aq,...,a, is a plan with respect to the initial

state so and a goal G if (sg, R, 0) = G, where o is the trajectory corresponding

10

to sg and ay, - . ., a,. (Note that a trajectory corresponding to sq and ay, - . ., a,
— as defined in Section 2.2 — is a path.)

Although state formulas are also path formulas, since the evaluation of state
formulas do not take into account the trajectory suggested by a prospective
plan, often the overall goal of a planning problem is better expressed as a path
formula which is not a state formula. Similar to an LTL goal which is just a
propositional formula, a CTL* goal which is a state formula either leads to no
plans (if the initial state together with R does not satisfy the goal) or leads
to the plan with no actions (if the initial state together with R satisfies the
goal). But unlike propositional goals in LTL, a state formula in CTL* is useful
in specifying the existence of a plan.

3.1 The branching time temporal logic CTL

CTL is a branching time logic that is a subset of CTL* and has better compu-
tational properties than both LTL and CTL* for certain tasks. Unlike CTL*,
CTL does not include LTL. Syntactically, a CTL formula is defined as follows:

(i) Atomic propositions are CTL formulas.
(ii) If f1 and fy are CTL formulas so are = f1, fi A fa, f1V fo, AO f1, EO fi,

AOf1, EOf1, ASf1, ES fi, A(fiUf2), E(fiUf2).
(iii) Nothing else is a CTL formula.

It is easy to see that CTL formulas are state formulas and hence can only
lead to empty plans or no plans and hence are not appropriate for specifying
planning goals. They are useful in specifying the existence of a plan though.

We now give several examples of planning goals expressed using CTL and
CTL*.

3.2 Examples of planning goals in CTL and CTL*

We start with the story of planning a route from city A to city B. Our planning
goal is to find a plan to travel from A to B. We have several intermediate
stopping areas between A and B and some of them have a utility center with
gas, food, etc and are marked by p. We now express several goals that put
conditions on paths from A to B using CTL and CTL*.

(i) Suppose our goal is to get to B such that from any where in the path
we can get to a state where p holds in at most two steps. This can be

11

(iii)

expressed by the following path formula (which is not a state formula) in
CTL*.

(p» VEOp VEQEQOp) Uat-B

The above is not a CTL formula. Now the condition that such a path
exists can be specified by the following path formula which is also a state
formula.

E(p VEOp VEOEQp) U at_B)

The above is a CTL (and hence a CTL*) formula. If we use the above
formula as a goal in our planning then either we get an empty plan
implying that a plan exists, or get no plans when none exists. Note that
in the first case we do not get the plan, but only a confirmation that a
plan exists. This is because our goal is a state formula.

Consider the goal of finding a path to home, such that from every point
in the path there is a path to a telephone booth. This can be expressed
by the following path formula (which is not a state formula) in CTL*.

(EC has_telephone_booth) U at_home

The above is not a CTL formula. But the existence of such a plan ex-
pressed as E((EO has_telephone_booth) U at_home) is a CTL formula.
Consider the goal of finding a path that travels through ports until a port
is reached from where there are paths to a fort and a hill. This can be
expressed by the following path formula (which is not a state formula) in
CTL*.

is_a_port U (is_a_port A (EC has_fort) A (EO has_hill))

The above is not a CTL formula. But the existence of such a plan ex-
pressed as E(is_a_port U (is_a_port A (EO has_fort) A (EO has_hill))) is
a CTL formula.

Consider the goal of finding a path to a place with a hotel such that
from any point in the path there is a path to a garage, until we reach
a shopping center from where there is a path to the hotel. This can be
expressed by the following path formula (which is not a state formula) in
CTL*.

((EC has_garage) U (shopping_center A < has_hotel)) A OO has_hotel

The above is not a CTL formula.

Consider specifying the goal of a robot to reach a state satisfying the
property h such that the states on the path are obstacle free and at least
one immediate successor state has a power socket. This can be expressed
by the following path formula (which is not a state formula) in CTL*.

(obstacle_free A (E O has_power_socket)) U h

The above is not a CTL formula. But the existence of such a plan ex-

12

(vii)

pressed as E((obstacle_free A (E O has_power_socket)) U h) is a CTL
formula.

