Computational Complexity
of Crude Range Estimation
and Fuzzy Optimization

G. William Walster! and Vladik Kreinovich?

nterval Technology Engineering Manager
Sun Microsystems, Inc.
16 Network Circle, MS UMPK16-304
Menlo Park, CA 94025
bill.walster@eng.sun.com

2Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968, USA
vladik@cs.utep.edu

Abstract

It is often important to check whether the maximum maxp f of a
given function f is smaller than the current lower bound C for the global
maximum. Empirical evidence shows that different instances of this check-
ing problem have different relative complexity: the larger the difference
C — max f, the easier the problem. In general, the fewer global max-
ima, the easier the problem; and finally, the further away global maxima
from each other, the easier the problem. It is difficult to formalize this
empirical difference in complexity in standard complexity theory terms,
because all these cases are NP-hard. In this paper, we use the analysis of
mathematical optimization problems emerging from fuzzy optimization to
propose a new “robust” formalization of relative complexity which takes
into consideration numerical inaccuracy. This new formalization enables
us to theoretically explain the empirical results on relative complexity.

1 Crude Approximate Range Estimation Is a
Crucial Step in Solving Many Important Real-
Life Problems

In many real-life situations, we want to find the best decision, the best control
strategy, etc. The corresponding problems are naturally formalized as opti-
mization problems: we have a function f(z1,...,z,) of several variables, and
we want to find the values (1, ..., z,) for which this function attains the largest
(or the smallest) possible value.

Many numerical algorithms have been proposed for solving optimization
problems. Unfortunately, many of these algorithms often end up in a local
maximum instead of the desired global one.

e In some practical situations, e.g., in decision making, the use of local
maximum simply degrades the quality of the decision but is not, by itself,
disastrous.

e However, in some other practical situations, missing a global maximum or
minimum may be disastrous.

Let us give two example:

e In chemical engineering, global minima of the energy function often de-
scribe the stable states of the system. If we miss such a global minimum,
the chemical reactor may go into an unexpected state, with possible seri-
ous consequences.

o In bioinformatics, the actual shape of a protein corresponds to the global
minimum of the energy function. If we find a local minimum instead, we
end up with a wrong protein geometry. As a result, if we use this wrong
geometry as a computer simulation for testing recommendations on the
medical use of chemicals, we may end up with medical recommendations
which harm a patient instead of curing him.

For such applications, it is desirable to use rigorous, automatically verified meth-
ods of global optimization, i.e., methods which never discard an actual global
maximum; for a survey of such methods, see, e.g., [6]. These methods usually
start with a large “box” on which a function is defined (and on which global
maxima can be located), and produce a list of small-size boxes with the prop-
erty that every global maximum is guaranteed to be contained in one of these
boxes.

Most of such guaranteed methods use (a version of) interval computations.
The main idea of interval computations is as follows: To solve a given numerical
problem (e.g., an optimization problem), numerical methods typically generate
better and better estimates for different quantities related to the problem — such

as the actual global maximum of the function, the value of its partial derivatives
at different points, etc.

e In traditional numerical techniques, for each approximated numerical
quantity, an approximation is a real number, with no guarantees on the
approximation accuracy.

e In interval methods, at any given moment of time, for each approximated
quantity x, we compute not only the approximate value Z, but also the
upper bound A on the possible approximation error, i.e., a number A for
which we are guaranteed that |z — Z| < A. In other words, at any step,
we have not only an approximate value T of the approximate quantity, we
also have an interval x = [T — A, Z + A] which is guaranteed to contain
the (unknown) actual value of z.

As we have mentioned, rigorous methods of global optimization start with a
large box as a location of the unknown global maxima and gradually replace it
will a small finite collection of small boxes. The decrease in a box size is usually
achieved by dividing one of the boxes into several sub-boxes and eliminating
some of these sub-boxes.

When can we eliminate a sub-box B? At every stage of the optimization
algorithm, we have already computed several values of the optimized function
f(z1,...,2,), so we know that the global maximum of the function f cannot
be smaller than the largest M of these already computed values. Thus, if we
can guarantee that the maximum of the function f on a box B is smaller than
M, we can thus exclude this box from the list of possible locations of a global
maximum.

