
Complexity and approximation studies of finding polynomially
bounded length plans for temporal goals

Chitta Baral†, Vladik Kreinovich‡, Sudeshna Sarkar],
Nam Tran†, Raul Trejo\ and Xin Zhang†

† Department of Computer Science and Engineering,
Arizona State University,
Tempe, AZ 85233, USA.

{chitta,nhtran,xin.zhang}@asu.edu

‡ Department of Computer Science,
University of Texas at El Paso,

El Paso, TX 79968, USA.
vladik@cs.utep.edu

] Department of Computer Science & Engineering,
Indian Institute of Technology,

Kharagpur, India 721302.
sudeshna@cse.iitkgp.ernet.in

\ ITESM Campus Edo. Ḿexico,
Atizapan, Ḿexico 52926

rtrejo@campus.cem.itesm.mx

May 31, 2003

Abstract

In this paper1 we consider the problem of planning with temporal goals, focussing on polynomi-
ally bounded length plans. Past results about complexity of planning are mostly about finding plans
that take the world to one of several desired states, often described using a goal formula. We first
consider goals expressed using linear temporal logic and analyze the complexity of planning with
respect to such goals for both when the states in the trajectory are complete states, and when they are
incomplete states. For the later case we also develop a notion of approximate planning and show its
complexity to be lower. We also show that this notion of approximate planning is sound. We then
consider goals that also have a knowledge component, and refer to such goals as knowledge tem-
poral goals. We analyze the complexity of planning with respect to such goals, propose a notion of
approximate planning which is sound and also analyze the complexity of such planning. Finally, we
present several goals that can not be adequately expressed using linear temporal logics. To specify
these goals, we propose the use of branching time temporal logics such as CTL and CTL∗, and define
what it means for a plan to satisfy such a goal. We then analyze the complexity of planning with such
goals and identify a variant of such goals which leads to a lower complexity of planning.

1This paper is a substantial extension of an IJCAI’01 paper by Baral, Trejo and Kreinovich titled “Computational Com-
plexity of Planning with Temporal Goals”, with three additional co-authors. About half the results in this version are new with
respect to the IJCAI’01 version.

1



1 Introduction and Motivation

In the presence of complete information about the initial situation, a plan – in the sense of classical
planning – is a sequence of actions that takes the agent from the initial situation to the state which
satisfies a given goal. Traditionally, a goal is described by a fluent formula which must be true in the
state reached after executing the plan. For such goals, the computational complexity of finding a plan
has been well-studied [4, 7, 11, 2]. In the most natural formulation, the problem of finding a plan whose
length is bounded by a given polynomial isNP-complete. (We give the definitions of standard complexity
terms such asNP-completeness in a later section.)

In many real-life planning problems, often the goal is much more than just reaching one of a set of
desired states. It may involve putting restrictions on the path such as making sure certain fluents are true
throughout the path, or the truth value of certain fluents revert back [20] – after the execution of the plan
– to their truth value in the initial state. In [1] use ofLinear Temporal Logics(LTLs) to express such
goals is proposed. In this paper ourfirst goal is to study the complexity ofpolynomial lengthplanning
with such goals when the planning domain isspecified2 in a high-level languagesuch as STRIPS orA
[8] and the initial state is completely known.

We then consider the case when there is incomplete information about the initial state, usually leading to
incomplete knowledge about the states in the trajectories. We analyze the complexity of planning with
respect to LTL goals for such cases. Our analysis shows the complexity to be higher than NP-complete.
To counter this we develop a notion of approximate planning with respect to LTL goals. We show that
our notion is sound and has a lower complexity. (We consider finding sound approximate notions with
lower complexity for planning problems with complexity higher than NP-complete to be important and
follow that methodology throughout the paper.)

When dealing with incompleteness, especially in presence of sensing actions, often it is useful to have
knowledge goals. Sometimes we need to have both knowledge aspects and temporal aspects in a goal.
For example, one may wish to have a goal of determining the value of fluentf but without changing its
value in the process. The first part is concerned with the ‘knowledge’ aspect, while the second part is a
restriction on the trajectory and needs temporal operators for its specification. We propose a simple logic
that incorporates both temporal and knowledge modalities and analyze the complexity of planning with
respect to such goals. Here also, we consider an approximate notion; show it to be sound and analyze its
complexity.

Although linear temporal logics (LTLs) can specify certain restrictions on the trajectory corresponding
to a plan, certain goal specifications are beyond the expressibility of LTLs. This include cases where an
agent is interested in states that are not directly in its planned trajectory but are reachable from states
in the trajectory. For example, one may want to specify the goal of going from location A to location
B such that for each intermediate location there is a gas station within two steps. In this case the gas
station does not have to be in the path (trajectory) taken from A to B. Such a goal can not be expressed in
LTLs and needs branching time logics. Thenextgoal of our paper is to explore the use of branching time
logics such as CTL and CTL∗ in expressing planning goals beyond the capability of LTLs. In particular,
we give several example goals and their representations in CTL∗ and CTL; and precisely define what it
means for a plan to satisfy a goal in CTL and CTL∗. The use of CTL for expressing goals in planning
was first proposed in [13].

2In [5] planning with LTL goals is studied with respect toarbitrary lengthplans and with the planning domainspecified as
an automata. There is no direct correlation between these two type of results.

2



We then analyze the complexity of polynomial length planning with respect to CTL and CTL∗ goals. We
also identify a variant of CTL and CTL∗ with respect to which polynomial length planning belongs to a
lower complexity class.

Our complexity analysis is based on the action description languageA proposed in [8]. The language
A and its variants have made it easier to understand the fundamentals (such as inertia, ramification,
qualification, concurrency, sensing, etc.) involved in reasoning about actions and their effects on a world,
and we stick to that simplicity principle here. To stick to the main point we consider the simplest action
description, and do not consider features such as executability conditions.

The rest of the paper is organized as follows. In Section 2 we present several background materials. In
particular in Section 2.1 we give a brief description of the languageA; in Section 2.2 we present syntax
and semantics of LTL and define what it means for a plan to satisfy an LTL goal; in Section 2.3 we
recall useful complexity notions; and in Section 2.4 we recall useful complexity of planning notions. In
Section 3 we present complexity analysis of planning with LTL goals. We start with (Section 3.1) with
the case where the initial state is completely known. In Section 3.2 we consider the conformant planning
when the initial state is incompletely known, and in Sections 3.3-3.6 we discuss an approximate and
sound notion of planning for such a case and analyze its complexity. In Section 4 we present the notion
of temporal-knowledge formulas, analyze the complexity of planning with goals represented as such
formulas, and also study an approximate notion. In Section 5 we discuss the use of CTL∗ and CTL
in expressing goals, define what it means for a plan to satisfy a CTL or CTL∗ goal, and give several
examples of planning goals in CTL and CTL∗. We then present complexity results about planning and
plan checking with respect to CTL and CTL∗ goals, and consider a variant of CTL and CTL∗ goals with
a lower complexity. Finally in Section 6 we conclude.

2 Background

2.1 The action description languageA

In the languageA, we start with a finite list of properties (fluents)f1, . . . , fn which describe possible
properties of a state. Astateis then defined as a finite set of fluents, e.g.,{} or{f1, f3}. Intuitively, a state
{f1, f3} means that in that state, propertiesf1 andf3 are true, while all the other propertiesf2, f4, . . .
are false. The properties of the initial state are described by formulas of the type

initially f,

wheref is afluent literal, i.e., either a fluentfi or its negation¬fi. We assume that we have complete
knowledge about the initial state.

Execution of actions may change the state. In the language there is a finite set ofactions. The effect of
each actiona is specified by formulas of the type

a causes f if f1, . . . , fm,

wheref, f1, . . . , fm are fluent literals. A reasonably straightforward semantics describes how the state
changes after an action:

• If, before the execution of an actiona, fluent literalsf1, . . . , fm were true, and the domain descrip-
tion contains a rule “a causes f if f1, . . . , fm”, then this rule isactivated, and after the execution
of the actiona, f becomes true.

3



• If for some fluentfi, no activated rule enables us to conclude thatfi is true or false, this means
that the execution of actiona does not change the truth of this fluent; therefore,fi is true in the
resulting state if and only if it was true in the old state.

Formally, adomain descriptionD is a finite set ofvalue propositionsof the type “initially f ” (which
describe the initial state), and a finite set ofeffect propositionsof the type “a causes f if f1, . . . , fm”
(which describe results of actions). Assuming that we have complete information about the initial sit-
uation, which is our assumption here, theinitial state s0 consists of all the fluentsfi for which the
corresponding value proposition “initially fi” is in the domain description. We say that a fluentfi holds
in s if fi ∈ s; otherwise, we say that¬fi holds ins. The transition functionΦD(a, s) which describes
the effect of an actiona on a states is defined as follows:

• we say that an effect proposition “a causes f if f1, . . . , fm” is activatedin a states if all m fluent
literalsf1, . . . , fm hold ins;

• we defineV +
D (a, s) as the set of all fluentsfi for which a rule “a causes fi if f1, . . . , fm” is

activated ins;

• similarly,
we defineV −

D (a, s) as the set of all fluentsfi for which a rule “a causes ¬fi if f1, . . . , fm” is
activated ins;

• if V +
D (a, s) ∩ V −

D (a, s) 6= ∅, we say that the result of the actiona is undefined;

• if the result of the actiona is definedin a states (i.e., if V +
D (a, s) ∩ V −

D (a, s) = ∅), we define
ΦD(a, s) = (s ∪ V +

D (a, s)) \ V −
D (a, s).

When the domain descriptionD is clear from the context we just writeΦ instead ofΦD.

A planp is defined as a sequence of actions[a1, . . . , am]. TheresultΦD(p, s) of applying a planp to the
initial states0 is defined as

ΦD(am, ΦD(am−1, . . . , ΦD(a1, s0) . . .)).

Theplanning problemis: given a domainD and a desired property, find a plan for which the resulting

plans0, s1
def= ΦD(a1, s0), s2

def= ΦD(a2, s1), etc., satisfies the desired property. In particular, if the goal
is to make a certain fluentf true, then the planning problem consists of finding a plan which leads to the
state in whichf is true.