Suppose we would like to change the last specification such that the agent
has to make sure that all (instead of at least one) immediate successor
state has a power socket. This can be expressed as follows:

(obstacle_free A (A O has_power_socket)) U h

The above is not a CTL formula. But the existence of such a plan ex-
pressed as E((obstacle_free A (A O has_power_socket)) U h) is a CTL
formula.

Consider a robot that has to reach a goal state (having the property h)
but on the way it has to ‘maintain’ a property p. Earlier in Section 2.2
we mentioned that this can be expressed in LTL as:

OCp U h

Now suppose we are in a domain with other agents which can randomly
execute an action in between the actions of our agent and we also assume
that any action that can be executed by the other agents, an action with
the same transition can also be executed by our agent. In this case we
want to be extra careful in maintaining p and consider the other agent’s
actions. For that we would like to put a condition on states that are one
transition away from the planned path, as these states can be reached
because of the other agent’s actions. The condition we want to put is that
from those states our agent can correct itself (if necessary) by executing
an action to reach a state where p is true. This can no longer be specified
in LTL. In CTL* this can be expressed as follows:

A(O(=p=E(Op))) U h

which is equivalent to

AO(PVE(Op)) Uh

Suppose we don’t need to reach a state satisfying h but we want our robot
to wander around through states that satisfy the other above mentioned
properties. In that case the specification will be:

D(A(O(p v E(Op))))

Note that the specification A(Q(p V E(Op))) is not right as it is a state
formula and as explained earlier either has no plans or a plan with empty
action. It will not result in any plans leading to wandering.

13

4 Complexity results

In this section we present our complexity results about planning with respect
to goals specified in a temporal logic. We start with formally specifying the
problem.

4.1 Complexity of planning notions

We are interested in the following problem:

— given a domain description (i.e., the description of the initial state and of
possible consequences of different actions) and a goal in a temporal logic,

— determine whether it is possible to achieve this goal (i.e., whether there
exists a plan which achieves this goal).

We are interested in analyzing the computational complexity of the planning
problem, i.e., analyzing the computation time which is necessary to solve this
problem.

Ideally, we want to find cases in which the planning problem can be solved by
a tractable algorithm, i.e., by an algorithm ¢/ whose computational time #,(w)
on each input w is bounded by a polynomial p(Jw|) of the length |w| of the
input w: t(x) < p(Jw|) (this length can be measured bit-wise or symbol-wise).
Recall that problems which can be solved by such polynomial-time algorithms
are called problems from the class P (where P stands for polynomial-time).
If we cannot find a polynomial-time algorithm, then at least we would like
to have an algorithm which is as close to the class of tractable algorithms as
possible.

Since we are operating in a time-bounded environment, we should worry not
only about the time for computing the plan, but we should also worry about
the time that it takes to actually implement the plan. If a (sequential) action
plan consists of a sequence of 22" actions, then this plan is not tractable. It
is therefore reasonable to restrict ourselves to tractable plans, i.e., to plans u
whose duration 7'(u) is bounded by a polynomial p(|w|) of the input w.

With this tractability in mind, we can now formulate the above planning
problem in precise terms:

— given: a polynomial p(n) > n, a domain description D (i.e., the description

of the initial state and of possible consequences of different actions) and a
goal statement S (i.e., a statement which we want to be true),

14

— determine whether it is possible to tractably achieve this goal, i.e., whether
there exists a tractable-duration plan u (with 7'(u) < p(|D| + |S|)) which
achieves this goal.

We are interested in analyzing the computational complexity of this planning
problem.

4.2 Complexity of the planning problem with goals expressible in Linear Tem-
poral Logic

We start with the complexity of plan checking with respect to LTL goals.

Theorem 1 For goals expressible in Linear Temporal Logic (LTL), the plan
checking problem is tractable. O

Proof of Theorem 1 Given a plan u of tractable length, we can check its
correctness in a situation w as follows:

— we know the initial state sg;

— we take the first action from the action plan u and apply it to the state sq;
as a result, we get the state sq;

— we take the second action from the action plan u and apply it to the state
s1; as a result, we get the state so; etc.