This idea would not work efficiently if we had to actually compute the exact
range of a function f on each subbox: this would require a lot of computation
time. Luckily, for the desired exclusion of subboxes, we do not need to know the
ezact range of f on B (i.e., the exact values of the maximum and the minimum
of f on B); for most subboxes, this range is far from the global maximum, so
it is sufficient to check whether the maximum is < M, i.e., to produce crude
approximate estimates of this range. Thus, approximate range estimation is
a crucial step in solving many important real-life problems. This problem is
mentioned as the first major problem in the keynote talk of the recent biannual
international conference on interval computations and validated numerics [19].

There are other cases when a crude range estimation is important. Let us
give three such examples:

e There are many cases when it is (relatively) easy to estimate the range:
e.g., when a function is monotonic in each of the variables. How can we
check this monotonicity? A function f is, e.g., increasing in z; if the

partial derivative gi is positive for all the values (z1,...,z,) from a
box B. To check thls property, we must confirm that the minimum of

this derivative on B is positive. Again, we do not need to evaluate the
exact range for this derivative, all we need is to check whether the lower
endpoint for this range is positive. In other words, all we need is a crude
approximate estimate for this range.

e Similarly, when the algorithm computing the function f(z1,...,z,) con-
tains branching over the sign of some quantity g(z1,...,z,), then we can
often simplify the computations of f on a box B if we know that for values
from B, only one of the branches is actually used: e.g., if g(z1,...,2,) >0
for all (z1,...,2,) € B.

¢ Optimization is just one example of the importance of crude estimates.
In some real-life problems, we are not yet ready for optimization, e.g.,
because the problem has so many constraints that even finding some values
x = (21,...,%,) of the parameters x; which satisfy all these constraints is
an extremely difficult task. For such problems, we arrive at the problem
of satisfying given constraints, e.g., solving a given system of equations.
For such problems, we can use similar interval techniques to get a small
finite set of small boxes containing solutions, and crude range estimation
is an important part of these techniques.

2 Computational Complexity Results as a Guid-
ance for Practical Algorithm Design

Checking whether max f < C'is a crucial step in solving real-life problems. It is
therefore important to have a good algorithm for solving this problem. Can we
design a universal efficient algorithm for solving it, an algorithm which would
always produce a correct answer in reasonable computation time? It looks like
we cannot, because it has been shown that this problem is NP-hard (see, e.g.,
[18]). For those readers who are not familiar with the precise definition of NP-
hardness, we can simply explain that it means exactly that such a universal
effective algorithm is highly unlikely.

Since we cannot have an algorithm which always works, we must concentrate
on the next best thing: on finding the classes of problems for which efficient
algorithms are possible, and on providing efficient algorithms for these classes.
Usually, such classes are formulated in terms of some appropriate parameters.

In finding appropriate parameters, we are not completely clueless. People
have been solving optimization problems for quite some time, so there is an
experience and intuition which tells us which problems are more difficult and
which problems are easier. For example, it is usually true that the larger the
difference between the desired bound C' and the actual maximum max f, the
easier the problem. In general:

e the complexity of locating global maxima of f is empirically known to
depend on the number of these global maxima: the fewer global maxima,
the easier the problem;

e also, when we compare problems with the same number of global maxima,
problems in which these maxima are well separated are usually easier to
solve while problems in which these maxima are close are more difficult.

This intuition seems to be supported by the experience of numerical computa-
tions, so we would like to use it as a guidance in designing new algorithms. To
make this guidance more convincing, it is desirable to confirm this empirical
intuition about the relative complexity of different problems by some precise
complexity results.

The need for this confirmation comes not from any negative feeling of mis-
trust of experts, no, it comes from a very positive history of innovations in
numerical mathematics — where many successful innovations come from ideas
which were originally contrary to the prevailing intuition (this is why they are
called innovations).

3 How Can We Describe the Desired Complex-
ity: The Problem

A traditional approach to estimating complexity of a computational problem is
to see if this problem is NP-hard — or it can be solved by a feasible algorithm.
Unfortunately, this traditional approach does not work here, because the prob-
lem of computing the maximum max f on a given box with a given accuracy &
is NP-hard for an arbitrary e, large or small [18]. We therefore need a different
approach to comparing complexity of different cases of this general problem.

4 Case Study Which Helps Us Solve This Prob-
lem: Mathematical Optimization Problems
Emerging from Fuzzy Optimization

In many real-life problems, we know the exact form of the objective function
f(zx), but the set B over which we optimize is fuzzy.

For example, when an automobile company designs a luxury object such as a
“flashy” sports car, its goal is to maximize the profit. Within a reasonable sales
prediction model, profit is a well-defined function, but “flashiness” is clearly a
fuzzy notion.