In addition to the planning problem it is useful to consider theplan checkingproblem: given a domain, a
desired property, and a candidate plan, check whether this candidate plan satisfies the desired property.
It is known that in the presence of complete information about the initial situation and deterministic
actions, for fluent goals (i.e., goals requiring that a set of fluents be true in the final state), plan checking
is a polynomialproblem – i.e., there exists a polynomial-time algorithm for checking whether a given
plan satisfies the given fluent goal [4, 7, 11, 2].

2.2 Representing planning goals using Linear Temporal Logic

In most planning systems the goals – represented by a logical formula – describe a set of finals states that
an agent may want to get into. The plans then involve a sequence of actions that takes the world from a

4



given initial state to one of the states specified by the goal. Temporal logics play a role when the goal is
not just to get to one of a set of a given states but also involves conditions on what are acceptable ways
to get there and what are not. In the past [1] it has been suggested that Linear Temporal Logics (LTLs)
be used to specify certain kind of goals. LTLs are modal logics with modal operators either referring to
the future or to the past. The future operators in LTL are:next(denoted by©), always(denoted by2),
eventually(denoted by3), anduntil (denoted byU). The past operators in LTL are:previously, always
in the past, sometime in the past, andsince. In this paper our focus will be on the future operators as
planning for temporal goals with only future operators can be easily done by forward search methods.
Syntactically an LTL formula is defined as follows:

〈LTL formula〉 ::= 〈propositional formula〉|
¬〈LTL formula〉|
〈LTL formula〉 ∧ 〈LTL formula〉|
〈LTL formula〉 ∨ 〈LTL formula〉|
©〈LTL formula〉|
2〈LTL formula〉|
3〈LTL formula〉|
〈LTL formula〉 U 〈LTL formula〉

The truth of LTL formulas are usually defined with respect to an infinite sequence of states, often referred
to as atrajectory, and a reference state. Intuitively, an LTL formula2p is true with respect to a trajectory
σ consisting ofs0, s1, . . ., and a reference statesj if for all i ≥ j, p is true insi. We now give a formal
definition of the truth of LTL formulas consisting of future operators [1]. In the followingp denotes a
propositional formula,si’s are states,σ is the trajectorys0, s1, . . ., andfi’s denote LTL formulas (with
only future operators).

• (sj , σ) |= p iff p is true insj .

• (sj , σ) |= ¬f iff (sj , σ) 6|= f

• (sj , σ) |= f1 ∧ f2 iff (sj , σ) |= f1 and(sj , σ) |= f2.

• (sj , σ) |= f1 ∨ f2 iff (sj , σ) |= f1 or (sj , σ) |= f2.

• (sj , σ) |= ©f iff (sj+1, σ) |= f

• (sj , σ) |= 2f iff (sk, σ) |= f , for all k ≥ j.

• (sj , σ) |= 3f iff (sk, σ) |= f , for somek ≥ j.

• (sj , σ) |= f1 U f2 iff there existsk ≥ j such that(sk, σ) |= f2 and for alli,
j ≤ i < k, (si, σ) |= f1.

Since truth of LTL formulas are defined with respect to a reference state and a trajectory made up of an
infinite sequence of states, to define the correctness of a plan with respect to an initial state and an LTL
goal, we need to identify a trajectory that corresponds to the initial state and the plan. We define it as
follows:

Let s be a state designated as the initial state, leta1, . . . , an be a sequence of deterministic actions whose
effects are described by a domain description. The trajectory corresponding tos anda1, . . . , an is the
sequence of statess0, s1, . . . , that satisfies the following conditions:

5



• s = s0,

• si+1 = Φ(ai+1, si), for 0 ≤ i ≤ n− 1, and

• sj+1 = sj , for j ≥ n.

We then say that the sequence of actionsa1, . . . , an is a plan from the initial states for the goalf , if
(s0, σ) |= f , whereσ is the trajectory corresponding tos anda1, . . . , an.

One nuance of the above definition is that a simple goal of reaching a state wheref is true can not be
expressed by justf , but now needs to be expressed by the temporal formula32f . This is because our
reference point in the definition of a plan is the initial state. On the other hand if we were to use an LTL
with only past operators, then the specification can refer to the states before the reference state, and by
having the reference state as the current state during forward planning, the goal of reaching a state where
f is true can be expressed by justf .

Another nuance of our definition is that although a propositional formula is also an LTL formula, a goal
represented as a propositional formula is in general not very useful as (i) if the formula is true in the
initial state then the empty sequence of actions is a plan, and (ii) if the formula is not true in the initial
state then there are no plans.

We prefer the usage of future operators because of its use in earlier work on planning with temporal
goals [1], because if we use the initial state as the reference point then it remains the same as the plan is
expanded in the forward direction, and because we find it more intuitive for expressing many other kind
of temporal goals. We now list some temporal goals and their representation using an LTL with only
future operators.

1. If we are planning a flight of an automatic spy mini-plane, then the goal is not only toreachthe
target point, but also to avoid detection; i.e., to have the fluentdetected false all the time.

The above can be expressed as:32reached ∧ 2¬detected

2. The goal “until the destination is reached the robot keeps its front clear of obstacles” can be ex-
pressed as:

clear U reached

3. The goal “until the destination is reached the robot maintains its front clear of obstacles” can be
expressed as:

3clear U reached

4. The goal “reach the destination but while doing it if a closed door is opened then it must be
immediately closed” can be expressed as:

32reached ∧ 2(closed ∧©¬closed ⇒©© closed).

5. The goal “reach the destination but while doing it if a closed door is opened then it must be
eventually closed” can be expressed as:

32reached ∧ 2(closed ∧©¬closed ⇒ 3 2 closed).

6



6. The goal “reach the destination but while doing it closed doors must not be opened” can be ex-
pressed as:

32reached ∧ 2(closed ⇒©closed).

7. When dealing with plans that are not finite, which happens when the agent is continually interact-
ing with the environment, then one way to express that the fluentf be maintained is through the
LTL formula: 23f .

This is similar to the notion of stability and stabilizability in discrete event dynamic systems [14].

Additional examples of use of LTL in specifying planning goals are given in the literature [1, 13].

2.3 Useful complexity notions

In this section we briefly review the various complexity notions that we will use in the remaining of
the paper. Crudely speaking, a decision problem is a problem of deciding whether a given inputw
satisfies a certain propertyP (i.e., in set-theoretic terms, whether it belongs to the corresponding set
S = {w |P (w)}).

Definition 1 The basic complexity classes

• A decision problem is said to belong to the classP if there exists a deterministic Turing machine
(DTM) that takes polynomial time in solving this problem.

• A decision problem is said to belong to the classNP if there exists a non-deterministic Turing
machine (NDTM) that takes polynomial time in solving this problem.

• A decision problem is said to belong to the classcoNP if the complement of the problem is inNP.

• A decision problem is said to belong to the classPSPACE if there exists a DTM that takes poly-
nomial space in solving this problem.

• For any deterministic or non-deterministic complexity classC, the classCA is defined to be the
class of all languages decided by machines of the same sort and time bound as inC, except that
the machine now has an oracleA.

• The Polynomial hierarchy is defined as follows:

– Σ0P = Π0P = P

– Σi+1P = NPΣiP

– Πi+1P = coNPΣiP 2

In this paper we will use the following alternative characterization of the polynomial hierarchy in our
proofs.

7



• A problem belongs to the classNP if the formulaw ∈ S (equivalently,P (w)) can be represented
as∃uP (u,w), whereP (u,w) is a polynomial property, and the quantifier runs over words of
polynomial length (i.e., of length limited by some given polynomial of the length of the input).
The classNP is also denoted byΣ1P to indicate that formulas from this class can be defined by
adding 1 existential quantifier (henceΣ and 1) to a polynomial predicate (P).

• A problem belongs to the classcoNPif the formulaw ∈ S (equivalently,P (w)) can be represented
as∀uP (u,w), whereP (u,w) is a polynomial property, and the quantifier runs over words of
polynomial length (i.e., of length limited by some given polynomial of the length of the input).
The classcoNP is also denoted byΠ1P to indicate that formulas from this class can be defined by
adding 1 universal quantifier (henceΠ and 1) to a polynomial predicate (henceP).

• For every positive integerk, a problem belongs to the classΣkP if the formulaw ∈ S (equiva-
lently, P (w)) can be represented as∃u1∀u2 . . . P (u1, u2, . . . , uk, w), whereP (u1, . . . , uk, w) is
a polynomial property, and allk quantifiers run over words of polynomial length (i.e., of length
limited by some given polynomial of the length of the input).

• Similarly, for every positive integerk, a problem belongs to the classΠkP if the formula
w ∈ S (equivalently, P (w)) can be represented as∀u1∃u2 . . . P (u1, u2, . . . , uk, w), where
P (u1, . . . , uk, w) is a polynomial property, and allk quantifiers run over words of polynomial
length (i.e., of length limited by some given polynomial of the length of the input).

• All these classesΣkP andΠkP are subclasses of a larger classPSPACE formed by problems
which can be solved by a polynomial-spacealgorithm. It is known (see, e.g., [15]) that this class
can be equivalently reformulated as a class of problems for which the formulaw ∈ S (equivalently,
P (w)) can be represented as∀u1∃u2 . . . P (u1, u2, . . . , uk, w), where the number of quantifiersk
is bounded by a polynomial of the length of the input,P (u1, . . . , uk, w) is a polynomial property,
and allk quantifiers run over words of polynomial length (i.e., of length limited by some given
polynomial of the length of the input).

A problem is calledcompletein a certain class if, any other general problem from this class can be
reduced to it by a polynomial-time reduction.

2.4 Complexity of planning notions

We are now ready to describe the complexity of planning notions. The planning problem of our interest
in this paper is as follows:

• givena domain description (i.e., the description of the initial state and of possible consequences of
different actions) and a goal in a temporal logic,

• determinewhether it is possible to achieve this goal (i.e., whether there exists a plan which achieves
this goal).