At the end, we get the values of all the fluents at all moments of time. On
each step of this construction, the application of an action to a state requires
linear time; in total, there are polynomial number of steps in this construction.
Therefore, computing the values of all the fluents at all moments of time indeed
requires polynomial time.

Let us now take the desired goal statement S and parse it, i.e., describe, step
by step, how we get from fluents to this goal statement S.

For example, for the spy-plane goal statement S = GOreached AO—detected
in Section 2.2, parsing leads to the following sequence of intermediate state-
ments: S; := reached, So = OS5, S3 = &Sy, Sy = —detected, S5 = OSy,
Se = S35 A\ Ss.

The number of the resulting intermediate statements cannot exceed the length
of the goal statement; thus, this number is bounded by the length |S| of the
goal statement.

15

Based on the values of all the fluents at all moments of time, we can now
sequentially compute the values of all these intermediate statements S; at all
moments of time:

— When a new statement is obtained from one or two previous ones by a
logical connective (e.g., in the above example, as Sg := S5 A S;), then, to
compute the value of the new statement at all 7’ moments of time, we need
T logical operations.

— Let us now consider the case when a new statement is obtained from one
or two previously computed ones by using one temporal operation: e.g., in
the above example, as S5 := ©.S;). Then, to compute the truth value of S;
at each moment of time, we may need to go over all other moments of time.
So, to compute S; for each moment of time ¢, we need < T steps. Hence,
to compute the truth value of S; for all T moments of time, we need < T2
steps.

In both cases, for each of < |S| intermediate statements, we need < T? com-
putations. Thus, to compute the truth value of the desired goal statement,
we need < T? - |S| computational steps. Since we look for plans for which
T < p(|D| + |S|) for some polynomial p(n), we thus need a polynomial num-
ber of steps to check whether the given plan satisfies the given goal. a

Theorem 2 For goals expressible in Linear Temporal Logic (LTL), the plan-
ning problem is NP-complete. O

Proof of Theorem 2 We already know that the planning problem is NP-
complete even for the simplest possible case of LTL-goals: namely, for goals
which are represented simply by fluents [Byl94,ENS95,Lib97,BTK00]. There-
fore, to prove that the general problem of planning under LTL-goals is NP-
complete, it is sufficient to prove that this general problem belongs to the class
NP.

Indeed, it is known [Pap94] that a problem belongs to the class NP if the
corresponding formula F'(w) can be represented as JuP(u,w), where P(u,w)
is a tractable property, and the quantifier runs over words of tractable length
(i.e., of length limited by some given polynomial of the length of the input).

For a given planning situation w, checking whether a successful plan exists
or not means checking the validity of the formula Ju P(u,w), where P(u,w)
stands for “the plan u succeeds for the situation w”. According to the above
definition of the class NP, to prove that the planning problem belongs to the
class NP, it is sufficient to prove the following two statements:

— the quantifier runs only over words u of tractable length, and
— the property P(u,w) can be checked in polynomial time.

16

The first statement immediately follows from the fact that in this paper, we
are considering only plans of polynomial (tractable) duration, i.e., sequential
plans u whose length |u| is bounded by a polynomial of the length |w| of the
input w: |u| < p(Jw|), where p(n) is a given polynomial. So, the quantifier runs
over words of tractable length.

Since from Theorem 1 we can check the success of a plan in polynomial time,
and thus, the planning problem indeed belongs to the class NP. The theorem
is proven. O

Since the planning problem is NP-complete even for simple (non-temporal)
goals [Byl94,ENS95,Lib97,BTK00], the above result means that allowing tem-
poral goals from LTL does not increase the computational complexity of plan-
ning. The above result is also in good accordance with the fact that the de-
cidability problem for linear temporal logic is also NP-complete [Eme90].

We gave the proofs of Theorems 1 and 2 for the version of Linear Temporal
Logic which only uses future temporal operators. However, as one can easily see
from the proofs, these result remains true if we allow past temporal operators
or more sophisticated temporal operators, e.g., temporal operators of the type
Ort,s] from [BK98] which are defined on timed sequences of states. A timed
sequence of states M consists of a sequence of states so, ..., together with an
associated timing function 7 that maps states to a point in the non-negative
real line such that for all ¢, 7(s;) < T (s;41), and for all real numbers r there
exists an ¢ such that 7(s;) > r. The entailment (s;, M) |= Op qf is then said
to hold if there exists an s, such that t < T (s;) < s, and f is true in sy.