In general, we have a problem of maximizing a (crisp) function f(z) over a
fuzzy set B characterized by a membership function pg(x). In their 1970 paper
[2], Bellman and Zadeh proposed to describe the degree pas () to which a given

element z is a solution to this fuzzy optimization problem as a degree to which
B is true and r maximizes f. There are several ways to describe this degree in
terms of f(z) and pp(x) (see, e.g., [7]), e.g., as

) = fo (o), L=

where fg (a,b) is a t-norm, and m and M are, correspondingly, the global min-
imum and the global maximum of the function f(z) on the universe of dis-
course X.

If we want to select a single design, then it is natural to select x for which
this degree is the largest: up(x) — maxx. Thus, the original fuzzy optimiza-
tion problem leads to a crisp mathematical optimization problem with a new
objective function pps(z).

At first, we have one more example of a mathematical (crisp) optimization
problem. However, if we look at the new objective function more attentively,
we will see that there is a principal difference between the crisply-formulated
optimization problems and the crisp optimization problems resulting from fuzzy
optimization:

e In a crisply formulated optimization problem, the objective function f(z)
is fixed.

e On the other hand, in a crisp optimization problems resulting from fuzzy
optimization, the corresponding objective function pps(x) is not that fixed.

Indeed, for every x, the numerical value of this new objective function depends
on the numerical value of the membership function pp(z). This membership
value, in its turn, comes from an expert and cannot be very precise. If we use a
slightly different elicitation technique, we may end up with a slightly different
value of up(z) and thus, a slightly different value of ups(x).

Thus, the same real-life fuzzy optimization problem can lead not only to the
objective function pas(x), but also to other objective functions which are close
to the original function pp(z).

It is therefore reasonable to require that the algorithms not only work on a
given function f, but that they work robustly in the sense that they produce a
correct answer not only for the exact given function f, but for all the functions
f which are sufficiently close to this f.

In some cases, the values pug(z) do not come directly from elicitation. For
example, if we are looking for the optimal control of a system described by
fuzzy conditions (corresponding to the set B), then the set B is described by
if-then rules A;(z) — B;(y) with fuzzy premises and fuzzy conclusions. In this
case, since the premises A;(z) are also fuzzy, not only the value of up(z) is not
precisely known, but we are also not sure to which exactly value of z the given
value of pup refers to: it may refer to the given z, and it may as well refer to
some value ¥ which is close to z.

In view of this possibility, in this paper, we will consider algorithms which are
“robust” in the sense that they are applicable not only to the original function
f, but also to close functions f, and we will consider two types of closeness:

e first, a more natural y-closeness which means that for every input z;, the

y-values, i.e., the values of f(z1,...,2,) and f(z1,...,z,), are sufficiently
close;

e second, an (also needed) z-closeness, which takes into consideration the
fact that the inputs z; to the function f are also not presented exactly.

5 In Hindsight, This New Approach to Com-
putational Complexity Makes Perfect Sense
Even Without Fuzzy

One of the main reasons why traditional complexity approach is not exactly
applicable here is that traditional complexity theory was originally designed for
discrete problems, for which the answer is either correct or not. In contrast,
we are interested in a continuous problem, in which the answer is correct to
a certain accuracy. Similarly, the input to the problem (i.e., the optimized
function f) is not given exactly, it is given (due to rounding errors etc.) only
with a certain accuracy. Thus, when we feed a function f to the algorithm, the
actual function f may be slightly different from f.

Thus, it makes perfect sense to consider algorithms which are applicable
not only to the original objective function f, but also to all objective functions
which are sufficiently close to f.

6 The Main Result: The Larger the Difference
C — max f, the Easier the Problem

In order to formulate this result, we must recall some basic definitions of com-
putable (“constructive”) real numbers and computable functions from real num-
bers to real numbers (see, e.g., [1, 3, 4, 5, 18]):

Definition 1. A real number z is called computable if there exists an algorithm
(program) that transforms an arbitrary integer k into a rational number xj, that
is 27k —close to x. It is said that this algorithm computes the real number x.

When we say that a computable real number is given, we mean that we are
given an algorithm that computes this real number.