We are interested in analyzing thecomputational complexityof the planning problem, i.e., analyzing the
computation time which is necessary to solve this problem.

Ideally, we want to find cases in which the planning problem can be solved by apolynomialalgorithm,
i.e., by an algorithmU whose computational timetU (w) on each inputw is bounded by a polynomial

8



p(|w|) of the length|w| of the inputw: tU (x) ≤ p(|w|) (this length can be measured bit-wise or symbol-
wise). Recall that problems which can be solved by suchpolynomial-timealgorithms are called problems
from the classP (whereP stands forpolynomial-time). If we cannot find a polynomial-time algorithm,
then at least we would like to have an algorithm which is as close to the class of polynomial algorithms
as possible.

Since we are operating in a time-bounded environment, we should worry not only about the time for
computingthe plan, but we should also worry about the time that it takes to actuallyimplementthe plan.
If a (sequential) action plan consists of a sequence of22n

actions, then this plan is not polynomial. It is
therefore reasonable to restrict ourselves topolynomialplans, i.e., to plansu whose execution time (or
duration)T (u) is bounded by a polynomialp(|w|) of the inputw.

With this tractability in mind, we can now formulate the above planning problem in precise terms:

• given:a polynomialp(n) ≥ n, a domain descriptionD (i.e., the description of the initial state and
of possible consequences of different actions) and a goal statementS (i.e., a statement which we
want to be true),

• determinewhether it is possible to tractably achieve this goal, i.e., whether there exists a
polynomial-duration planu (with T (u) ≤ p(|D|+ |S|)) which achieves this goal.

The main goal of this paper is to analyzing thecomputational complexityof this planning problem for
goals expressed in various temporal languages, and for various assumptions about the initial state.

3 Complexity and approximation studies of planning with LTL goals

In this section we present our complexity results about planning with respect to goals specified in LTL.
We start with the complexity of plan checking and planning with respect to complete initial states and
LTL goals.

3.1 Complexity of planning for the complete initial state case and LTL goals

Theorem 3.1 For goals expressible in Linear Temporal Logic (LTL), the plan checking problem is poly-
nomial. 2

Proof of Theorem 3.1Given a planu of polynomial length, we can check its correctness in a situation
w as follows:

• we know the initial states0;

• we take the first action from the action planu and apply it to the states0; as a result, we get the
states1;

• we take the second action from the action planu and apply it to the states1; as a result, we get the
states2; etc.

9



At the end, we get the values of all the fluents at all moments of time. On each step of this construction,
the application of an action to a state requires linear time; in total, there are polynomial number of steps
in this construction. Therefore, computing the values of all the fluents at all moments of time indeed
requires polynomial time.

Let us now take the desired goal statementS and consider how to build it up step by step from its
sub-formulas starting from the fluents.

For example, for the spy-plane goal statementS ≡ 32reached ∧ 2¬detected in Section 2.2,
s made up of the following sequence of intermediate statements:S1 := reached, S2 = 2S1,
S3 = 3S2, S4 = ¬detected, S5 = 2S4, S6 = S3 ∧ S5.

The number of the resulting intermediate statements cannot exceed the length of the goal statement; thus,
this number is bounded by the length|S| of the goal statement.

Based on the values of all the fluents at all moments of time, we can now sequentially compute the values
of all these intermediate statementsSi at all moments of time:

• When a new statement is obtained from one or two previous ones by a logical connective (e.g., in
the above example, asS6 := S3 ∧ S5), then, to compute the value of the new statement at allT
moments of time, we needT logical operations.

• Let us now consider the case when a new statement is obtained from one or two previously com-
puted ones by using one temporal operation: e.g., in the above example, asS3 := 3S2). Then, to
compute the truth value ofS3 at each moment of time, we may need to go over all other moments
of time. So, to computeSi for each moment of timet, we need≤ T steps. Hence, to compute the
truth value ofSi for all T moments of time, we need≤ T 2 steps.

In both cases, for each of≤ |S| intermediate statements, we need≤ T 2 computations. Thus, to compute
the truth value of the desired goal statement, we need≤ T 2 · |S| computational steps. Since we look
for plans for whichT ≤ p(|D|+ |S|) for some polynomialp(n), we thus need a polynomial number of
steps to check whether the given plan satisfies the given goal. 2

Theorem 3.2 For goals expressible in Linear Temporal Logic (LTL), the planning problem isNP-
complete. 2

Proof of Theorem 3.2We already know that the planning problem isNP-complete even for the simplest
possible case of LTL-goals: namely, for goals which are represented simply by fluents [4, 7, 11, 2].
Therefore, to prove that the general problem of planning under LTL-goals isNP-complete, it is sufficient
to prove that this general problem belongs to the classNP.

Indeed, it is known [15] that a problem belongs to the classNP if the corresponding formulaF (w) can
be represented as∃uP (u,w), whereP (u,w) is a polynomially verifiable property, and the quantifier
runs over words of polynomial length (i.e., of length limited by some given polynomial of the length of
the input).

For a given planning situationw, checking whether a successful plan exists or not means checking the
validity of the formula∃uP (u,w), whereP (u,w) stands for “the planu succeeds for the situationw”.

10



According to the above definition of the classNP, to prove that the planning problem belongs to the class
NP, it is sufficient to prove the following two statements:

• the quantifier runs only over wordsu of polynomial length, and

• the propertyP (u, w) can be checked in polynomial time.

The first statement immediately follows from the fact that in this paper, we are considering only plans of
polynomial duration, i.e., sequential plansu whose length|u| is bounded by a given polynomial of the
length|w| of the inputw: |u| ≤ p(|w|), wherep(n) is a given polynomial. So, the quantifier runs over
words of polynomial length.

Since from Theorem 3.1 we can check the success of a plan in polynomial time, and thus, the planning
problem indeed belongs to the classNP. The theorem is proven. 2

Since the planning problem isNP-complete even for simple (non-temporal) goals [4, 7, 11, 2], the above
result means that allowing temporal goals from LTL does not increase the computational complexity of
planning.

We gave the proofs of Theorems 3.1 and 3.2 for the version of Linear Temporal Logic which only uses
future temporal operators. However, as one can easily see from the proofs, these result remains true if
we allow past temporal operators or more sophisticated temporal operators, e.g., temporal operators of
the type3[t,s] from [1] which are defined on timed sequences of states. There, a timed sequence of states
M is defined as consisting of a sequence of statess0, . . . , together with an associated timing functionT
that maps states to a point in the non-negative real line such that for alli, T (si) ≤ T (si+1), and for all
real numbersr there exists ani such thatT (si) > r. The entailment(sj ,M) |= 3[t,s]f is then said to
hold if there exists ansk, such thatt ≤ T (sk) ≤ s, andf is true insk. Using3[t,s], the goal thatf must
be satisfied in the future during the time interval 10 to 36 is expressed as3[10,36]f .

3.2 Planning w.r.t incomplete initial states and LTL goals: conformant plans

As we mentioned earlier past research on planning with temporal goals has assumed the initial state (as
well as the states in the trajectory) to be completely known. Now let us consider the case when we have
incomplete information about the initial state. In that case the straightforward approach is to consider all
possible initial states that agree with our knowledge about the initial state. Then conformant planning
involves searching for a sequence of actions that is a plan with respect to each of these complete initial
states and the given LTL goal. We will now formally define this notion and present the complexity results
of such conformant planning.

An incomplete state (also referred to as an approximate state ora-state) is represented by a consistent set
of fluent literals. Ana-states is said to be complete if for every fluentf eitherf or¬f is in s.

Definition 2 (Extension of an incomplete state)Let s be an incomplete state. We say a states′ ⊇ s is
a complete extension ofs if s′ is complete. 2

Definition 3 (Conformant plan) Let D be a domain description,s be an (incomplete) initial state and
G be an LTL goal. A sequence of actionsa1, . . . , an is said to be a conformant plan with respect to a
(possibly incomplete) initial states′ and goalG, if for every complete extensions of s′, (s, σ) |= f ,
whereσ is the trajectory corresponding tos anda1, . . . , an. 2

11



In [2] it is shown that (conformant) planning with respect to incomplete initial states and goals that are
propositional formulas isΣ2P -complete. We now show that even if the goal is an LTL formula the
complexity of planning is stillΣ2P -complete.

Theorem 3.3 For situations of conformant planning with incomplete initial state, and LTL goals the
planning problem isΣ2P -complete. 2

Proof: From [2] we already know that the planning problem isΣ2P-complete for incomplete initial
states and for the simplest possible case of LTL-goals: namely, for goals which are represented simply
by fluent formulas. Therefore, to prove that the general problem of planning under incomplete initial
state and LTL goals isΣ2P-complete, it is sufficient to prove that this general problem belongs to the
classΣ2P.

Since an incomplete initial state means that the initial values of some fluents are unknown, for such
problems, the existence of a successful plan means the existence of a planu1 for which, for every set of
valuesu2 of the unknown fluents, the plan leads to a success. I.e., the existence of a successful plan can
be thus written as a formula∃u1∀u2P (u1, u2, w), where the predicateP (u1, u2, w) describes the fact
that for the planning problemw and for the valuesu2 of initially unknown fluents, the planu1 leads to
a success. Now, in order to prove that the problem belongs to the classΣ2P , we need to show that the
quantifiers run over variables of polynomial length, and that the predicateP (u1, u2, w) is polynomially
verifiable. Since the quantifieru1 runs over plans, it is of polynomial length. The quantifieru2 runs
over sets of values of fluents, and each set of values is of polynomial size (the length is equal to the
number of unknown fluents); thereforeu2 is also of polynomial size. Finally, if we know the values
u2 of all the initially unknown fluents, and if we know the sequence of actionsu1, then as described in
the proof of Theorem 2 in [2] we can check step-by-step whether for these values of fluents, the given
sequence of actions leads to success. Therefore, the predicateP (u1, u2, w) is polynomially verifiable.
So the planning problem with respect to LTL goals and incomplete initial states indeed belongs to the
classΣ2P . 2

3.3 Approximate planning with LTL goals and incomplete initial state

In this section our goal is to develop a notion of approximate planning which can find correct plans –
with respect to temporal goals and incomplete initial state, and which belongs to (as we will show) a
lower complexity class (of NP-complete) thanΣ2P -complete of the previous section. The price we pay
is that it may miss finding some plans.