4.8 Complexity of the planning problem with goals expressible in Branching
Temporal Logic

Theorem 3 For goals expressible in Branching Temporal Logics CTL and
CTL*, the planning problem is PSPACE-complete. O

Proof of Theorem 3. This proof follows the same logic as proofs of
PSPACE-completeness of other planning problems; see, e.g., [Lit97] and
[BTKO00].

By definition, the class PSPACE is formed by problems which can be solved
by a polynomial-space algorithm. Recall that this class can be equivalently re-
formulated as a class of problems for which the checked formula P(w) can be
represented as YujJug ... P(uy, ug, .. ., ug, w), where the number of quantifiers

17

k is bounded by a polynomial of the length of the input, P(uq, ..., ug, w) is
a tractable property, and all £ quantifiers run over words of tractable length
(i.e., of length limited by some given polynomial of the length of the input). In
view of this result, it is easy to see that for CTL*-goals, the planning problem
belongs to the class PSPACE. Indeed, all the operators of CTL* can be de-
scribed by quantifiers over words of tractable length, namely, either over paths
(for operators A and E) or over moments of time (for LTL operators). A plan
is also a word of tractable length. Thus, the existence of a plan which satis-
fies a given CTL*-goal can be described by a tractable sequence of quantifiers
running over words of tractable length. Thus, for CTL*-goals, the planning
problem does belong to PSPACE. Since CTL-goals are subset of CTL*-goals
the same is true for CTL-goals.

To prove that the planning problem (with CTL and CTL* goals) is PSPACE-
complete, we will show that we can reduce, to the planning problem, a problem
known to be PSPACE-complete: namely, the problem of checking, for a given
propositional formula F' with the variables =1, ..., Zm, Tmi1, - - -, Ty, the valid-
ity of the formula F of the type dx,VrodzsVa, ... F. This reduction will be
done as follows. Consider the planning problem with two actions a* and a~,
and 2n + 1 fluents z, ..., x,, to,t1,...,t,. These actions and fluents have the
following meaning:

— the meaning of ¢; is that we are at moment of time 7;
— the action a', when applied at moment ¢;_;, makes i-th variable z; true;
— the action a—, when applied at moment ¢;,_;, makes ¢-th variable x; false.

The corresponding initial conditions are:

— initially —z; (for all 7);
— initially #o; initially —¢; (for all ¢ > 0).

The effect of actions if described by the following rules (effect propositions):
— fori=1,2,...,n, the rules
|

a™ causes x; if t;_1; a~ causes —x; if t;_q;

describe how we assign values to the variables x;;

— fori=1,2,...,n, the rules
a’ causes t; if t;_1; a causes t; if t;_1;
a® causes —t; 1 if t; 1; a causes —t; 1 if t; 1;
i—1 i—1 1—1 1—1

describe the update of the time fluents ;.

The corresponding goal is designed as follows:

18

We replace in the above quantified propositional formula F, each existential
quantifier dz; by EX, each universal quantifier Vz; by AX; let us denote the
result of this replacement by F;

For example, for a formula dz,VxoF', this construction leads to the following
goal: EX(AX(F')) This reduction leads to a linear increase in length, so this
reduction is polynomial-time.

To complete the proof, we must show that this is a “valid” reduction, i.e., that
the resulting planning problem is solvable if and only if the original quantified
propositional formula is true.

Let us now show that the validity of the formula F’ at the moment ¢ = 0 is
indeed equivalent to the validity of the above quantified propositional formula.
We will prove this equivalence by induction over the total number of variables
n.

Induction base: For n = 0, we have no variables x; at all, so F' is either
identically true or identically false. In this case, F’ simply coincides with F,
so they are, of course, equivalent.

Induction step: Let us assume that we have proven the desired equivalence for
all quantified propositional formulas with n — 1 variables; let us prove it for
quantified propositional formulas with n variables.