Definition 2. A function f(z1,...,%,) from real numbers to real numbers is
called computable if there exist algorithms Uy and ¢, where:

o Uy is a rational-to-rational algorithm which provides, for given rational
numbers r1,...,r, and an integer k, a rational number U (ry,...,7n, k)
which is 2~ *-close to the real number f(r1,...,r,), and

|Uf(’l"1,...,7‘n,k) _f(rla"w'rn)l S 2_k7
and

e is an integer-to-integer algorithm which gives, for every positive integer
k, an integer (k) for which |z, — z}| < 2=¢®) . |z, — 2! | < 27¢K)
implies that

[f(@1,. -y zn) = flah,.. 2p) <275

When we say that a computable function is given, we mean that we are given
the corresponding algorithms Uy and ¢.

Let us start with the analysis of non-robust algorithms for checking whether
max f < C.

Definition 3. By an algorithm for checking whether max f < C (or simply
checking algorithm, for short), we mean an algorithm U which takes as input a
triple (B, f,C), where:

e B is a computable box,
e f is a computable function on the box B, and
e (' is a computable real number,

such that:

e if the algorithm U returns “yes”, then max f<C;and
o if the algorithm U returns “no”, then max f>C.

In this definition, we did not require that U always returns “yes” or “no”; we

allow this algorithm to sometimes return “do not know” (or simply stall without
returning any answer). The reason for this is that no checking algorithm can
always return “yes” or “no”:

Proposition 1. No algorithm is possible which, given a computable function
f on a computable box B and a computable real number C, checks whether
max f < C.

(For the reader’s convenience, all the proofs are placed in the special — last —
Proofs section.)

If we know the lower bound for the difference C'—max f, then such an algorithm
is already possible:

Proposition 2. Let D > 0 be a computable real number. Then, there exists a
checking algorithm Up which is applicable to all functions f for which
C —maxf > D.

The meaning of this proposition is reasonably straightforward:

e According to Proposition 1, if we require that an algorithm’s answer to
the question “max f < C'?7” is always correct, then this algorithm cannot
be always applicable, there will always be cases for which this algorithm
fails to produce any answer (positive or negative).

e Proposition 2 says that, by an appropriate choice of an algorithm, we can
restrict the cases when an algorithm refuses to answer to situations in
which the difference C' — max f is small (< D); for situations in which
this difference is large enough, the above-mentioned algorithm produces a
definite (and correct) answer.

Proposition 2 does not distinguish between the classes of problems corresponding
to different values of D. To make this distinction, we must look for robust
algorithms instead of simply algorithms which work for exact data. Let us start
with a definition of robustness.

Definition 4. Let € > 0 be a real number.

e We say that two functions f(z1,...,z,) and f(z1,...,2,) are e-y-close if
for every input (z1,...,T,), their values are e-close:

|[f(z1,. ., 20) — f(Z1,...,2pn) < €.

o We say that an algorithm for checking whether max f < C' is e-y-robustly
applicable to the input (B, f,C), if it is applicable not only for this function
f, but also for an input (B, 1, C) for an arbitrary function f which is e-y-
close to f.

Theorem 1. Let D > 0 be a computable real number, and let € > 0 be another
computable real number. Then:

o Ife < D, there exists a checking algorithm which is e-y-robustly applicable
to all functions f for which C —max f > D.

e Ife > D, then no checking algorithm which is e-y-robustly applicable to
all functions f for which C — max f > D.

This result shows that the larger the difference C' — max f, the easier it is to
check that max f < C. Indeed, let Dy < Ds; let us take D = (D + D3)/2.
Then, according to Theorem 1:

e there exists a checking algorithm which is D-y-robustly applicable to all
functions f for which C' — max f > D»; and

e no checking algorithm is possible which is D-y-robustly applicable to all
functions f for which C — max f > D;.

In other words, if D; < D, then the checking problem corresponding to D5 is
indeed easier to solve.

7 Second Result: The Fewer Global Maxima,
the Easier the Problem

In [18], we provided a partial justification of this intuition. Namely, the following
two results are true:

Theorem [8, 9, 12, 14]. There exists an algorithm U such that:

e U is applicable to an arbitrary computable function f(x1,...,z,) that at-
tains its mazimum on a computable box B = [a1,b1] X ... X [an,by] at
exactly one point x = (L1,...,%n),

o for every such function f, the algorithm U computes the global mazimum
point x.

Theorem [11, 12, 13, 14, 15, 16, 17, 18]. No algorithm U is possible such that:

e U is applicable to an arbitrary computable function f(z1,...,x,) that at-
tains its mazimum on a computable boxr B = [a1,b1] X ... X [an,by] at
ezactly two points, and

o for every such function f, the algorithm U computes one of the corre-
sponding global maximum points x.