The main initial steps in this endeavor is to: (i) use the notion of a-states and define a sound transition
between a-states due to actions, and (ii) define what it means for a temporal formula to betrue, false
andunknown with respect to a trajectory of incomplete states, and show that this definition is sound.
For (i) we use the notion of 0-approximation from [19], andthe formulation of (ii) is a novel contribution
of this paper. We now define the transition between a-states due to actions corresponding to the 0-
approximation.

Definition 4 (0-transition function) [19] The transition functionΦ0
D corresponding to the actions de-

scriptions of a domain descriptionD, which describes the effect of actions on a-states is defined as
follows:

12



• we say that an effect proposition “a causesf if f1, . . . , fm” is activatedin an a-states if all m
fluent literalsf1,...,fm hold ins;

• we say that an effect proposition “a causesf if f1, . . . , fm” is possibly activatedin an a-states if
all m fluent literalsf1,...,fm possibly hold ins (i.e., are either true or unknown ins);

• for an actiona, and a-states, we defineVD(a, s) as the set of all fluent literalsf for which a rule
“a causesf if f1, . . . , fm” is activated ins;

• for an actiona, and a-states, we defineV ′
D(a, s) as the set of all fluent literalsf for which a rule

“a causesf if f1, . . . , fm” is possibly activated ins;

• for an actiona, and a-states, we sayΦ0
D(a, s) is undefined ifV ′

D(a, s) has bothf and¬f for some
fluentf . If Φ0

D(a, s) is not undefined then we defineΦ0
D(a, s) as:

{f | (f ∈ s or f ∈ VD(a, s)) andf̄ 6∈ V ′
D(a, s)} 2

Proposition 1 [19] Φ0
D is sound with respect toΦD; I.e., for any a-states and actiona,

• If Φ0
D(a, s) is defined then for all extensionss′ of s, Φ(a, s′) is defined.

• If f is true w.r.t. (or false w.r.t.)Φ0
D(a, s) thenf is true w.r.t. (or respectively, false w.r.t.)Φ(a, s′),

for any extensions′ of s. 2

3.4 Truth of temporal formula with respect to trajectory of a-states: an approximate
notion

In Section 2.2 we defined the truth of temporal formulas with respect to a trajectory of states. We
now define an approximate 3-valued notion of truth with respect to a trajectory of a-states. Unlike
the definition in Section 2.2 where an LTL formula is either true or false with respect to a trajectory
of states, in the following true an LTL formula may evaluate totrue, false or unknown. Let σ =
〈s0, s1 . . . sn, . . .〉 be a sequence of a-states.

1. If f is a fluent:f is said to betrue w.r.t (sj , σ) if f ∈ sj andf is said to befalse w.r.t (sj , σ) if
¬f ∈ sj .

2. If f is an LTL formula:¬f is said to betrue w.r.t (sj , σ) if f is false w.r.t (sj , σ), and¬f is said
to befalse w.r.t (sj , σ) if f is true w.r.t (sj , σ).

3. If f andg areLTL formulae:f ∧ g is said to betrue w.r.t (sj , σ) if both f andg aretrue w.r.t
(sj , σ); andf ∧ g is said to befalse w.r.t (sj , σ) if eitherf or g is false w.r.t (sj , σ).

4. If f andg areLTL formulae: f ∨ g is said to betrue w.r.t (sj , σ) if either f or g is true w.r.t
(sj , σ); andf ∨ g is said to befalse w.r.t (sj , σ) if both f andg arefalse w.r.t (sj , σ).

5. If f is anLTL formula:©f is said to betrue w.r.t (sj , σ) if f is true w.r.t (sj+1, σ); and©f is
said to befalse w.r.t (sj , σ) if f is false w.r.t (sj+1, σ).

6. If f is anLTL formula: 2f is said to betrue w.r.t (sj , σ) if f is true w.r.t (sk, σ), for every
k ≥ j; and2f is said to befalse w.r.t (sj , σ) if f is false w.r.t (sk, σ), for somek ≥ j.

13



7. If f is anLTL formula: 3f is said to betrue w.r.t (sj , σ) if f is true w.r.t (sk, σ), for some
k ≥ j; and3f is said to befalse w.r.t (sj , σ) if f is false w.r.t (sk, σ), for everyk ≥ j.

8. If f andg areLTL formulae:f U g is true w.r.t (sj , σ), if there existsm > j such thatg is true
w.r.t (sm, σ) andf is true w.r.t (sk, σ), for everyk, j ≤ k < m; andf U g is said to befalse
w.r.t (sj , σ), if for everym > j such thatg is true w.r.t (sm, σ), there existsk, j ≤ k < m: f is
false w.r.t (sk, σ).

9. For any LTL formula iff is neithertrue w.r.t (sj , σ) norfalse w.r.t (sj , σ), we then say that it is
unknown w.r.t (sj , σ).

The conformant way to define the truth of a temporal formula w.r.t. a trajectory of a-states is to define a
notion of ‘extensions’ of such trajectories which consist of only states (instead of a-states) and consider
the truth of the given temporal formula w.r.t. all the extensions. But even though the alternative con-
formant definition is simpler to define, the definition that we have presented leads to a polynomial time
verification of LTL formulas with respect to trajectories of a-states, and as we will show it is sound with
respect to the conformant definition.

Definition 5 (Extension of trajectory) Let σ = 〈s0, s1, . . .〉 be a trajectory of a-states. We say a trajec-
tory of statesσ′ = 〈s′0, s′1, . . .〉 is an extension ofσ if for all i, s′i is an extension ofsi. 2

Proposition 2 [Soundness]Let σ = 〈s0, s1, . . .〉 be a trajectory of a-states. An LTL formulaf is true
(or false) with respect to(sj , σ) implies that it istrue (or false respectively) with respect to(s′jσ

′) for
all extensionsσ′ of σ and the corresponding extensions′j (of sj from σ) in σ′. 2

Proof: (sketch) We define a notion of the depth of an LTL formula. Simple fluents have depth 0, if a
temporal formulaf is made up of an unary operator and another formulaf ′ then the depth off = 1 +
depth off ′, and if a temporal formulaf is made up of a binary operator and two formulasf1 andf2

then depth off = 1 + max( depth off1, depth off2). The proof is then based on doing straightforward
induction on the depth of LTL formulas. 2

The above proposition shows that our approximate definition of the truths of LTL formulas with respect to
trajectories of a-states is sound with respect to the alternative conformant definition based on extensions
of the given trajectory of a-states. It is not complete though, as simple formulas of the formf ∨ ¬f
will have the truth valueunknown in a state wheref is unknown, while it will be evaluated totrue in
each of the extensions. Having the benefit of a lower complexity of verification – which matches with
the complexity of 0-approximation, at the cost of sacrificing completeness seems to us as an acceptable
trade off.

3.5 Approximate planning with LTL goals and its soundness

We now define a notion of 0-approximate planning with respect to LTL goals and an incomplete initial
state.

Let s be an a-state (incomplete initial state) designated as the initial state, leta1, . . . , an be a sequence of
deterministic actions, whose effects are described by a domain descriptionD. The trajectory correspond-
ing to s anda1, . . . , an is the sequence of a-statess0, s1, . . . , that satisfies the following conditions: (i)
s = s0, (ii) si+1 = Φ0

D(ai+1, si), for 0 ≤ i ≤ n− 1, and (iii) sj+1 = sj , for j ≥ n.

14



We say that the sequence of actionsa1, . . . , an is a 0-approximate plan from the initial a-states for the
LTL goal f , if f is true w.r.t. (s, σ), whereσ is the trajectory corresponding tos anda1, . . . , an.

Theorem 3.4 (Soundness of 0-approximate planning)LetD be a domain description,s0 be an a-state,
andG be an LTL goal. If a sequence of actionsa1, . . . , an is a 0-approximate plan froms0 for the goal
G then it is also a conformant plan froms0 for the goalG. 2

Proof
Directly follows from the soundness ofΦ0

D with respect toΦD (Proposition 1) and from Proposition 2.
2

3.6 Complexity of 0-approximate planning with LTL goals

Theorem 3.5 (Complexity of 0-approximate planning)Given a domain descriptionD, an (possibly
incomplete) initial states0 and a temporal goalG, the 0-approximate planning problem is NP-complete.
2

Proof (sketch)
From [2] we already know that the 0-approximate planning problem is NP-complete for incomplete
initial states and for the simplest possible case of LTL-goals: namely, for goals which are represented
simply by fluent formulas. Therefore, to prove that the general problem of 0-approximate planning under
incomplete initial state and LTL goals is NP-complete, it is sufficient to prove that this general problem
belongs to the class NP. In other words we need to show that plan verification in this case is polynomial.

This can be shown by taking a goal statement, say for exampleG ≡ 32f ∧ 2¬f , and breaking it to
intermediate goals:G1 := f , G2 := 2G1, G3 := 3G2, G4 := ¬f , G5 := 2G4, G6 := G3 ∧ G5. It
is easy to see that the number of such intermediate statements is bounded by the length|G|. Based on
the values of the fluents in each a-state in the trajectory, we can now sequentially compute the values
of all these intermediate statements at all a-states. If we considering plans of lengthn, then we need to
considern + 1 a-states. When an intermediate goal is defined using propositional connectives, such as
G6 := G3∧G5 computingG6 given the value ofG3 andG5 will take 1 logical operations in each a-state
and hencen+1 operations total. When an intermediate goal is defined using temporal connectives (2, 3
or U), such asG9 := G8UG7, to compute the truth value ofG9 in any a-state, we may need in the worst
case – this happens whenG9 evaluates tofalse – (n + 1)2 operations, and hence(n + 1)3 operations
in total. Since we are only looking for plans of polynomial length (i.e.,n ≤ p(|D| + |G|) for some
polynomialp(x)), we thus need a polynomial number of steps to verify a plan. 2

4 Planning with Temporal knowledge goals: complexity and approxima-
tion

So far we have considered only LTL goals. When dealing with incompleteness, and specially in presence
of sensing actions, it becomes natural to consider goals that also involve the knowledge aspect. Although
the need for mixing temporal aspects with knowledge aspects in representing goals has been pointed out
in [9, 3], we are unaware of work where such a language is formally defined. In this section we define

15



such a language, discuss goals whose specification requires such a rich language, and explore planning
with respect to such goals.