Indeed, let a quantified propositional formula F of the above type be given.
There are two possibilities for the first variable x; of this formula:

— it may be under the existential quantifier 9z¢; or
— it may be under the universal quantifier Vz;.

1°. In the first case, the formula F has the form dz,G, where for each z,, G is
a quantified propositional formula with n — 1 variables z,, ..., x,. According
to our construction, the CTL formula F’ has the form E(QOG"), where G’ is
the result of applying this same construction to the formula G.

To show that F' is indeed equivalent to F, we will first show that F' implies
F, and then that F implies F”.

1.1°. Let us first show that F’ implies F.

19

Indeed, by definition of the operator E, if the formula F' = E((OG’) holds at
the moment ¢ = 0 this means that there exists a path for which, at moment
t =0, the formula OG’ is true.

By definition of the operator () (“next”), the fact that the formula OG’ is
true at the moment ¢ = 0 means that the formula G’ is true at the next
moment of time ¢t = 1.

By the time ¢ = 1, we have applied exactly one action which made x; either
true or false, after which the value of this variable z; does not change. Let us
select the value z; as "true” or “false” depending on which value was selected
along this path.

The moment ¢; can be viewed as a starting point for the planning problem
corresponding to the remaining formula G. By induction assumption, the va-
lidity of G’ at this new starting moment is equivalent to the validity of the
quantified propositional formula G. Thus, the formula G is true for this par-
ticular z;, hence the original formula F = 3z:G is also true. So, F’ indeed
implies F.

1.2°. Let us now show that F implies F".

Indeed, if F = dx1G is true, this means that there exists a value x; for which
G is true. By the induction assumption, this means that for this same z1,
the goal formula G’ is also true at the new starting moment ¢ = 1. Thus, for
any path which starts with selecting this x1, the formula ()G’ is true at the
previous moment ¢ = 0. Since this formula is true for some path, by definition
of the operator E, it means that the formula E(QG’) is true at the moment
t =0, and this formula is exactly F”.

Thus, F does imply F’, and hence F and F’ are equivalent.

2°. The second case, when z; is under the universal quantifier Vz;, can be
handled similarly.

The induction step is proven, and thus, by induction, the equivalence holds
for all n.

Thus, the reduction is valid, and the planning problem with respect to CTL-

goals is indeed PSPA CE-complete. Since CTL is a subset of CTL* the plan-
ning problem with respect to CTL*-goals is also PSPACE-hard. Since we
earlier showed that it is in PSPACE, the planning problem with respect to

20

CTL*-goals is also PSPACE-complete. O

The above result is in good accordance with the fact that the decidability prob-
lem for most branching temporal logics is also PSPACE-complete [GHR94].

For the Branching Temporal Logic, not only planning, but even plan checking
is difficult:

Theorem 4 For goals expressible in Branching Temporal Logics CTL and
CTL*, the plan checking problem is PSPACE-complete. O

Proof of Theorem 4. Similarly to the proof of Theorem 3, we can show
that plan checking belongs to the class PSPACE, so all we need to prove
is the desired reduction. From the proof of Theorem 3, one can see that the
exact same reduction will work here as well, because in this reduction, the
equivalence between F and F”’ did not depend on any action plan at all. The
equivalence used in the proof of Theorem 3 is based on the analysis of possible
trajectories and does not use the actual trajectory at all.

Thus, we can pick any action plan (e.g., a sequence consisting of n actions
a’), and the desired equivalence will still hold. a

4.4 Complexity of the planning problem with goals expressible in a limited
variant of Branching Temporal Logic

Theorems 3 and 4 mean that allowing temporal goals from CTL and CTL* can
drastically increase the computational complexity of planning. These results,
however, do not necessarily mean that planning under safety and mainten-
ability conditions is necessarily very complex. Many such conditions can be
expressed in a variant of the above language, a variant for which the planning
problem is much simpler than for CTL*.

The main idea behind this variant is that in many maintainability conditions,
we do not need to consider all possible paths, it is sufficient to consider paths
which differ from the actual one by no more than one (or, in general, by no
more than k) states. In this case, the planning problem becomes much simpler.