These results partially explain the above intuition because they show that the
problem of locating global maxima is easier if we have a single global maximum
and more difficult if we have several global maxima. These results, however,
do not completely explain this intuition because they do not explain why, say,
a problem with three global maxima is more complex than a problem with two
global maxima.

Similar results hold for roots (solutions) of a system of equations:

Definition 5. By a computable system of equations we mean a system
filz,...,zn) =0, ..., fr(x1,...,2,) = 0, where each of the functions f;
is a computable function on a computable box B = [a1,b1] X ... X [an, by].

10

Theorem [8, 9, 12, 14]. There exists an algorithm U such that:

o U is applicable to an arbitrary computable system of equations which has
ezactly one solution, and

o for every such system of equations, the algorithm U computes its solution.

Theorem [11, 12, 13, 14, 15, 16, 17, 18]. No algorithm U is possible such that:

o U is applicable to an arbitrary computable system of equations which has
ezactly two solutions, and

o for every such system of equations, the algorithm U computes one of its
solutions.

8 Third Result: The Closer the Maxima, the
More Difficult the Problem

Definition 7. By a global optimization algorithm, we mean an algorithm which
(whenever it is applicable) returns the list of locations of all global maxima.

Definition 8. Let d > 0. We say that points (), ... 2("™) are d-separated if
the distance between every two different points from this list is > d.

Theorem [8, 9, 12, 14]. Let m be a given integer, and d > 0 be a computable real
number. Then, there exists an optimization algorithm U such which is applicable
to an arbitrary computable function f(xi,...,x,) which attains its mazimum
on a computable box B at exactly m d-separated points.

This result shows that if we know the lower bound on the distance between the
global maxima, then the optimization problem becomes easier. This result by
itself, however, does not explain why the closer the maxima, the more complex
the optimization problem seems to get. To explain this empirical fact, we will
again use a notion of robustness.

11

Definition 6. Let 6 > 0 be a real number.

o We say that a 1-1 mapping R"™ — R™ is a §-isometry if T changes the
distance p(z,z') between every two points x = (z1,...,Z,) and ' =
(z1,...,2}) by <4, i.e., for for every two points x and z', we have

lp(z,2") — p(Tz,Ta')| <.

e We say that two functions f(x1,...,%,) and f(x1,...,x,) are 0-z-close if

there exists a d-isometry T for which f(z) = f(Tx).

o We say that an algorithm is §-z-robustly applicable to the input f, if it is
applicable not only for this function f, but also for an arbitrary function
f which is §-z-close to f.

Theorem 2. Let d > 0 be a computable real number, and let § > 0 be another
computable real number. Then:

o If§ < d, there exists an optimization algorithm U which is §-z-robustly
applicable to an arbitrary computable function f(z1,...,x,) which attains
its maximum on a computable box B at exactly m d-separated points.

o Ifé§ > d, then no optimization algorithm U can be §-z-robustly applicable to
an arbitrary computable function f(x1,...,T,) which attains its mazimum
on a computable box B at exactly m d-separated points.

This result shows that the larger the lower bound d between the global maxima,
the easier it is to solve the optimization problem. Indeed, let di < ds; let us
take d = (dy + d2)/2. Then, according to Theorem 1:

e there exists an optimization algorithm which is d-z-robustly applicable to
all functions f for which global maxima are ds-separated; and

e no optimization algorithm is possible which is d-z-robustly applicable to
all functions f for which global maxima are d;-separated.

In other words, if d; < ds, then the optimization problem corresponding to ds
is indeed easier to solve.
Similar results hold for roots (solutions) of a system of equations:

Definition 9. By a system solving algorithm, we mean an algorithm which
(whenever it is applicable) returns the list of solutions to a given computable
system of equations.

Theorem [8, 9, 12, 14]. Let m be a given integer, and d > 0 be a computable
real number. Then, there exists a system solving algorithm U such which is
applicable to an arbitrary computable computable system of equations which has
ezactly m d-separated solutions.

12

Definition 6’. Let 6 > 0 be a real number.

o We say that two systems of equations

fl(mla"'amn) :OJ“‘Jfk(wl""Jw”) =0,

and _ B
fl(.’ll'l,...,ﬂl'n) :0;---7fk($17---;xn) =0

are d-z-close if there exists a d-isometry T for which fz(x) = fi(Tz) for
alli=1,... k.

o We say that an algorithm is §-z-robustly applicable to the system
f1=0,..., fr =0, if it is applicable not only for this system, but also for
an arbitrary systems of equations fi = 0,..., f = 0 which is §-z-close to
the system f; = 0,..., fr = 0.