The language we propose is a simple one where knowledge formulas are defined first and temporal
operators are only applied on top of them. Thus we do not allow knowledge operators on top of temporal
formulas. For exampleK2f is not a valid formula in our language. Nevertheless, our language is
powerful enough to express most of the goal notions in the literature that involve both knowledge and
temporal aspects.

A knowledge proposition is of the formKϕ, whereϕ is a propositional formula. A knowledge propo-
sitional formula is made up of propositions and knowledge propositions using the propositional connec-
tives¬, ∨, and∧. We now define temporal knowledge formulas (TKFs).

Definition 6 TKFs
(i) Knowledge propositional formulas are TKFs.
(ii) If δ andδ′ are TKFs then so areδ ∨ δ′, δ ∧ δ′, ¬δ,©δ, 2δ 3δ, andδ U δ′. 2

We now give some examples of goals expressed using TKFs.

1. Suppose we would like to represent the goal that the truth value off is always known. This can be
expressed as2(Kf ∨K¬f). A practical example of this is whenf denotes ‘baby is crying’ and
a parent has the goal of always knowing whether the baby is crying or not.

2. Another goal would be to reach a state (and stay there) where the truth value off is known, but
without changing it in the process. This can be expressed as follows:

32(Kf ∨K¬f) ∧2(f ⇒©f) ∧2(¬f ⇒©¬f)

The above corresponds to the ‘sense but do not destroy’ notion in [9].

3. In conjunction with the previous goal we may have the condition that a literalg is allowed to
change during the execution of the plan but its final value is known and is the same as its initial
value (before the plan is executed). Such requirements are part of specifying goals of diagnostic
plans [3] referred to there as fixable literals. The intuition is thatg may refer to properties involved
in disassembling of a machine that is being diagnosed, and we would like those properties to be
reverted back to their original value after the diagnosis is done. This additional condition can be
expressed as:

(g ⇒ 32Kg) ∧ (¬g ⇒ 32K¬g)

4. Similarly in conjunction with goal (2) we may have the condition thath is allowed to change during
the execution of the plan but its final value is known and is the same as its initial value (before the
plan is executed) orfalse. Such requirements are also part of specifying goals of diagnostic and
repair plans [3], whereh may refer to the abnormality of a component and hence we are allowed
to fix it (makeab false) but not to break it. This additional condition can be expressed as:

((h ⇒ 32Kh) ∧ (¬h ⇒ 32K¬h)) ∨32K¬h

The last three goals are from the literature, but in those papers they are expressed using specialized
notation. They do not use a general purpose logic as we propose here.

16



To properly reason about the modalityK it is necessary to extend the notion of states to knowledge states
(or k-states) [19] where a distinction between the real state of the world, and the agent’s knowledge about
the world is made. A k-state is a pair〈s,Σ〉 wheres denotes the real state of the world, andΣ is a set of
states that the agent thinks it may be in.

Given a k-state〈s,Σ〉 a propositional formulaf is said to be true (resp. false) in〈s,Σ〉 if f holds (resp.
does not hold) ins. A knowledge propositionKf is said to be true (resp. false) in〈s,Σ〉 if f holds (resp.
does not hold) in all states inΣ. Given a trajectory of k-states the truth of a TKF is defined in a similar
manner to Definition 2.2 using the truth of propositional formulas and knowledge formulas as defined
above as the base case.

4.1 Planning with TKF goals

We now proceed towards defining planning with respect to TKFs. First, planning with respect to TKFs
and in presence of incompleteness may involve special kind of actions referred to as knowledge produc-
ing or sensing actions [18]. The effects of sensing actions are expressed using propositions of the form
a determines f , which means that after the execution of actiona, the truth value of the fluentf become
knownto the agent.

The executions of actions (both sensing and otherwise) result in transition from one k-state to another.
To start with the transition between k-states due to actions, which we will denote byΨD, is defined using
theΦD function defined earlier. Assuming that sensing actions do not affect the real worldΨD can be
defined as follows [19]:

For a non-sensing actiona,
ΨD(a, 〈s,Σ〉) = 〈ΦD(a, s), {ΦD(a, s′) | s′ ∈ Σ}〉.
For a sensing actiona which senses the fluentsf1, . . . , fk,
ΨD(a, 〈s,Σ〉) = 〈s, {s′ ∈ Σ | ∀i(1 ≤ i ≤ k) fi holds ins iff fi holds ins′}〉.
From the planning perspective the next issue is to define an initial k-state corresponding to information
in a given domain descriptionD. If s is the incomplete initial state corresponding toD then an initial
k-state corresponding tos would be any pair〈s′, Σ〉 wheres′ is an extension ofs andΣ is the set of all
extensions ofs.

Now plans in presence of sensing actions [10, 19] may involve conditional statements conditioned on
knowledge gained by sensing actions that precede the conditional statement. Note that the knowledge is
gained during execution time and not during planning time; hence the need for conditional statements.
Nevertheless, a given possible plan consisting of conditional statements when executed in a k-state goes
through a trajectory of k-states. A TKF goal can then be evaluated against such trajectory of k-states. (A
formal definition of this is given in [19].) We can now define the notion of a plan.

Definition 7 Let D be a domain description andG be a TKF goal. Let
〈s1, {s1, . . . , sl}〉, . . . 〈sl, {s1, . . . , sl}〉 be the set of initial k-states w.r.t.D. We say a given possible
conditional planP is a plan w.r.t.D andG, if G evaluates to true w.r.t. all trajectories obtained whenP
is applied to the initial k-states〈s1, {s1, . . . , sl}〉, . . . 〈sl, {s1, . . . , sl}〉. 2

Here while analyzing complexity of planning we consider plans whose individual execution sequences
(but not necessarily the total length of the plan in terms of number of words it has) are polynomial in

17



the size of domain description and goal. The results related to complexity of planning are the same as
they are in [2] even if we consider TKF goals. Here we present one such result. But first we need the
following definition.

Definition 8 Let k be a positive integer.

• We say that a sensing action isk-limited if it reveals the values of no more thank fluents.

• We say that a possible plan isk-bounded if it has no more thank sensing actions. 2

Theorem 4.1 For a given positive integerk, with incomplete information about the initial state and with
k-limited sensing actions checking the existence of ak-bounded plan isΣ2P-complete. 2

Proof: Straightforward extension of the proof of Theorem 6 in [2].

4.2 0-approximate planning with TKF goals

We now briefly discuss 0-approximate planning with TKF goals. For this we first need to define the
transition between a-states due to actions. While the transition remains the same for non-sensing actions
(as defined byΦ0

D), applying a sensing actiona to an a-states results in aset of a-stateseach of which
can be obtained by simply adding, to the a-state, the fluent literals that may turn out to be true as a result
of this sensing action.

Now when we evaluate (during planning time) a possible plan consisting of sensing actions and condi-
tional statements against an a-state we obtain multiple trajectories of a-states. TKF goals now need to be
evaluated with respect to these trajectories. The evaluation is very similar to the one in Section 3.4. Note
that even nowKf is 2-valued. Iff is true thenKf is true, but iff is false or unknown thenKf is false.
We now define 0-approximate plan w.r.t. TKF goals, and show the soundness of this notion.

We say that a possible conditional plan is a 0-approximate plan w.r.t.D for the TKF goalf , if f is true
w.r.t. all pairs(s, σ), wheres is the initial a-state corresponding toD, andσ is a trajectory obtained
when evaluatingP with respect tos.

Theorem 4.2 (Soundness of 0-approximate planning)Let D be a domain description, andG be an
TKF goal. If P is a 0-approximate plan w.r.t.D for the goalG then it is also a plan from w.r.t.D for the
goalG. 2

Proof: (sketch) The proof is similar to the proofs of Propositions 4, 5 and 6 of [19].

As before the results related to complexity of planning are the same as they are in [2] even if we consider
TKF goals. Here we present one such result.

Theorem 4.3 For a given positive integerk, with incomplete information about the initial state and with
k-limited sensing actions checking the existence of ak-bounded 0-approximate plan is NP-complete.2

Proof: Straightforward extension of the proof of Theorem 7 in [2].

18



5 Planning with CTL and CTL ∗ goals: complexity and approximation
studies

5.1 Goal representation using branching time temporal logic

In Section 2.2 we discussed specifying planning goals using an LTL with future operators, and cited
earlier work on this. In this section we consider use of a branching temporal logic in specifying planning
goals that can not be specified using LTLs. The necessity of branching time operators arises when we
want to specify conditions on other paths3 starting from the states in the main path that the agent’s plan
suggests. For example, a robot going from positionA to positionB may be required to take a path so
that from any point in the path there is a charging station within two steps. Note that these two steps do
not have to be in the path of the robot. This goal can not be expressed using LTLs. We propose to use
the branching time logic CTL∗ for this purpose. We now give the syntax and semantics for CTL∗ [6].

There are two kinds of formulas in CTL∗: state formulas and path formulas. Normally state formulas are
properties of states while path formulas are properties of paths. The syntax of state and path formulas
is as follows. Let〈p〉 denote an atomic proposition,〈sf〉 denote state formulas, and〈pf〉 denote path
formulas.

〈sf〉 ::= 〈p〉 | 〈sf〉 ∧ 〈sf〉 | 〈sf〉 ∨ 〈sf〉 | ¬〈sf〉 | E〈pf〉 | A〈pf〉
〈pf〉 ::= 〈sf〉 | 〈pf〉 U 〈pf〉 | ¬〈pf〉 | 〈pf〉 ∧ 〈pf〉 | 〈pf〉 ∨ 〈pf〉 | ©〈pf〉 | 3〈pf〉 | 2〈pf〉

The new symbolsA andE are the branching time operators meaning ‘for all paths’ and ‘there exists a
path’ respectively. As the qualification ‘branching time’ suggests, specification in the branching time
logic CTL∗ are evaluated with respect to the branching structure of the time. The term ‘path’ in the
meaning ofA and E refers to a path in the branching structure of time. The branching structure is
specified by a transition relationR between states of the world. Intuitively,R(s1, s2) means that the
state of the world can change froms1 to s2 in one step. Given a transition relationR and a states, a path
in R starting froms is a sequence of statess0, s1, . . . such thats0 = s, andR(si, si+1) is true.