Let us first define what it means for two paths to differ in no more than k&
states. In other words, let us define a notion of “distance” between the two
paths. A path is a particular case of a trajectory — which was defined as an
infinite sequence of states sg, s1,... To make things simpler, let us therefore

21

define the distance between arbitrary trajectories o and o’.

A natural way to define such a distance is as follows: First, we define an
elementary transformation as a transformation that changes a single state.
We will consider three types of elementary transformations:

— a transformation T; ; that replaces i-th state in the original trajectory by a
state s:

T;’S(SO, S1yc 58515545 Si+1, - -) = (80, Sty e98i—158;Si+1, - - .);

— a transformation Tfs that adds a state s after the ¢-th state in the original
trajectory:

+ _ .
Ti,s(So,Sb c o3 8i1, 86y Sigls -) = (80,81, -+, 8i1, 56,8, Sig1,- - -);
— a transformation 7" that deletes the i-th state in the original trajectory:
T (8055155815805 Sit1y--+) = (805815 -+, 8i 15 8i41,---)-

We can then define a distance between the trajectories o and ¢’ as the small-
est number of elementary transformations that transform o into ¢’. In other
words, we say that ¢’ is k-close to o if o’ can be obtained from ¢ by applying
no more than £ transformations.

It is worth mentioning that this definition is similar to the definition of a
distance between the DNA sequences in bioinformatics; see, e.g., [Pev00].

The original branching time operators E and A — ‘there exists a path’ and
‘for all paths” — do not take into consideration how close the corresponding
paths are to the original path. Instead of these operators, we can consider, for
each natural number k, the restricted versions E; and Aj that only consider
paths which are k-close to the original path. The formal semantics of these
new operators is as follows. For every path o = (so, ..., s, Sj+1,...), and for
every j, by o); we denote the remaining path, i.e., the path o); = (s;, 5j11,.-.)
Now:

— (sj, R,0) = Ej pf if there exists a path ¢’ in R starting from s; that is
k-close to oj; and for which (s;, R,0') = pf.

- (s, R,0) = Ag pf if for all paths ¢’ in R starting from s; which are
k-close to oy;, we have that (s;, R,0') = pf.

(Crudely speaking, the original operators E and A can be interpreted, in these
terms, as the operators E,, and A, corresponding to infinite distance k = 00.)

22

Please note that there is also a syntactic difference between the original
branching time operators and their restricted versions:

— The original operators E and A do not use the original path. Therefore, the
results E(pf) and A(pf) of applying these operators to a path formula (pf)
are state formulas.

— In contrast, the restricted versions E; and A of these operators do use the
original path. Therefore, the truth value of the resulting formulas Ex(pf)
and A(pf) may depend on the original path o. Hence, the expressions
Ex(pf) and Ax(pf) are path formulas.

Let us give an example of a natural planning statement that can be expressed
in terms of these operators. Suppose that we plan a road trip on an old car,
and we are concerned that the car may start leaking oil (as it used to do in
the past). We therefore want to plan a trip in such a way that we are always
at most one step away from a repair shop. To be more precise, we want to be
sure that at any state s; along the path, if necessary, we can, instead of going
to the next step s;;1, first go to a place where there is a repair shop, and then
continue onto s;41.

In general, such a repair would mean a 1-step delay. However, in some cases,
it may be possible to do a repair without a delay. In such cases, we simply
replace the original next state s;;1 by a new state (with repairs) and then go
on to the scheduled next state s; .

It may be also possible, in case of emergency, to get a permission to go faster;
in this case, we skip s;1, go directly to the next state s;;» and do repairs
there.

Let us describe this planning problem in more formal terms. Let p denote the
property “has a repair shop”. We want the path o = (s, $1,...) to be such
that for every state s; on this path, if this state does not have a repair shop
(i.e., if p is false at this state), then it should be possible to add a “detour”
state s’ — for which p is true — into this path, or skip the state. The resulting
path will be one of the following:

— o' = (s0,51,...,5j,8,8j41,...) — the result of inserting an additional state
into the original path o;

- o' = (so,51,---,5;,5,8j42,...) — the result of replacing the state s;;1 by a
new state s’;

— o' = (s0,51,..-,5j,Sj+2,-..) — the result of deleting the state s, from the

original path o.