Theorem 2'. Let d > 0 be a computable real number, and let § > 0 be another
computable real number. Then:

o If 0 < d, there exists a system solving algorithm U which is §-x-robustly
applicable to an arbitrary computable system of equations which has exactly
m d-separated solutions.

e If§ > d, then no system solving algorithm U can be §-z-robustly applicable
to an arbitrary computable system of equations which has exactly m d-
separated solutions.

9 Proofs

9.1 Proof of Proposition 1

It is easy to show that a constant function f(z1,...,2,) = 0 is a computable
function. For this function, max f = 0. Thus, if we had an algorithm which
checks, given B, f, and C, whether max f < C or not, then we will be able
to check whether C' > 0 for a given computable real number C. However, it is
known that it is algorithmically impossible to check whether a given computable
real number is positive or not [1, 3, 4, 5, 10, 18]). Thus, a checking algorithm
cannot be always applicable. The proposition is proven.

9.2 Proof of Proposition 2

1. It is known that there exists an algorithm which, given a computable function
on a computable box, and a given § > 0 returns a rational number M which is
d-close to max f [1, 3, 4, 5, 18]. Let us reproduce the main idea of this proof.

13

1.1. First, we prove that there exists an integer m for which the
2~ ™_approximation §,, to § exceeds 3 -2 ™.

Indeed, since 6 > 0, we have § > 2% for some k. Therefore, for the
2~ (k+2)_approximation g2 to 8, we get |p1o — 6| < 2~ *+2) hence

Opy2 >0 — 9—(k+2) 5 9=k _ 9—(k+2) — 3. 9—(k+2)

So, the existence is proven for m = k + 2.

This m can be algorithmically computed as follows: we sequentially try
m = 0,1,2,... and check whether d,, > 3 -27™; when we get the desired
inequality, we stop.
1.2. Let us now show that for the integer m computed according to Part 1.1 of
this proof, we have § > 2-27™,

Indeed, since d,, > 3-2"™ and |6 — 6,| < 27™, we can conclude that
§>0m—2"">3.27m_2Mm=2.2""

So, if we can find a rational number M which is 2 - 27™-close to max f, this

rational number will thus be also d-close to max f.

1.3. Let us now use this m to compute the desired §-approximation to max f.

1.3.1. By using the second algorithm ¢ in the definition of a computable func-
tion, we can find a value ¢(m) such that if |z; —z}| < @(m) for alli =1,...,n,
then

|[f(z1y.yzn) — fl2], .. 2)] < 27™.
For each dimension [a;, b;] of the box B, we can then take finitely many values

rz(l),rz@) = rz(l) + ¢(m), rz@ = n(z) + @(m), ... ,rz(N") = rz(N"fl) + ¢(m)

(separated by ¢(m)) which cover the corresponding interval. Then, each value
x; € [a;,b;] will be different by one of these values rgk") by < ¢(m).
1.3.2. Combining the values corresponding to different dimensions, we get a
finite list of rational-valued vectors (rﬁkl), e ,r%k")) with the property that
every vector (z1,...,T,) € B is ¢(m)-close to one of these vectors.

Due to the definition of ¢(m), this means that each value f(x1,...,z,) is
2~ ™_close to one of the values f <r§k1), - ,r%k")). Therefore, the desired max f

is 27 ™-close to the maximum of all the values f (r%kl), . ,r%k") .

By using the algorithm Uy, we can compute each of these values with
the accuracy 2~ ™. Thus, the maximum M of thus computed rational val-

ues Uy <r§k1),...,7“(nk"),m). is 27™-close to the maximum of all the values
f rgkl), .. .,r;’“") , and hence, 2 - 2=™-close to max f. Thus, M is indeed

d-close to max f. The first part is proven.

14

2. The desired checking algorithm Up can be therefore composed as follows:

e First, since 6 = D/4 is a computable number, we can use Part 1.1 of this
proof to (constructively) find m for which

§=D/4>2-27™ (1)

e Then, we use Part 1 of this proof to compute a rational number M for
which
|M —max f| <2-27™. (2)

e Third, we use the fact that C is a computable real number and generate
the rational number C,,_1 for which

|C = Cpa| < 27D =2.97m, (3)

e Finally, we check the inequality
Cpo1—M>4-27™. 4)
If this inequality holds, we conclude that max f < C.
To complete the proof, we must check two things:

o First, that the above checking algorithm is correct, i.e., that whenever this
algorithm concludes that max f < C, it is indeed true that max f < C.

e Second, that the above checking algorithm Up is indeed applicable to all
functions f for which C' — max f > D.