When planning in an environment where our agent is the only one that can make changes to the world,
R(s1, s2) is true if there exists an agent’s actiona such thats2 = Φ(s1, a). If there are external agents
other than our agent thenR(s1, s2) is true if there exists an action (by some agent)a such thats2 =
Φ(s1, a). We now give the formal semantics of CTL∗.

Formal semantics: Semantics of CTL∗ formulas are defined depending on whether they are state
formulas or path formulas. The truth of state formulas are defined with respect to a pair(sj , R), where
sj is a state andR is the transition relation. In the followingp denotes a propositional formulasfis are
state formulas andpfis are path formulas.

• (sj , R) |= p if p is true insj .

• (sj , R) |= sf1 ∧ sf2 if (sj , R) |= sf1 and(sj , R) |= sf2.

• (sj , R) |= sf1 ∨ sf2 if (sj , R) |= sf1 or (sj , R) |= sf2.

3An alternate use of branching time logic in specifying plans goals in presence of actions with non-deterministic effects
has been proposed in [17]. There use of branching time logic is very different from ours. For example, in their formulationA
means all possible paths that arise due to the non-determinism of actions.

19



• (sj , R) |= ¬sf if (sj , R) 6|= sf .

• (sj , R) |= E pf if there exists a pathσ in R starting fromsj such that
(sj , R, σ) |= pf .

• (sj , R) |= A pf if for all pathsσ in R starting fromsj we have that
(sj , R, σ) |= pf .

The truth of path formulas are defined with respect to a triplet(s,R, σ) whereσ given by the sequence
of statess0, s1, . . . , is a path,R is a transition relation ands is a state inσ.

• (sj , R, σ) |= sf if (s,R) |= sf .

• (sj , R, σ) |= pf1 U pf2 iff there existsk ≥ j such that(sk, R, σ) |= pf2 and
for all i, j ≤ i < k, (si, R, σ) |= pf1.

• (sj , R, σ) |= ¬pf iff (sj , R, σ) 6|= pf .

• (sj , R, σ) |= pf1 ∧ pf2 iff (sj , R, σ) |= pf1 and(sj , R, σ) |= pf2.

• (sj , R, σ) |= pf1 ∨ pf2 iff (sj , R, σ) |= pf1 or (sj , R, σ) |= pf2.

• (sj , R, σ) |= ©pf iff (sj+1, R, σ) |= pf

• (sj , R, σ) |= 2pf iff (sk, R, σ) |= pf , for all k ≥ j.

• (sj , R, σ) |= 3pf iff (sk, R, σ) |= pf , for somek ≥ j.

We now define when a sequence of actionsa1, . . . , an is a plan with respect to a given initial states and a
goal in CTL∗. As in the case of LTL goals in Section 2.2 we use the notion of a trajectory corresponding
to s anda1, . . . , an.

We say a sequence of actionsa1, . . . , an is a plan with respect to the initial states0 and a goalG if
(s0, R, σ) |= G, whereσ is the trajectory corresponding tos0 anda1, . . . , an. (Note that a trajectory
corresponding tos0 anda1, . . . , an – as defined in Section 2.2 – is a path.)

Although state formulas are also path formulas, since the evaluation of state formulas do not take into
account the trajectory suggested by a prospective plan, often the overall goal of a planning problem is
better expressed as a path formula which is not a state formula. Similar to an LTL goal which is just a
propositional formula, a CTL∗ goal which is a state formula either leads to no plans (if the initial state
together withR does not satisfy the goal) or leads to the plan with no actions (if the initial state together
with R satisfies the goal). But unlike propositional goals in LTL, a state formula in CTL∗ is useful in
specifying the existence of a plan.

5.2 The branching time temporal logic CTL

CTL is a branching time logic that is a subset of CTL∗ and has better computational properties than both
LTL and CTL∗ for certain tasks. Unlike CTL∗, CTL does not include LTL. Syntactically, a CTL formula
is defined as follows:

20



1. Atomic propositions are CTL formulas.

2. If f1 andf2 are CTL formulas so are¬f1, f1 ∧ f2, f1 ∨ f2, A© f1, E© f1, A2f1, E2f1, A3f1,
E3f1, A(f1Uf2), E(f1Uf2).

3. Nothing else is a CTL formula.

It is easy to see that CTL formulas are state formulas and hence can only lead to empty plans or no plans
and hence are not appropriate for specifying planning goals. They are useful in specifying the existence
of a plan though.

We now give several examples of planning goals expressed using CTL and CTL∗.

5.3 Examples of planning goals in CTL and CTL∗

We start with the story of planning a route from city A to city B. Our planning goal is to find a plan to
travel from A to B. We have several intermediate stopping areas between A and B and some of them have
a utility center with gas, food, etc and are marked byp. We now express several goals that put conditions
on paths fromA to B using CTL and CTL∗.

1. Suppose our goal is to get to B such that from any where in the path we can get to a state where
p holds in at most two steps. This can be expressed by the following path formula (which is not a
state formula) in CTL∗.

(p ∨ E© p ∨ E© E© p) U at B

The above is not a CTL formula. Now the condition that such a path exists can be specified by the
following path formula which is also a state formula.

E ((p ∨ E© p ∨ E© E© p) U at B)

The above is a CTL (and hence a CTL∗) formula. If we use the above formula as a goal in our
planning then either we get an empty plan implying that a plan exists, or get no plans when none
exists. Note that in the first case we do not get the plan, but only a confirmation that a plan exists.
This is because our goal is a state formula. But constructive model checkers while verifying the
existence may also return a ‘witness’ which can lead to the plan.

2. Consider the goal of finding a path to home, such that from every point in the path there is a path
to a telephone booth. This can be expressed by the following path formula (which is not a state
formula) in CTL∗.

(E3 has telephone booth) U at home

The above is not a CTL formula. But the existence of such a plan expressed as
E((E3 has telephone booth) U at home) is a CTL formula.

3. Consider the goal of finding a path that travels through ports until a port is reached from where
there are paths to a fort and a hill. This can be expressed by the following path formula (which is
not a state formula) in CTL∗.

is a port U (is a port ∧ (E3 has fort) ∧ (E3 has hill))

21



The above is not a CTL formula. But the existence of such a plan expressed as
E(is a port U (is a port ∧ (E3 has fort) ∧ (E3 has hill))) is a CTL formula.

4. Consider the goal of finding a path to a place with a hotel such that from any point in the path there
is a path to a garage, until we reach a shopping center from where there is a path to the hotel. This
can be expressed by the following path formula (which is not a state formula) in CTL∗.

((E3 has garage) U (shopping center ∧3 has hotel)) ∧32 has hotel

The above is not a CTL formula.

5. Consider specifying the goal of a robot to reach a state satisfying the propertyh such that the states
on the path are obstacle free and at least one immediate successor state has a power socket. This
can be expressed by the following path formula (which is not a state formula) in CTL∗.

(obstacle free ∧ (E© has power socket)) U h

The above is not a CTL formula. But the existence of such a plan expressed asE((obstacle free∧
(E© has power socket)) U h) is a CTL formula.

6. Suppose we would like to change the last specification such that the agent has to make sure that
all (instead of at least one) immediate successor state has a power socket. This can be expressed
as follows:

(obstacle free ∧ (A© has power socket)) U h

The above is not a CTL formula. But the existence of such a plan expressed asE((obstacle free∧
(A© has power socket)) U h) is a CTL formula.

7. Consider a robot that has to reach a goal state (having the propertyh) but on the way it has to
‘maintain’ a propertyp. Earlier in Section 2.2 we mentioned that this can be expressed in LTL as:

23p U h

Now suppose we are in a domain with other agents which can randomly execute an action in
between the actions of our agent and we also assume that any action that can be executed by the
other agents, an action with the same transition can also be executed by our agent. In this case we
want to be extra careful in maintainingp and consider the other agent’s actions. For that we would
like to put a condition on states that are one transition away from the planned path, as these states
can be reached because of the other agent’s actions. The condition we want to put is that from
those states our agent can correct itself (if necessary) by executing an action to reach a state where
p is true. This can no longer be specified in LTL. In CTL∗ this can be expressed as follows:

A(©(¬p ⇒ E(©p))) U h

which is equivalent to

A(©(p ∨ E(©p))) U h

Suppose we don’t need to reach a state satisfyingh but we want our robot to wander around
through states that satisfy the other above mentioned properties. In that case the specification will
be:

2(A(©(p ∨ E(©p))))

Note that the specificationA(©(p ∨ E(©p))) is not right as it is a state formula and as explained
earlier either has no plans or a plan with empty action. It will not result in any plans leading to
wandering.

22



5.4 Complexity of the planning problem with goals expressible in Branching Temporal
Logic

Theorem 5.1 For goals expressible in Branching Temporal Logics CTL and CTL∗, the planning problem
is PSPACE-hard. 2

Proof of Theorem 5.1. This proof follows the same logic as proofs ofPSPACE-hardness of other
planning problems; see, e.g., [12] and [2].

To prove that the planning problem (with CTL and CTL∗ goals) isPSPACE-hard, we will show that we
can reduce, to the planning problem, a problem known to bePSPACE-complete: namely, the problem of
checking, for a given propositional formulaF with the variablesx1, . . . , xm, xm+1, . . . , xn, the validity
of the formulaF of the type∃x1∀x2∃x3∀x4 . . . F. This reduction will be done as follows. Consider
the planning problem with two actionsa+ anda−, and2n + 1 fluentsx1, . . . , xn, t0, t1, . . . , tn. These
actions and fluents have the following meaning:

• the meaning ofti is that we are at moment of timei;

• the actiona+, when applied at momentti−1, makesi-th variablexi true;

• the actiona−, when applied at momentti−1, makesi-th variablexi false.