23

In all three cases, ¢’ is obtained from o by a single elementary transformation,
so ¢’ is 1-close to 0. In other words, our requirement means that if p is false,
then in some 1-close path, p should be true in the next moment of time.
Formally, this implication can be described as —p = E;(Op), or, equivalently,
as p V E;(Op). This property must hold for all the states until we reach the
goal g. So, the final formalization of the above requirement is:

(pV E1(Op))Ug

For this variant, the planning problem is not as complex as for the original
language CTL*. Indeed, let us denote by C'T'L} a variant of CTL* in which,
instead of the original operators E and A, we only allow operators E; and A,
corresponding to different distances k.

Let K > 0 be a positive integer. We say that an expression in this language is
K -limited if the sum of all the distances corresponding to its operators E; and
A, does not exceed K. For example, the above expression (p V E;(Op))Ug is
1-limited.

Theorem 5 Let K > 0 be an integer. For K-limited goals expressible in
Branching Temporal Logic CTL}, the planning problem is NP-complete. O

Theorem 6 Let K > 0 be an integer. For K-limited goals expressible in
Branching Temporal Logic CTL}, the plan checking problem is tractable. O

Proof of Theorems 5 and 6. Each operator E; and A, deals only with
paths which are k-close to the original path o. If we have a composition of
such operators, e.g., E;xA;, then we must consider paths which are k-close to
the paths which are [-close to the original path ¢. Due to triangle inequality,
the distance between each considered path and the original path o cannot
exceed k4 1. In other words, for such a composite statement, it is sufficient to
consider paths which are (k + [)-close to the original path o.

Similarly, in general, for an arbitrary formula from CTL}, it is sufficient to

consider only paths whose distance from the original path o does not exceed
the sum of all the distances k corresponding to different operators E; and
Ag. In other words, for a K-limited goal, it is sufficient to consider only paths
which are K-close to the original path 0. We will show that there is a tractable
number of such paths and therefore, we can simply enumerate all of them.

Let us first count the number of paths which are 1-close to the original path
0, i.e., which can be obtained from o by a single elementary transformation.
Let T be a duration of the path before it reaches the final goal, and let A be

24

the total number of possible actions. For each of T states s; on the path, we
have the following paths:

— We have at most one path 7 (o) obtained by deleting the state s;. We say
“at most one”, not “one” because it is possible that the resulting trajectory
T (o) = (So,---,8i—1,Sit1,---) is not a path, i.e., that no action can lead
us from s; ; directly to s;41.

— We have paths T; ;(¢) = (So,---,Si-1, S, Si+1, - - .) obtained by replacing the
state s; by a new state s. Each such path corresponds to a different action a
applied to the state s;_;. Therefore, the total number of such paths cannot
exceed the total number A of possible actions.

— We also have paths T;’s (0) = (S0y- -+ Si 1, Sis S, Sit1, - - .) Obtained by insert-
ing a new state s after the state s;. Each such path corresponds to a different
action a applied to the state s;. Therefore, the total number of such paths
cannot exceed the total number A of possible actions.

Adding up these numbers, we conclude that there are no more than 1+ A+ A =
2A + 1 paths which differ from o in the state s;. We have < (24 + 1) such
paths for each of 1" states, so the total number of 1-close paths does not exceed
T -(2A+1). In other words, the total number of 1-close paths is O(T - A).

Similarly, there exist no more than O((T - A)?) paths which are 2-close to the
original path, no more than O((T'- A)*) paths which are 3-close to the original
path, etc. In general, whatever number K we fix, there is only a polynomial
number (O(T - A)¥X) of possible paths which are K-close to the original path.

Therefore, for fixed K, we can explicitly describe the new operators E; and
A, by enumerating all such possible paths. Thus, similarly to the proof of
Theorems 1 and 2, we can conclude that for planning with K-limited goals,
plan checking is tractable and the corresponding planning problem is NP-
complete. O

5 Conclusions

In this paper we showed the usefulness of branching time temporal logics CTL
and CTL* in expressing certain planning goals that can not be expressed in
linear temporal logics. We precisely defined what it means for a sequence of
actions to be a goal with respect to a goal in CTL and CTL*.