3. Let us first prove that the above algorithm Up is correct.

Indeed, if the inequality (4) holds, then C,,—1 > M + 4 -2"™. Using (3), we
can then conclude that C > C,,_1 — 2-2~™ hence

C>Cp1—2-27mM>M+2-27™,
Finally, from (2), we conclude that M > max f — 2-2~™, hence
C>M+2-27">maxf—2-27"+2-27™ =max f.

Correctness is proven.

4. Let us now complete our proof by showing that the above algorithm Up is
applicable to all functions f for which C — max f > D.

Indeed, let C —max f > D, i.e., that C > max f + D. Due to formula (1), we
have D > 8-27™ hence

C>maxf+D >maxf+8-27™.

15

From (4), we can now conclude that
Cne1>C—2-27™>maxf+8-2™—2-27™ =max f+6-2".
From (2), we conclude that max f > M —2-27™ hence
Com1 >M=2-27"46-27"=M+4-27™,

i.e., the inequality (4) is indeed satisfied. Thus, for such a function f, the
algorithm Up will indeed return the correct answer.
The proposition is proven.

9.3 Proof of Theorem 1

1. Let us first show that if ¢ < D, then there exists a checking algorithm which
is e-y-robustly applicable to all functions f for which C — max f > D.

Indeed, let us show that in this case, we can compute a computable positive
real number D = D — ¢, and then use the (non-robust) checking algorithm U 5
described in the proof of Proposition 2. Let us prove that this algorithm is
indeed e-y-robustly applicable to all functions f for which C — max f > D.

By definition of robustness, we need to prove that the algoirithm Uy is

applicable to every function fwhich is e-close to a function f for which
C—maxf>D.

Indeed, when f is close to such a function f, we have |maxf— max f| < g,
hence max f < max f + ¢, and so

C—mafoC—maxf—s>D—s:l~).

Thus, by Proposition 2, the algorithm Uy is indeed applicable to the function
f. The statement is proven.
2. Let us now prove that if € > D, then no checking algorithm U is possible
which is e-y-robustly applicable to all functions f for which C' — max f > D.
Indeed, if such an algorithm U was possible, we would be able to check whether
a given computable real number « is positive or not, which, as we have already
mentioned, is known to be impossible.

Since € > D, the difference D — ¢ is a computable negative real number, and
hence, for every a, the number

C=max<a,D_6) zD_E

2 2

is also a computable real number. It is easy to check that a > 0 if and only if
C > 0, so, to check whether o > 0, it is sufficient to be able to check whether
C > 0 for all real numbers D

—€

c>=". (5)

16

To check this auxiliary inequality C' > 0, we apply the hypothetic algorithm U
to the constant-valued function f(z1,...,z,) =0 (for which max f = 0) and to
this number C. _

The algorithm U is applicable to this function f because of the following;:

e The function fis e-close to another constant-valued computable function
f(z1,...,2,) = —e.

e For this new function f, we have max f = —e. Hence, due to the inequality
(5), we get
D
C —max f > ;—6

thence (due to e > D) C —max f > D.

e The hypothetic algorithm U is e-y-robustly applicable to every function f
for which C' —max f > D, in particular, to the above constant function f.
By definition of robustness, this means that U should be applicable to any
function f which is e-close to f, in particular, to the constant function

f=0.

The contradiction is proven, hence the hypothetic algorithm U is indeed impos-
sible.
The theorem is proven.

9.4 Proof of Theorem 2

This proof is similar to the proof of Theorem 1:

e When § < d, then we can compute d=d-6>0. Then, whenever the
global maxima of the function f are d-separated, and a function f is J-
z-close to f, the global maxima of f are d-separated. So, as the desired
robust algorithm, we can take the known algorithm corresponding to the

separation d > 0.

e When 0 > d, then an arbitrary function with m global maxima is §-
close to some d-separated function. Thus, if there existed such a robust
algorithm we would have an algorithm which would be applicable to every
function with exactly m global maxima. We have already mentioned (in
the previous section) that such an algorithm is impossible.