The corresponding initial conditions are:

• initially ¬xi (for all i);

• initially t0; initially ¬ti (for all i > 0).

The effect of actions if described by the following rules (effect propositions):

• for i = 1, 2, . . . , n, the rules

a+ causes xi if ti−1; a− causes ¬xi if ti−1;

describe how we assign values to the variablesxi;

• for i = 1, 2, . . . , n, the rules

a+ causes ti if ti−1; a− causes ti if ti−1;

a+ causes ¬ti−1 if ti−1; a− causes ¬ti−1 if ti−1;

describe the update of the time fluentsti.

The corresponding goal is designed as follows:

We replace in the above quantified propositional formulaF , each existential quantifier∃xi by EX, each
universal quantifier∀xi by AX; let us denote the result of this replacement byF ′;

For example, for a formula∃x1∀x2F , this construction leads to the following goal:EX(AX(F )) This
reduction leads to a linear increase in length, so this reduction is polynomial-time.

23



To complete the proof, we must show that this is a “valid” reduction, i.e., that the resulting planning
problem is solvable if and only if the original quantified propositional formula is true.

Let us now show that the validity of the formulaF ′ at the momentt = 0 is indeed equivalent to the
validity of the above quantified propositional formula. We will prove this equivalence by induction over
the total number of variablesn.

Induction base:For n = 0, we have no variablesxi at all, soF is either identically true or identically
false. In this case,F ′ simply coincides withF , so they are, of course, equivalent.

Induction step:Let us assume that we have proven the desired equivalence for all quantified propositional
formulas withn− 1 variables; let us prove it for quantified propositional formulas withn variables.

Indeed, let a quantified propositional formulaF of the above type be given. There are two possibilities
for the first variablex1 of this formula:

• it may be under the existential quantifier∃x1; or

• it may be under the universal quantifier∀x1.

1◦. In the first case, the formulaF has the form∃x1G, where for eachx1, G is a quantified propositional
formula withn − 1 variablesx2, . . . , xn. According to our construction, the CTL formulaF ′ has the
form E(©G′), whereG′ is the result of applying this same construction to the formulaG.

To show thatF ′ is indeed equivalent toF , we will first show thatF ′ impliesF , and then thatF implies
F ′.

1.1◦. Let us first show thatF ′ impliesF .

Indeed, by definition of the operatorE, if the formulaF ′ ≡ E(©G′) holds at the momentt = 0 this
means that there exists a path for which, at momentt = 0, the formula©G′ is true.

By definition of the operator© (“next”), the fact that the formula©G′ is true at the momentt = 0
means that the formulaG′ is true at the next moment of timet = 1.

By the timet = 1, we have applied exactly one action which madex1 either true or false, after which
the value of this variablex1 does not change. Let us select the valuex1 as ”true” or “false” depending
on which value was selected along this path.

The momentt1 can be viewed as a starting point for the planning problem corresponding to the remaining
formulaG. By induction assumption, the validity ofG′ at this new starting moment is equivalent to the
validity of the quantified propositional formulaG. Thus, the formulaG is true for this particularx1,
hence the original formulaF ≡ ∃x1G is also true. So,F ′ indeed impliesF .

1.2◦. Let us now show thatF impliesF ′.

Indeed, ifF ≡ ∃x1G is true, this means that there exists a valuex1 for whichG is true. By the induction
assumption, this means that for this samex1, the goal formulaG′ is also true at the new starting moment
t = 1. Thus, for any path which starts with selecting thisx1, the formula©G′ is true at the previous
momentt = 0. Since this formula is true forsomepath, by definition of the operatorE, it means that the
formulaE(©G′) is true at the momentt = 0, and this formula is exactlyF ′.

24



Thus,F does implyF ′, and henceF andF ′ are equivalent.

2◦. The second case, whenx1 is under the universal quantifier∀x1, can be handled similarly.

The induction step is proven, and thus, by induction, the equivalence holds for alln.

Thus, the reduction is valid, and the planning problem with respect to CTL-goals is indeedPSPACE-
hard. Since CTL is a subset of CTL∗ the planning problem with respect to CTL∗-goals is alsoPSPACE-
hard. 2

In general the planning problem with respect to CTL and CTL∗-goals are notPSPACE-complete, as they
are not inPSPACE. This is because, although we limit our plan lengths to be polynomial, the semantics
of A andE does not assume that the paths are of polynomial length. If we restrict the meaning ofA and
E to be ‘for all polynomial length paths’ and ‘there exists a polynomial length paths’ then the planning
problem with respect to such goals is indeedPSPACE-complete. In the following we argue this.

By definition, the classPSPACE is formed by problems which can be solved by a polynomial-space
algorithm. Recall that this class can be equivalently reformulated as a class of problems for which the
checked formulaP (w) can be represented as∀u1∃u2 . . . P (u1, u2, . . . , uk, w), where the number of
quantifiersk is bounded by a polynomial of the length of the input,P (u1, . . . , uk, w) is a polynomially
verifiable property, and allk quantifiers run over words of polynomial length (i.e., of length limited
by some given polynomial of the length of the input). In view of this result, it is easy to see that for
CTL∗-goals with the restricted meaning ofA andE, the planning problem belongs to the classPSPACE.
Indeed, all the operators of CTL∗ can be then described by quantifiers over words of polynomial length,
namely, either over paths (for operatorsA andE) or over moments of time (for LTL operators). A plan is
also a word of polynomial length. Thus, the existence of a plan which satisfies a given CTL∗-goal can be
described by a polynomial size sequence of quantifiers running over words of polynomial length. Thus,
for CTL∗-goals, with the restricted meaning ofA andE, the planning problem does belong toPSPACE.
Since CTL-goals are subset of CTL∗-goals the same is true for CTL-goals.

For the Branching Temporal Logic, not only planning, but even plan checking is difficult:

Theorem 5.2 For goals expressible in Branching Temporal Logics CTL and CTL∗, the plan checking
problem isPSPACE-hard. 2

Proof of Theorem 5.2.Similarly to the proof of Theorem 5.1 we need to prove is the desired reduction.
From the proof of Theorem 5.1, one can see that the exact same reduction will work here as well,
because in this reduction, the equivalence betweenF andF ′ did not depend on any action plan at all.
The equivalence used in the proof of Theorem 5.1 is based on the analysis ofpossibletrajectories and
does not use the actual trajectory at all.

Thus, we can pick any action plan (e.g., a sequence consisting ofn actionsa+), and the desired equiva-
lence will still hold. 2

5.5 Complexity of the planning problem with goals expressible in a limited variant of
Branching Temporal Logic

Theorems 5.1 and 5.2 mean that allowing temporal goals from CTL and CTL∗ can drastically increase
the computational complexity of planning. These results, however, do not necessarily mean that planning

25



under safety and maintainability conditions is necessarily very complex. Many such conditions can be
expressed in a variant of the above language, a variant for which the planning problem is much simpler
than for CTL∗.

The main idea behind this variant is that in many maintainability conditions, we do not need to consider
all possible paths, it is sufficient to consider paths which differ from the actual one by no more than one
(or, in general, by no more thank) states. In this case, the planning problem becomes much simpler.

Let us first define what it means for two paths to differ in no more thank states. In other words, let us
define a notion of “distance” between the two paths. A path is a particular case of a trajectory – which
was defined as an infinite sequence of statess0, s1, . . . To make things simpler, let us therefore define the
distance between arbitrary trajectoriesσ andσ′.

A natural way to define such a distance is as follows: First, we define anelementary transformationas a
transformation that changes a single state. We will consider three types of elementary transformations:

• a transformationTi,s that replacesi-th state in the original trajectory by a states:

Ti,s(s0, s1, . . . , si−1, si, si+1, . . .) = (s0, s1, . . . , si−1, s, si+1, . . .);

• a transformationT+
i,s that adds a states after thei-th state in the original trajectory:

T+
i,s(s0, s1, . . . , si−1, si, si+1, . . .) = (s0, s1, . . . , si−1, si, s, si+1, . . .);

• a transformationT−i that deletes thei-th state in the original trajectory:

T−i (s0, s1, . . . , si−1, si, si+1, . . .) = (s0, s1, . . . , si−1, si+1, . . .).

We can then define adistancebetween the trajectoriesσ andσ′ as the smallest number of elementary
transformations that transformσ into σ′. In other words, we say thatσ′ is k-closeto σ if σ′ can be
obtained fromσ by applying no more thank transformations.

It is worth mentioning that this definition is similar to the definition of a distance between the DNA
sequences in bioinformatics; see, e.g., [16].

The original branching time operatorsE andA – ‘there exists a path’ and ‘for all paths” – do not take
into consideration how close the corresponding paths are to the original path. Instead of these operators,
we can consider, for each natural numberk, the restricted versionsEk andAk that only consider paths
which arek-close to the original path. The formal semantics of these new operators is as follows. For
every pathσ = (s0, . . . , sj , sj+1, . . .), and for everyj, byσ|j we denote the remaining path, i.e., the path
σ|j = (sj , sj+1, . . .) Now:

• (sj , R, σ) |= Ek pf if there exists a pathσ′ in R starting fromsj that is
k-close toσ|j and for which(sj , R, σ′) |= pf .

• (sj , R, σ) |= Ak pf if for all pathsσ′ in R starting fromsj which are
k-close toσ|j , we have that(sj , R, σ′) |= pf .

26



(Crudely speaking, the original operatorsE andA can be interpreted, in these terms, as the operatorsE∞
andA∞ corresponding to infinite distancek = ∞.)

Please note that there is also a syntactic difference between the original branching time operators and
their restricted versions:

• The original operatorsE andA do not use the original path. Therefore, the resultsE〈pf〉 andA〈pf〉
of applying these operators to a path formula〈pf〉 are state formulas.

• In contrast, the restricted versionsEk andAk of these operators do use the original path. Therefore,
the truth value of the resulting formulasEk〈pf〉 andAk〈pf〉 may depend on the original pathσ.
Hence, the expressionsEk〈pf〉 andAk〈pf〉 are path formulas.