We analyzed the complexity of planning with respect to goals in temporal
logics, both linear and branching time. Our complexity results are different
from the result in [DV99] in the following ways. (i) We consider plans of

25

feasible (polynomial length), while they consider plans of arbitrary length. (ii)
We consider the description of the planning problem to be given in a high
level language, while they consider it to be given as an automata. (iii) They
consider only linear temporal goals, while we consider both linear temporal
goals and branching time temporal goals in CTL and CTL*. (iv) A not so
significant difference is that their linear temporal goals are expressed using a
Biichi automata.

The main conclusion of our complexity analysis is that if, instead of traditional
goals which only refer to the state of the system at the last moment of time,
we allow goals which explicitly mention the actual past and actual future
states, the planning problem does not become much more complex: it stays
on the same level of complexity hierarchy. On the other hand if we allow goals
which refer to potential future, the planning problem can become drastically
more complicated. Thus, we should be very cautious about such more general
goals. We do identify a particular variant of such goals, which we refer to as
K-limited goals, for which the complexity of planning reverts back to the case
with simple propositional goals.

Acknowledgments

This work was supported by NASA grants NCC5-209 and NCC 2-1232, by the
AFOSR grant F49620-00-1-0365, by the grant W-00016 from the U.S.-Czech
Science and Technology Joint Fund, and by the NSF grants IRI 9501577,
0070463, CDA-9522207, ERA-0112968, and 9710940 Mexico/Conacyt.

References

[BK98] F. Bacchus and F. Kabanza. Planning for temporally extended goals.
Annals of Mathematics and Artificial Intelligence, 22:5-27, 1998.

[BKTO1] C. Baral, V. Kreinovich, and R. A. Trejo, “Computational Complexity of
Planning with Temporal Goals”, Proceedings of the International Joint
Conferences in Artificial Intelligence IJCAI'01, Seattle, Washington,
August 4-10, 2001, pp. 509-514.

[BTKO00] C. Baral, R. Trejo, and V. Kreinovich. Computational complexity of
planning and approximate planning in the presence of incompleteness.
Artificial Intelligence, 122:241-267, 2000.

[Byl94] T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69:161-204, 1994.

26

[DV99] G. DeGiacomo, and M. Vardi. Automata-Theoretic Approach to
Planning for Temporally Extended Goals. Proc. of ECP 1999, 226-238.

[Eme90] E. A. Emerson. Temporal and modal logics. In: Jan van Leeuwen, editor.
Handbook of Theoretical Computer Science, Vol. B, pages 995-1072, MIT
Press, Cambridge, Massachusetts, 1990.

[ENS95] K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability
and undecidability results for domain-independent planning. Artificial
Intelligence, 76(1-2):75-88, 1995.

[GHR94] D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic:
Mathematical Foundations and Computational Aspects. Oxford
University Press, New York, 1994.

[GL93] M. Gelfond and V. Lifschitz. Representing actions and change by logic
programs. Journal of Logic Programming, 17(2,3,4):301-323, 1993.

[Lib97] P. Liberatore. The complexity
of the language A. FElectronic Transactions on Artificial Intelligence,
1:13-28 (http://www.ep.liu.se/ej/etai/1997/02), 1997.

[Lit97] M. L. Littman. Probabilistic propositional planning: representations and
complexity. In AAAT 97, pages 748-754, 1997.

[NS00] R. Niyogi and S. Sarkar. Logical specification of goals. In International
Conference on Information Technology ICIT’2000, Bhubaneswar, India,
December 21-23, 2000. Tata McGraw-Hill.

[OWA91] O. Ozveren, A. Willsky, and P. Antsaklis. Stability and stabilizability
of discrete event dynamic systems. JACM, 38(3):730-752, July 1991.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
Reading, Massachusetts, 1994.

[Pev00] P. A. Pevzner, Computational Molecular Biology: An Algorithmic
Approach, MIT Press, Cambridge, Massacusetts, 2000.

[WE94] D. Weld and O. Etzioni. The first law of robotics (a call to arms). In
AAAI pages 1042-1047, 1994.

27