9.5 Proof of Theorem 2’

Theorem 2' follows from Theorem 2 if we take into consideration that the prob-
lems of solving a system of equation and of locating global maxima can be
naturally (and computably) reduced to each other in such a way that the so-
lutions to the system of equations become global maxima and vice versa (and

17

thus, the number of solutions becomes the number of global maxima and vice
versa):

e If we know how to solve systems of equations, then the problem of locat-

ing global maxima of a function f(z1,...,%,) can be reformulated as a
problem of finding all solutions to an equation fi(z1,...,2,) = 0, where
def
filz1,...,zp) = max f — f(x1,...,2n).

e Vice versa, if we know how to locate global maxima, then the problem of
solving a system of equations fi(z1,...,2,) =0, ..., fr(x1,...,2,) =0
can be reformulated as a problem of finding all global maxima of a function

def

fx1,..,zn) = —=(|ful@1, .- zn)|+ oo+ [fe(@1, .- 20)]).

Acknowledgments

This work was partially supported by NASA under cooperative agreement
NCC5-209, by the United Space Alliance, grant No. NAS 9-20000 (PWO
C0C67713A6), and by the Future Aerospace Science and Technology Program
(FAST) Center for Structural Integrity of Aerospace Systems, effort sponsored
by the Air Force Office of Scientific Research, Air Force Materiel Command,
USAF, under grant number F49620-95-1-0518.

References

[1] M. J. Beeson, Foundations of constructive mathematics, Springer-Verlag,
N.Y., 1985.

[2] R. E.Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment,”
Management Sci., 1970, Vol. 17, pp. B141-B164.
[3] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.
[4] E. Bishop and D. S. Bridges, Constructive Analysis, Springer, N.Y., 1985.
[5] D. S. Bridges, Constructive Functional Analysis, Pitman, London, 1979.
[6] R. B. Kearfott, Rigorous global search: continuous problems, Kluwer, Dor-
drecht, 1996.

[7] G.Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,
Prentice Hall, Upper Saddle River, NJ, 1995.

[8] U.Kohlenbach. Theorie der Majorisierbaben ..., Ph.D. Dissertation, Frank-
furt am Main, 1990.

18

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

U. Kohlenbach, “Effective moduli from ieffective uniqueness proofs. An
unwinding of de La Vallée Poussin’s proof for Chebycheff approximation”,
Annals for Pure and Applied Logic, 1993, Vol. 64, No. 1, pp. 27-94.

V. Kreinovich, “What does the law of the excluded middle follow from?,”
Proceedings of the Leningrad Mathematical Institute of the Academy of Sci-
ences, 1974, Vol. 40, pp.37-40 (in Russian), English translation: Journal of
Soviet Mathematics, 1977, Vol. 8, No. 1, pp. 266-271.

V. Kreinovich, Complexity measures: computability and applications, Mas-
ter Thesis, Leningrad University, Department of Mathematics, Division of
Mathematical Logic and Constructive Mathematics, 1974 (in Russian).

V. Kreinovich, “Uniqueness implies algorithmic computability”, Proceed-
ings of the 4th Student Mathematical Conference, Leningrad University,
Leningrad, 1975, pp. 19-21 (in Russian).

V. Kreinovich, Reviewer’s remarks in a review of D. S. Bridges, Constrictive
functional analysis, Pitman, London, 1979; Zentralblatt fiir Mathematik,
1979, Vol. 401, pp. 22-24.

V. Kreinovich, Categories of space-time models, Ph.D. dissertation, Novosi-
birsk, Soviet Academy of Sciences, Siberian Branch, Institute of Mathemat-
ics, 1979, (in Russian).

V. Kreinovich, “Unsolvability of several algorithmically solvable analytical
problems”, Abstracts Amer. Math. Soc., 1980, Vol. 1, No. 1, p. 174.

V. Ya. Kreinovich, Philosophy of Optimism: Notes on the possibility of
using algorithm theory when describing historical processes, Leningrad
Center for New Information Technology “Informatika”, Technical Report,
Leningrad, 1989 (in Russian).

V. Kreinovich and R. B. Kearfott, “Computational complexity of optimiza-
tion and nonlinear equations with interval data”, Abstracts of the Sizteenth
Symposium on Mathematical Programming with Data Perturbation, The
George Washington University, Washington, D.C., 2627 May 1994.

V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complex-
ity and feasibility of data processing and interval computations, Kluwer,
Dordrecht, 1998.

G. W. Walster, “The Future of Intervals”, Abstracts of the 9th GAMM
— IMACS International Symposium on Scientific Computing, Computer
Arithmetic, and Validated Numerics, Karlsruhe, Germany, September 19—
22, 2000, p. 23 (full paper will appear in the conference proceedings).

19