Let us give an example of a natural planning statement that can be expressed in terms of these operators.
Suppose that we plan a road trip on an old car, and we are concerned that the car may start leaking oil
(as it used to do in the past). We therefore want to plan a trip in such a way that we are always at most
one step away from a repair shop. To be more precise, we want to be sure that at any statesj along the
path, if necessary, we can, instead of going to the next stepsj+1, first go to a place where there is a repair
shop, and then continue ontosj+1.

In general, such a repair would mean a 1-step delay. However, in some cases, it may be possible to do a
repair without a delay. In such cases, we simply replace the original next statesj+1 by a new state (with
repairs) and then go on to the scheduled next statesj+2.

It may be also possible, in case of emergency, to get a permission to go faster; in this case, we skipsj+1,
go directly to the next statesj+2 and do repairs there.

Let us describe this planning problem in more formal terms. Letp denote the property “has a repair
shop”. We want the pathσ = (s0, s1, . . .) to be such that for every statesj on this path, if this state does
not have a repair shop (i.e., ifp is false at this state), then it should be possible to add a “detour” states′

– for whichp is true – into this path, or skip the state. The resulting path will be one of the following:

• σ′ = (s0, s1, . . . , sj , s
′, sj+1, . . .) – the result of inserting an additional state into the original path

σ;

• σ′ = (s0, s1, . . . , sj , s
′, sj+2, . . .) – the result of replacing the statesj+1 by a new states′;

• σ′ = (s0, s1, . . . , sj , sj+2, . . .) – the result of deleting the statesj+1 from the original pathσ.

In all three cases,σ′ is obtained fromσ by a single elementary transformation, soσ′ is 1-close toσ. In
other words, our requirement means that ifp is false, then in some 1-close path,p should be true in the
next moment of time. Formally, this implication can be described as¬p ⇒ E1(©p), or, equivalently, as
p∨E1(©p). This property must hold for all the states until we reach the goalg. So, the final formalization
of the above requirement is:

(p ∨ E1(©p))Ug

For this variant, the planning problem is not as complex as for the original language CTL∗. Indeed, let
us denote byCTL∗v a variant of CTL∗ in which, instead of the original operatorsE andA, we only allow
operatorsEk andAk corresponding to different distancesk.

27



Let K > 0 be a positive integer. We say that an expression in this language isK-limited if the sum of
all the distances corresponding to its operatorsEk andAk does not exceedK. For example, the above
expression(p ∨ E1(©p))Ug is 1-limited.

Theorem 5.3 Let K > 0 be an integer. ForK-limited goals expressible in Branching Temporal Logic
CTL∗v, the planning problem isNP-complete. 2

Theorem 5.4 Let K > 0 be an integer. ForK-limited goals expressible in Branching Temporal Logic
CTL∗v, the plan checking problem is polynomial. 2

Proof of Theorems 5.3 and 5.4.Each operatorEk andAk deals only with paths which arek-close to
the original pathσ. If we have a composition of such operators, e.g.,EkAl, then we must consider paths
which arek-close to the paths which arel-close to the original pathσ. Due to triangle inequality, the
distance between each considered path and the original pathσ cannot exceedk + l. In other words, for
such a composite statement, it is sufficient to consider paths which are(k + l)-close to the original path
σ.

Similarly, in general, for an arbitrary formula from CTL∗v, it is sufficient to consider only paths whose
distance from the original pathσ does not exceed the sum of all the distancesk corresponding to different
operatorsEk andAk. In other words, for aK-limited goal, it is sufficient to consider only paths which
areK-close to the original pathσ. We will show that there is a polynomial number of such paths and
therefore, we can simply enumerate all of them.

Let us first count the number of paths which are 1-close to the original pathσ, i.e., which can be obtained
from σ by a single elementary transformation. LetT be a duration of the path before it reaches the final
goal, and letA be the total number of possible actions. For each ofT statessi on the path, we have the
following paths:

• We have at most one pathT−i (σ) obtained by deleting the statesi. We say “at most one”, not
“one” because it is possible that the resulting trajectoryT−i (σ) = (s0, . . . , si−1, si+1, . . .) is not a
path, i.e., that no action can lead us fromsi−1 directly tosi+1.

• We have pathsTi,s(σ) = (s0, . . . , si−1, s, si+1, . . .) obtained by replacing the statesi by a new
states. Each such path corresponds to a different actiona applied to the statesi−1. Therefore, the
total number of such paths cannot exceed the total numberA of possible actions.

• We also have pathsT+
i,s(σ) = (s0, . . . , si−1, si, s, si+1, . . .) obtained by inserting a new state

s after the statesi. Each such path corresponds to a different actiona applied to the statesi.
Therefore, the total number of such paths cannot exceed the total numberA of possible actions.

Adding up these numbers, we conclude that there are no more than1+A+A = 2A+1 paths which
differ from σ in the statesi. We have≤ (2A + 1) such paths for each ofT states, so the total number of
1-close paths does not exceedT · (2A+1). In other words, the total number of 1-close paths isO(T ·A).

Similarly, there exist no more thanO((T · A)2) paths which are 2-close to the original path, no more
thanO((T · A)3) paths which are 3-close to the original path, etc. In general, whatever numberK we
fix, there is only a polynomial number (O(T · A)K) of possible paths which areK-close to the original
path.

28



Therefore, for fixedK, we can explicitly describe the new operatorsEk and Ak by enumerating all
such possible paths. Thus, similarly to the proof of Theorems 3.1 and 3.2, we can conclude that for
planning withK-limited goals, plan checking is polynomial and the corresponding planning problem is
NP-complete. 2

6 Conclusions

In this paper we discussed the usefulness of temporal logics in expressing planning goals and precisely
defined what it means for a sequence of actions or a conditional plan structure to be a plan with respect
to such planning goals. We then analyzed the complexity of planning with respect to goals represented
using these logics. We considered three such logics: linear temporal logic with future operators (LTL); a
knowledge-temporal logic; and the branching time temporal logic CTL∗.

In case of LTL goals we considered two cases: when the knowledge about the initial state is complete
and when it is incomplete. In both cases we conclude that the use of linear temporal operatorsdoes
not increase the complexity over the case when linear temporal operators are not used. Also, as in the
case of planning with simple propositional (non-temporal) goals, the complexity of planning with LTL
goals increases by one level when we abandon the assumption that the knowledge about initial state is
complete and do conformant planning. We show how to bring down the complexity by considering an
approximate notion which we show to be sound.

When planning with respect to goals expressed as knowledge-temporal formulas we conclude that the
complexity is due to the knowledge aspect and not due to the temporal aspects. Thus the complexity
remains the same as in the case of planning with knowledge goals and incompleteness (about the initial
state).

When we allow goals which refer topotentialfuture, necessitating the use of branching time temporal
operators, the planning problem becomes drastically more complicated. This suggests that we should be
very cautious about such more general goals. We identify a particular variant of such goals, which we
refer to asK-limited goals, for which the complexity of planning reverts back to the case with simple
propositional goals.

Acknowledgments

This work was supported by NASA grants NCC5-209 and NCC 2-1232, by the AFOSR grant F49620-
00-1-0365, by the grant W-00016 from the U.S.-Czech Science and Technology Joint Fund, and by the
NSF grants IRI 9501577, 0070463, CDA-9522207, ERA-0112968, and 9710940 Mexico/Conacyt.

References

[1] F. Bacchus and F. Kabanza. Planning for temporally extended goals. InAAAI 96, pages 1215–1222,
1996.

[2] C. Baral, V. Kreinovich, and R. Trejo. Planning and approximate planning in presence of incom-
pleteness.Artificial Intelligence Journal, 122:241–267, 2000.

29



[3] C. Baral, S. McIlraith, and T. Son. Formulating diagnostic problem solving using an action language
with narratives and sensing. InKR 2000, pages 311–322, 2000.

[4] T. Bylander. The computational complexity of propositional STRIPS planning.Artificial Intelli-
gence, 69:161–204, 1994.

[5] G. De Giacomo and M. Vardi. Automata-theoretic approach to planning for temporally extended
goals. InProc. of ECP 1999, pages 226–238, 1999.

[6] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of theoretical
computer science: volume B, pages 995–1072. MIT Press, 1990.

[7] K. Erol, D. Nau, and V.S. Subrahmanian. Complexity, decidability and undecidability results for
domain-independent planning.Artificial Intelligence, 76(1-2):75–88, 1995.

[8] M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.Journal of Logic
Programming, 17(2,3,4):301–323, 1993.

[9] K. Golden and D. Weld. Representing sensing actions: the middle ground revisited. InKR 96,
pages 174–185, 1996.

[10] H. Levesque. What is planning in the presence of sensing? InAAAI 96, pages 1139–1146, 1996.

[11] P. Liberatore. The complexity of the languageA. Electronic Transactions on Artificial Intelligence,
1:13–28 (http://www.ep.liu.se/ej/etai/1997/02), 1997.

[12] M. Littman. Probabilistic propositional planning: representations and complexity. InAAAI 97,
pages 748–754, 1997.

[13] R. Niyogi and S. Sarkar. Logical specification of goals. InProc. of 3rd international conference on
Information Technology, pages 77–82, 2000.

[14] O. Ozveren, A. Willsky, and P. Antsaklis. Stability and stabilizability of discrete event dynamic
systems.JACM, 38(3):730–752, July 1991.

[15] C. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

[16] P. Pevzner.Computational Molecular Biology: An Algorithmic Approach. MIT Press, 2000.

[17] M. Pistore and P. Traverso. Planning as model checking for extended goals in non-deterministic
domains. InIJCAI’01, 2001.

[18] R. Scherl and H. Levesque. The frame problem and knowledge producing actions. InAAAI 93,
pages 689–695, 1993.

[19] T. Son and C. Baral. Formalizing sensing actions: a transition function based approach.Artificial
Intelligence, 125(1-2):19–93, 2001.

[20] D. Weld and O. Etzioni. The first law of robotics (a call to arms). InAAAI, pages 1042–1047, 1994.

30


